
1

PharmaSUG 2016 - Paper TT11

Exploring HASH Tables vs. SORT/DATA Step vs. PROC SQL
Richann Watson, Experis, Batavia, Ohio

Lynn Mullins, PPD, Cincinnati, Ohio

ABSTRACT
There are often times when programmers need to merge multiple SAS® data sets to combine data into one single
source data set. Like many other processes, there are various techniques to accomplish this using SAS software.
The most efficient method to use based on varying assumptions will be explored in this paper. We will describe the
differences, advantages and disadvantages, and display benchmarks of using HASH tables, the SORT and DATA
step procedures, and the SQL procedure.

INTRODUCTION
Merging data sets together is a common practice that programmers do in order to combine data sets based on key
fields. There are a number of possible solutions to merge SAS data sets, including the PROC SORT/DATA step
merge, the PROC SQL join, and HASH table lookups. Some of the determinants on which method to use are the
size of the data sets, resource availability, and the programmers’ experience with the different techniques. This
paper will discuss these three methods in detail beginning with the syntax for using HASH table lookups including the
options associated with this method. We will then describe the differences in the complexity, memory type, data set
size, and other attributes between the three methods. Benchmarks will also be discussed using three data set sizes,
small, medium, and large. And lastly, the ideal situations will be described for when to use each method.

INTRODUCTION TO HASH TABLES
Hash tables, also referred to as hash objects, is an in-memory lookup table that can only be accessed from within the
DATA step that creates it. Thus, once the DATA step ends, the hash table is deleted. A hash table provides an
efficient way to search the data.

The hash object has two parts to it. The first part is the key. The key can consist of a single variable or multiple
variables that will be used to perform a lookup. The key part can consist of character and/or numeric values. The
second part of a hash object is the data part. The data part is the data value(s) associated with the key. The data
part can also consist of character and/or numeric values.

SYNTAX AND SOME METHODS OF HASH TABLES
The hash table is defined in a DATA step and is only available during the DATA step. The syntax of a hash object
can be difficult and can take some time getting used to. Once the hash table is defined, then it can be used to add,
find, replace, check, remove, and output data. Below is generic code that shows how a hash table is defined.

data _null_;

 define attributes for variables that will be retrieved, i.e., data part

 if _n_ = 1 then do;

 /* declare name for hash table with ascending sort order */
 declare hash hashobj(dataset: "lib.indsn", ordered: "a");

 /* define variables that will be used a key for lookup (key part) */
 hashobj.definekey ('keyvar1', 'keyvar2', 'keyvar3');

 /* define variables that will be retrieved (data part) */
 hashobj.definedata ('datavar1', 'datavar2');

 /* end definition of hash table */
 hashobj.definedone();

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

2

 /* specify the main table(s) that are going to use the lookup table */
 set inlibnm.indsn;

 /* one or more hash methods can be used to add, find, replace, check, etc. */
 hashobj.check();
 if hashobj.find() then output;

run;

Some of the methods that can be used with hash tables along with a description of each and the syntax are in the
table below.

Method Description Syntax

Add Adds the data associated with the key to
the hash table

hashobj.add();

hashobj.add(key: keyvar1, …, key: keyvarN,

 data: datavar1, …, data: datavarN);

Check Checks to see if key is stored in hash
table

hashobj.check();

hashobj.check(key: keyvar1, …, key: keyvarN);

Clear Removes all entries in hash table without
deleting the hash table

hashobj.clear();

Definedata Defines the data that is to be stored in
hash table

hashobj.definedata();

hashobj.definedata(datavar1, …, datavarN);

Definedone Indicates that the key part and data part
of the hash table are complete

hashobj.definedone();

Definekey Defines the variables that will be used as
the key in the hash table

hashobj.definekey(keyvar1, …, keyvarN);

hashobj.definekey(all: ‘yes’);

Equals Determines if two hash tables are equal
and stores result in indicated DATA step
variable

hashobj.equals(hash: ‘hashobj1’, results: resvar)

Find Determines if key is stored in hash table hashobj.find();

hashobj.find(key: keyvar1, …, key: keyvarN);

Output Creates a data set which will contain data
from hash table

hashobj.output(dataset: ‘lib.outdsn’);

Ref Performs a find on the current key and if
the key is not found it is added to the
hash table

hashobj.ref();

hashobj.ref(key: keyvar1, …, key: keyvarN);

Remove Removes the data associated with the
key

hashobj.remove();

hashobj.remove(key: keyvar1, …, key: keyvarN);

Replace Replaces the data associated with the
key with new data

hashobj.replace();

hashobj.replace(key: keyvar1, …, key: keyvarN,

 data: datavar1, …, data: datavarN);

Sum Gets the key summary for the indicated
key and stores in the indicated DATA
step variable

hashobj.sum(sumvar);

hashobj.sum(key: keyvar1, …, key: keyvarN,

 sum: sumvar);

Table 1. Hash table methods

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

3

ILLUSTRATION OF HASH TABLE
Below is example code of creating a hash table.

