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•  Brief overview of floodplain science needs project 

•  Explore two examples of floodplain modeling results:  

•  Potential benefits of floodplains in providing flood-
risk reduction and nutrient processing. 

•  Can floodplains be common ground in conservation 
and agricultural land-use conflicts on large rivers?  

Presentation Objectives 



  

Large-river floodplains are highly dynamic, 
spatially variable, highly valued for 
agriculture, development, and – increasingly – 
conservation.  
What information is needed to manage these 
lands for resiliency, especially given inherent 
uncertainties and non-stationary conditions? 



•  Solicit science needs from floodplain conservation land 
managers. 

•  Develop data, models, and tools to address those 
needs. 

•  Look at variety of ecological endpoints 

•  Evaluate sensitivity to non-stationarity, as caused 
by climate variation, land-use change, water-use 
change. 

Project Objectives 



Assessing*floodplain*

science*needs*

•  Surveyed(natural(resource(managers(

of(floodplain(conserva6on(lands(

across(UMR,(MMR(and(LMOR((

Bouska,(Lindner,(Paukert(&(Jacobson,(2016,(StakeholderHled(science:(engaging(

resource(managers(to(iden6fy(science(needs(for(longHterm(management(of(

floodplain(conserva6on(lands,(Ecology(and(Society(21(3):12(



What*scien9fic*informa9on*is*needed*to*help*inform*

management*decisions?*

Current(management(( Future(management((

Bouska(and(others.,(2016((
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•  Six Corps reservoirs 
• Mainstem storage: 

91 km3 

•  10 BKWH avg. 
annual hydropower 

• Other dams: 40 km3

  
(National Map, 

2006) 



Lower Missouri River at Hermann, Missouri 
Missouri River Commission Maps - 1894 

0 2 4 6 kilometers 



Hydrologic time series 

How much, when 

•  Historical 

•  Modeled historical 

•  Modeled future 

•  GCM and scenario 

•  Downscale 

•  Mitigation scenario 

•  …. 

Hydraulics 

Where water goes 

•  Floodplain scenarios 

•  Models: 

•  1-dimensional 

•  2-dimensional 

•  Surface + 
groundwater 

•  … 

Ecological endpoints 

•  Magnitude, duration, 
frequency, timing.. 

•  Spatial characteristics 

•  Habitat availability 

•  Explicit bioenergetics 

•  Ecosystem services 

•  … 

82 years of 
historical inflows 
with current 
reservoir 
management – 
USACE HEC-ResSim 
model 

USACE- HEC-RAS 

USGS-constructed 
2-dimensional 
model (TuFlow) 

Regulating services: 

•  Flood-risk 
reduction 

•  Denitrification 

Modeling*Approach*



Local-Scale Geography – 2 Cross Sections 

I-70, Overton, 130 kcfs 
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Local Stage Effects, Conversion from Ag to Conservation 

Batture: land between banks & levees 
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Attenuation Effects, Conversion from Ag to Conservation 



A spatially variable problem 
 

Geomorphic adjustments to 
sediment retention results in 
variable flood-risk reduction 

potential. 

Sioux City, Iowa 

Saint Joseph, Missouri 

Boonville, Missouri 

Gavins Point Dam 

Jacobson and 
others, 2011 



Jacobson and 
others, 2010 

Segmentation, Lower Missouri River 

Platte Segment – 
Platte River to Kansas 
River 



Flood Duration, Days
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Nebraska City, 2011 

Jacobson and 
others, 2015 



A spatially variable problem 
 

Geomorphic adjustments to 
sediment retention results in 
variable flood-risk reduction 

potential. 

Sioux City, Iowa 

Saint Joseph, Missouri 

Boonville, Missouri 

Gavins Point Dam 

Jacobson and 
others, 2011 



Unsteady 2-
dimensional flow 
model 

Used 2007 10-year 
flood to assess 
scenarios with 
variable levee 
setbacks from 
present day to no 
levees. 

Jacobson and other 
(2015) 

Conservation 
land 

Private ag. 
land 

Conservation 
land 
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Floodplain 

Vertical Cross Section, Looking Downstream 
294,000 cfs, Approximately 5-year Return 
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Pre-1993 Levee Alignment 
Low Floodplain Roughness 

n = 0.05 
Jacobson and others, 2015 
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Floodplain 

Vertical Cross Section, Looking Downstream 
294,000 cfs, Approximately 5-year Return 
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3,750 Ft. Floodway 
Low Floodplain Roughness 

n = 0.05 
Jacobson and others, 2015 
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Floodplain 

Vertical Cross Section, Looking Downstream 
294,000 cfs, Approximately 5-year Return 
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5,000 Ft. Floodway (Pick Plan, 1944) 
Low Floodplain Roughness 

n = 0.05 
Jacobson and others, 2015 
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No Levee Scenario 
Low Floodplain Roughness 

n = 0.05 

Vertical Cross Section, Looking Downstream 
294,000 cfs, Approximately 5-year Return 

Jacobson and others, 2015 
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Vertical Cross Section, Looking Downstream 
294,000 cfs, Approximately 5-year Return 

Jacobson and others, 2015 



Upstream 
Downstream  
        n = 0.03 – 0.2 

•  Little attenuation is apparent 
•  Caveat: modeled area is relatively small, about 13 river 

miles, 19 square miles of floodplain. 
•  Deformation of rising limb suggests < 5 year flood 

affected 

2007 10-year flood routed through no-levee model 

Jacobson and others, 2015 



5/8/2007 
12:00 hours  
7,754 m3/s 

5/8/2007 
18:00  hours 
8,165 m3/s 

Depth,
meters

8.0

0.0

Velocity,
meters per

second

4.0

0.5

Jacobson and others, 2015 

Floodplain Storage in Low-lying Areas, 2-5 Year Frequency Floods 
No-Levee Scenario 



5/9/2007 
0:00 hours  
8,575 m3/s 

5/11/2007 
0:00  hours 
9,565 m3/s 

Floodplain Convyance, > 5-Year Frequency Floods 
No-Levee Scenario 

Jacobson and others, 2015 



  

•  Local stage effects can be substantial, on 
the order of a meter, but roughness 
mediates. 