/* 1. not applicable - sorting is not required when using HASH OBJECTS */
/* 2. combine the result records into one data set by CASEID */

data _null_;

 /* specify the lookup table */
 if _n_ = 1 then do;
 /* define the attributes for the variables that are added to main data set */
 if 0 then set indsn.femresp1 (drop=CASEID);

 /**/
 /*** BEGIN SECTION TO DECLARE HASH OBJECT ***/
 /**/
 /* declare name for hash table with ascending sort order */
 declare hash fresp(dataset: "indsn.femresp1", ordered: "a");

 /* define variables that will be used a key for lookup (key part) */
 fresp.definekey ('CASEID');

 /* define variables that will be retrieved (data part) */
 fresp.definedata (all: 'yes');

 /* end definition of hash table */
 fresp.definedone();
 /**/
 /*** END SECTION TO DECLARE HASH OBJECT ***/
 /**/
 end;

 /* specify the main tables that are going to use the lookup table */
 set indsn.femresp end=eof;

 /* if there is a match fresp.find() returns a 0 for success */
 /* otherwise it returns non-zero value for failure */
 /* at the end of the file output the hash table to data set */
 if eof and fresp.find() = 0 then fresp.output(dataset: 'femresp_hash');
run;

DIFFERENCES BETWEEN THE THREE METHODS
The differences between the three merging methods (DATA step merge, SQL Procedure, and HASH table) that we
benchmarked are highlighted in the following table.

 Standard DATA Step PROC SQL DATA Step HASH

Syntax Complexity Straightforward Straightforward to Moderate Very Confusing

Memory or Disk-Based Disk Disk Memory

Ideal size of data sets

Any
Can be a resource hog
for very large data sets
and may not be very
efficient.

Small to Moderate
Can be a resource hog for very
large data sets. Large to Very Large

Memory Allocation Upfront Upfront Only when needed

Sorting/Indexing Required Yes No No

Additional calculations Yes Maybe Yes
Table 2. Differences between the three methods

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

4

BENCHMARKS OF THE THREE METHODS
The summary of real-time, the amount of time spent to process the SAS job, are shown in the tables below. Three
different data set sizes (# of observations) have been used for comparison. Real-time is also referred to as elapsed
time. The lowest real-time used is displayed in red.

The following three tables display the real-time results using two data sets with many formatted variables.

 Real Time (seconds)

Step

Standard
DATA
Step

PROC
SQL

DATA
Step
HASH # of Obs # of Vars Size (KB)

1.1 (1st Sort) 0.10 N/A N/A Data set 1 100 5,754 5,311

1.2 (2nd Sort) 0.14 N/A N/A Data set 2 100 5,754 5,311

2 (Join) 4.27 7.18 4.31 Final 100 11,507 4,096*

Total 4.51 7.18 4.31 * Compressed using binary option
Table 3. Real-Time statistics of small size data sets with many variables

 Real Time (seconds)

Step

Standard
DATA
Step

PROC
SQL

DATA
Step
HASH # of Obs # of Vars Size (KB)

1.1 (1st Sort) 1.72 N/A N/A Data set 1 10,847 5,754 488,926

1.2 (2nd Sort) 1.66 N/A N/A Data set 2 10,847 5,754 488,926

2 (Join) 8.10 12.27 7.27 Final 10,847 11,507 216,576*

Total 11.48 12.27 7.72 * Compressed using binary option
Table 4. Real-time statistics of moderate size data sets with many variables

 Real Time (seconds)

Step

Standard
DATA
Step

PROC
SQL

DATA
Step
HASH

of Obs

of
Vars Size (KB)

1.1 (1st Sort) 9.31 N/A N/A Data set 1 45,103 5,754 2,053,824

1.2 (2nd Sort) 9.40 N/A N/A Data set 2 45,103 5,754 2,053,824

2 (Join) 20.58 301.31 38.09 Final 45,103 11,507 890,368*

Total 39.29 301.31 38.09 * Compressed using binary option
Table 5. Real-Time statistics of large size data sets with many variables

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

5

The following three tables display the real-time results using three data sets with few variables.

 Real Time (seconds)

Step

Standard
DATA
Step

PROC
SQL

DATA
Step
HASH

 # of Obs
of
Vars Size (KB)

1.1 (1st Sort*) 0.05 N/A N/A
 * Lookup 86 5 128

1.2 (2nd Sort†) 1.00 N/A N/A
 †Lab Results 40,210 19 98,784

1.3 (3rd Sort‡) 0.43 N/A N/A
 ‡Cancelled 786 19 2,156

2.1 (1st Pre-join†) 0.24 0.55 N/A
 Final 40,996 21 20,480*

2.2.1 (2nd Pre-join‡) 0.04 N/A N/A

2.2.2 (2nd Pre-join‡) 0.02 0.04 N/A
 * Compressed using binary option

3 (Join) 0.36 0.36 1.10

Total 2.14 0.95 1.10

Table 6. Real-Time statistics of small size data sets with few variables

 Real Time (seconds)

Step

Standard
DATA
Step

PROC
SQL

DATA
Step
HASH

 # of Obs
of
Vars Size (KB)

1.1 (1st Sort*) 0.15 N/A N/A
 * Lookup 86 5 128

1.2 (2nd Sort†) 14.79 N/A N/A
 †Lab Results 337,453 21 844,000

1.3 (3rd Sort‡) 0.42 N/A N/A
 ‡Cancelled 786 19 2,156

2.1 (1st Pre-join†) 2.09 5.63 N/A
 Final 338,239 23 92,160*

2.2.1 (2nd Pre-join‡) 0.38 N/A N/A

2.2.2 (2nd Pre-join‡) 0.02 0.06 N/A
 * Compressed using binary option

3 (Join) 1.96 2.07 4.12

Total 19.81 7.76 4.12

Table 7. Real-Time statistics of moderate to large size data sets with few variables

 Real Time (seconds)

Step

Standard
DATA
Step

PROC
SQL

DATA
Step
HASH

 # of Obs
of
Vars Size (KB)

1.1 (1st Sort*) 0.08 N/A N/A
 * Lookup 86 5 128

1.2 (2nd Sort†) 1,257.10 N/A N/A
 †Lab

Results 10,620,791 21 26,552,200

1.3 (3rd Sort‡) 0.13 N/A N/A
 ‡Cancelled 786 19 2,156

2.1 (1st Pre-join†) 82.49 3,004.86 N/A
 Final 10,621,577 23 2,580,480*

2.2.1 (2nd Pre-join‡) 1.91 N/A N/A

2.2.2 (2nd Pre-join‡) 0.04 3.10 N/A
 * Compressed using binary option

3 (Join) 81.74 104.37 275.36

Total 1,423.49 3,112.33 275.36

Table 8. Real-Time statistics of extremely large size data sets with few variables

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

6

WHEN IT IS IDEAL TO USE ONE METHOD OVER THE OTHER
The data sets sizes have an impact on the efficiencies of the different methods. If the data sets to be joined are
relatively small, then using a standard sort and DATA step merge would be sufficient. The larger the data sets are
the less the DATA Step and PROC SQL methods become.

The number of variables should also be considered when more than just the number of records needs to be
considered. Below are recommended approaches of how to determine which method is best to use considering the
data set size and number of variables. Again, we see that the small size data sets independent of the number of
variables can be merged using a standard sort and DATA step merge but the SQL procedure works just as well.
Interestingly, the DATA Step with the HASH table method is more efficient with larger data sets having fewer
variables.

Scenario
Standard DATA
Step

PROC
SQL

DATA Step
HASH

Small size data sets with many variables √ √ √

Moderate size data sets with many variables √ √ √

Large size data sets with many variables √ X √

Small size data sets with few variables √ √ √

Moderate size data sets with few variables X √ √

Extremely Large size data sets with few variables X X √
The use of the indicated method is not recommended.

Use caution with the indicated method(s) in this scenario
Ideal method(s) for the indicated scenario

Table 9. Recommendation based on number of records and number of variables

LIMITATIONS
These benchmarks were run on a Windows 7 environment using PC SAS v9.4. Different results may occur running
on other environments and SAS versions. The SAS option COMPRESS = BINARY was used to make the programs
run quicker.