•  What is land cover in set-back area? 

•  Attenuation can be effective on smaller 
floods – how big depends on area, 
storage, conveyance 

•  Conservation lands avoid flood damages, 
thereby diminish hazard (=probability x 
consequence). 

Common ground in flood-risk reduction? 



Non-point source agricultural chemicals 
Nitrogen Applications, Mississippi Basin 

From Meade, R.H., (1995) 



  

Floodplains and potential for nutrient-flux 
mitigation 
Denitrification requires reduction of nitrate, reducing 
conditions, proper microbial community, sufficient 
temperature. 

Fundamentally: a function of flooding extent, duration 



Inundation based on USACE 
HEC-RAS Model , 82 years of 
daily flow, 811 miles (here 500). 

Lindner, Bulliner, in prep. 



Stack over 

time 

x
y

z

Structured(3Hdimensional(matrix(of(data(

x(and(y(are(geospa6al(coordinates(
z$is(6me(coordinate((30,256(days)((

Water(depth(((((((((for(each(x,y,z(

LMOR*HEC;RAS*model*daily*matrices(

Lindner, Bulliner, in prep. 



•  What*are*annual*totals*and*averages*in*square*km*x*

days*that*floodplain*is*inundated*to*at*least*0.5*m*

during*May*–*October*in*this*500;mile*segment?**

•  What*is*resultant*poten9al*denitrifica9on?*And*how*

does*it*relate*to*river*N*fluxes?*

*Hurst and others (2016) 
**Blevins (2004) 

Low$rate* High$rate** Low$rate* High$rate**

8$mg/m2/d 300$mg/m2/d 8$mg/m2/d 300$mg/m2/d

Batture 96 3,593 0.05% 1.71%
Full$floodplain 204 7,656 0.10% 3.64%

Annual$N$load$at$Hermann,$MO:$210,248$metric$tons

Metric$tons/year Percent$measured$load

LongNterm$averages
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•  Big, long floods and complete connectivity can attain 
appreciable denitrification. 

•  But in most years the potential is < 4% of 
background flux under optimal circumstances 

•  Hot spots – oxbows, tributary junctions, some batture 
wetlands – may achieve higher rates. Little Bean 
Marsh was NO3- limited. 

•  Intensive engineering of denitrification may achieve 
higher intrinsic rates. 

•  Generally indicates limitations of large-river 
floodplain mitigation and need to address nutrients at 
the field scale, throughout the watershed. 

Common ground in nutrient mitigation? 



•  Ecological restoration and agricultural conflicts are 
acute in large-river floodplains where objectives are 
highly divergent. 

•  Dynamic and spatially variable systems require 
high resolution assessments and models. 

•  Two potential win-win solutions – flood risk reduction 
and nutrient mitigation – are marginal. 

•  Floodplains cannot fully mitigate watershed 
stressors. 

•  Common ground between restoration and floodplain 
agriculture may depend on quantifying and summing a 
wider range of ecosystem services – hazard mitigation, 
recreation, alternative crops. 

Conclusions 



Questions? 



Photo: Lee Valley, Inc. 

Flood risk reduction:  Avoiding damages to land 
and infrastructure 



Jacobson (2003) 
  

Scour and Deposition on Agricultural Lands 

Berger Bottoms, 1993 

Flood Damages, Millions of Dollars
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Stage-damage With Levee

Volume Volume Cost

Source (ac-ft) (cubic-yards) (dollars)
Levee na 424,000 2,600,000$  
Scour 720 1,161,576 7,000,000$  

Deposit 2,730 8,800,000$  
1,200,000$  

19,600,000$

2,200,000$  Crop damage costs

Table 2.  Estimated costs of erosion and 
sedimentation reclamation at Berger Bottoms, and 
estimated crop loss.
[ac-ft, acre-feet; ac, acre; na, not applicable]

Deep plowing, 6,160 ac @ $190/ac

Total reclamation cost



Reistance to Change 

Photo: http://www.talkvietnam.com 

Photo: http://floodlist.com 

Mekong River is an 
example of a highly 
productive, relatively 
natural system. 
 
Debate is about 
conservation of 
existing ecological 
value: 
•  3.9 million metric 

tons of fish harvest 
•  $3.9 – 7.0 billion 

annual value 
•  Compared to gains 

in hydropower, 
sand, flood control 

Image: Google Earth 



  

Resistance to Change 

Missouri River is an example of a river that is already 
highly altered, highly developed: 
 
•  Management debate is about restoration of some 

natural ecosystem processes and productivity. 
•  Ecological gains are uncertain and require vision. 
•  Economic losses from restoration -- represented by 

~11 million metric tons of corn production-- are 
perceived as certain; a difficult threshold to cross. 