SQL uses different algorithms to execute different types of joins. The SQL optimizer may choose to execute an inner
join using a hash, index, or sort-and-merge technique under different circumstances. In our test, we used a left outer
join on the small data sets to add two variables from the lookup table and only kept the lookup table data that
matched. We did an inner join on the large data sets because there was a 1-1 match of the key variable in each data
set.

Results from a DATA step merge can vary based on the environment (i.e. Compression = ON or OFF and results
from PROC SORT can vary based on any options used (i.e. TAGSORT vs. Non-TAGSORT vs. OUT = used).

CONCLUSION
This was just a small test and there are other factors that can be considered when doing benchmarking but for our
purposes we only looked at doing a basic DATA step, PROC SQL with a left outer join, and hash object. We looked
at various sizes of data sets and number of variables to see which process was the most efficient and then did a
comparison of the data sets to make sure that all three processes produced the same results. There are several
factors to consider when deciding which approach to use. It may sometimes be worthwhile to learn a new method,
even if it is a bit cumbersome, if in the end it will save you a lot of processing time.

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

7

REFERENCES
SAS Institute, SAS9 Hash Object Tip Sheet, Available at http://support.sas.com/rnd/base/datastep/dot/hash-tip-
sheet.pdf.

Burlew, Michele M. 2012. SAS Hash Object Programming Made Easy. Cary, NC: SAS Institute Inc.

Lafler, Kirk P. 2010-2015. Exploring SAS DATA Step Hash Programming Techniques. Software Intelligence
Corporation.

Secosky, Jason and Bloom, Janice 2007. “Getting Started with the DATA Step Hash Object”. Cary, NC: SAS Institute
Inc.

ACKNOWLEDGMENTS
Thanks to Jamie Mabry, Lindsay Dean, Ken Borowiak, David Gray, Richard D’Amato, Lynn Clipstone, and PPD and
Experis Management for their reviews and comments. Thanks to our families for their support.

DISCLAIMERS
The contents of this paper are the work of the authors and do not necessarily represent the opinions,
recommendations, or practices of PPD or Experis.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Richann Watson
Experis
(513) 843-4081
Richann.watson@experis.com

Lynn Mullins
PPD
(910) 558-4343
Lynn.mullins@ppdi.com

http://support.sas.com/rnd/base/datastep/dot/hash-tip-sheet.pdf
http://support.sas.com/rnd/base/datastep/dot/hash-tip-sheet.pdf
mailto:Richann.watson@experis.com
mailto:Lynn.mullins@ppdi.com

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

8

APPENDIX A – ADDITIONAL HASH TABLE EXAMPLE

/* 1. Add in the LBCAT and LBTESTCD from the lookup table */
data labhash;

 /* specify the lookup table(s) */
 if _n_ = 1 then do;
 /* this will define the attributes for the variables */
 /* to be retrieved in the hash object */
 /* (i.e. defines attributes for LBCAT and LBTESTCD */
 if 0 then set indsn.lookup (keep=LBCAT LBTESTCD);

 /**/
 /*** BEGIN SECTION TO DECLARE HASH OBJECT FOR LABS WITH RESULTS ***/
 /**/
 /* declare name for hash table with ascending sort order */
 declare hash lrslt(dataset: "indsn.lookup", ordered: "a");

 /* define variables that will be used a key for lookup (key part) */
 lrslt.definekey ('PANEL', 'TEST', 'UNIT');

 /* define variables that will be retrieved (data part) */
 lrslt.definedata ('LBCAT', 'LBTESTCD');

 /* end definition of hash table */
 lrslt.definedone();
 /**/
 /*** END SECTION TO DECLARE HASH OBJECT FOR LABS WITH RESULTS ***/
 /**/

 /***/
 /*** BEGIN SECTION TO DECLARE HASH OBJECT FOR CANCELLED LABS ***/
 /***/
 /* declare name for hash table with ascending sort order */
 /* want to keep only tests that don't have 'LE' in name */
 /* this is due heme diffs not being calculated b/c there */
 /* no results to determine the diffs */
 declare hash lcncl(dataset: "indsn.lookup (where=(not(LBTESTCD ? 'LE')))",
 ordered: "a");

 /* define variables that will be used a key for lookup */
 lcncl.definekey ('PANEL', 'TEST');

 /* define variables that will be retrieved */
 lcncl.definedata ('LBCAT', 'LBTESTCD');

 /* end definition of hash table */
 lcncl.definedone();
 /***/
 /*** END SECTION TO DECLARE HASH OBJECT FOR CANCELLED LABS ***/
 /***/
 end;

 /* specify the main tables that are going to use the lookup table */
 set indsn.labrslt (in=rslt)
 indsn.labcncl (in=cncl);
 /* if there is a match lxxxx.find() returns a 0 for success */
 /* otherwise it returns non-zero value for failure */
 if rslt and lrslt.find() = 0 then output;
 if cncl and lcncl.find() = 0 then output;
run;

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

9

APPENDIX B – BENCHMARK METHODS

The statistics compared during the benchmarking and a description of each are highlighted in the table below.

Statistic Description
Real-Time The amount of time spent to process the SAS job. Real-time is also referred to as elapsed

time.
User CPU Time The CPU time spent to execute SAS code.

System CPU Time the CPU time spent to perform operating system tasks (system overhead tasks) that support
the execution of SAS code

Memory The amount of memory required to run a step.

OS Memory The maximum amount of memory that a step requested from the System.

Table 11. Benchmarks of the three methods

APPENDIX C – FULL BENCHMARK RESULTS

The full benchmarks results using data sets with many formatted variables are displayed in the tables below.

 Real Time (seconds)

User CPU Time (seconds)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

Standard
DATA Step PROC SQL

DATA Step
HASH

1.1 (1st Sort) 0.10 N/A N/A

0.01 N/A N/A

1.2 (2nd Sort) 0.14 N/A N/A

0.01 N/A N/A

2 (Join) 4.27 7.18 4.31

1.73 6.98 1.68

Total 4.51 7.18 4.31

1.75 6.98 1.68

 System CPU Time (seconds)

Memory (k)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

Standard
DATA Step PROC SQL

DATA Step
HASH

1.1 (1st Sort) 0.01 N/A N/A

 7,681.96 N/A N/A

1.2 (2nd Sort) 0.06 N/A N/A

 7,161.06 N/A N/A

2 (Join) 2.43 0.10 2.55

 35,039.62 60,757.40 33,228.14

Total 2.50 0.10 2.55

 49,882.64 60,757.40 33,228.14

 OS Memory (k)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

 # of Obs # of Vars

1.1 (1st Sort) 37,824 N/A N/A Data set 1 100 5,754

1.2 (2nd Sort) 37,824 N/A N/A Data set 2 100 5,754

2 (Join) 59,448 92,952 58,124 Final 100 11,507

Total 135,096 92,952 58,124
Table 12. Benchmark statistics of small size data sets with many variables

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

10

 Real Time (seconds)

User CPU Time (seconds)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

Standard
DATA Step PROC SQL

DATA Step
HASH

1.1 (1st Sort) 1.72 N/A N/A

1.31 N/A N/A

1.2 (2nd Sort) 1.66 N/A N/A

1.27 N/A N/A

2 (Join) 8.10 12.27 7.72

4.80 11.21 4.32

Total 11.48 12.27 7.72

7.38 11.21 4.32

 System CPU Time (seconds)

Memory (k)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

Standard
DATA Step PROC SQL

DATA Step
HASH

1.1 (1st Sort) 0.40 N/A N/A

7,653.50 N/A N/A

1.2 (2nd Sort) 0.34 N/A N/A

7,155.93 N/A N/A

2 (Join) 3.15 1.43 3.29

34,783.79 1,510,280.12 580,830.31

Total 3.89 1.43 3.29

49,593.22 1,410,280.12 580,830.31

 OS Memory (k)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

 # of Obs # of Vars

1.1 (1st Sort) 34,504 N/A N/A Data set 1 10,847 5,754

1.2 (2nd Sort) 34,504 N/A N/A Data set 2 10,847 5,754

2 (Join) 53,824 92,952 58,124 Final 10,847 11,507

Total 122,832 92,952 58,124
Table 13. Benchmark statistics of moderate size data sets with many variables

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

11

 Real Time (seconds)

User CPU Time (seconds)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

Standard
DATA Step PROC SQL

DATA Step
HASH

1.1 (1st Sort) 9.31 N/A N/A

8.62 N/A N/A

1.2 (2nd Sort) 9.40 N/A N/A

8.73 N/A N/A

2 (Join) 20.58 301.31 38.09

15.83 44.03 19.61

Total 39.29 30131 38.09

33.18 44.03 19.61

 System CPU Time (seconds)

Memory (k)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

Standard
DATA Step PROC SQL

DATA Step
HASH

1.1 (1st Sort) 0.62 N/A N/A

7,981.21 N/A N/A

1.2 (2nd Sort) 0.59 N/A N/A

8,005.25 N/A N/A

2 (Join) 4.07 31.2 4.64

34,730.93 1,111,128.57 2,058,676.87

Total 5.28 31.2 4.64

49,593.22 1,410,280.12 580,830.31

 OS Memory (k)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

 # of Obs # of Vars

1.1 (1st Sort) 34,516 N/A N/A Data set 1 45,103 5,754

1.2 (2nd Sort) 34,516 N/A N/A Data set 2 45,103 5,754

2 (Join) 53,780 1,137,572 2,077,800 Final 45,103 11,507

Total 122,812 1,137,572 2,077,800
Table 14. Benchmark statistics of large size data sets with many variables

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

12

The full benchmarks results using data sets with few variables are displayed in the tables below.

 Real Time (seconds)

User CPU Time (seconds)

Step

Standard
DATA
Step PROC SQL

DATA
Step
HASH

Standard
DATA Step PROC SQL

DATA
Step
HASH

1.1 (1st Sort*) 0.05 N/A N/A

0.01 N/A N/A
1.2 (2nd Sort†) 1.00 N/A N/A

0.23 N/A N/A

1.3 (3rd Sort‡) 0.43 N/A N/A

0.03 N/A N/A
2.1 (1st Pre-join†) 0.24 0.55 N/A

0.25 0.39 N/A

2.2.1 (2nd Pre-join‡) 0.04 N/A N/A

0.00 N/A N/A
2.2.2 (2nd Pre-join‡) 0.02 0.04 N/A

0.00 0.01 N/A

3 (Join) 0.36 0.36 1.10

 0.24 0.26 0.31
Total 2.14 0.95 1.10

0.76 0.66 0.31

 System CPU Time (seconds)

Memory (k)

Step

Standard
DATA
Step PROC SQL

DATA
Step
HASH

Standard
DATA Step PROC SQL

DATA
Step
HASH

1.1 (1st Sort*) 0.01 N/A N/A

 1,153.03 N/A N/A
1.2 (2nd Sort†) 0.14 N/A N/A

109,511.75 N/A N/A

1.3 (3rd Sort‡) 0.01 N/A N/A

 4,850.21 N/A N/A
2.1 (1st Pre-join†) 0.00 0.31 N/A

 1,859.43 118,646.15 N/A

2.2.1 (2nd Pre-join‡) 0.00 N/A N/A

 1,321.50 N/A N/A
2.2.2 (2nd Pre-join‡) 0.01 0.01 N/A

 1,880.75 15,496.85 N/A

3 (Join) 0.01 0.03 0.10

 2,186.62 2,185.84 17,482.34
Total 0.18 0.35 0.10

122,763.29 136,328.84 17,482.34

 OS Memory (k)

Step

Standard
DATA
Step PROC SQL

DATA
Step
HASH

1.1 (1st Sort*) 35,564 N/A N/A

 # of # of
1.2 (2nd Sort†) 143,656 N/A N/A

 Obs. Vars

1.3 (3rd Sort‡) 39,568 N/A N/A

*Test Code Lookup 86 5
2.1 (1st Pre-join†) 35,308 151,740 N/A

†Lab Results 40,210 19

2.2.1 (2nd Pre-join‡) 35,564 N/A N/A

‡Cancelled Lab Test 786 19
2.2.2 (2nd Pre-join‡) 35,308 48,512 N/A

Final 40,996 21

3 (Join) 35,568 35,568 51,468

Total 360,536 235,820 51,468

Table 15. Benchmark statistics of small size data sets with few variables

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

13

 Real Time (seconds)

User CPU Time (seconds)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

Standard
DATA Step PROC SQL

DATA Step
HASH

1.1 (1st Sort*) 0.15 N/A N/A

0.01 N/A N/A

1.2 (2nd Sort†) 14.79 N/A N/A

2.68 N/A N/A

1.3 (3rd Sort‡) 0.42 N/A N/A

0.00 N/A N/A

2.1 (1st Pre-join†) 2.09 5.63 N/A

1.80 3.82 N/A

2.2.1 (2nd Pre-join‡) 0.38 N/A N/A

0.00 N/A N/A

2.2.2 (2nd Pre-join‡) 0.02 0.06 N/A

0.00 0.01 N/A

3 (Join) 1.96 2.07 4.12

1.71 1.73 1.93

Total 19.81 7.76 4.12

6.20 5.56 1.93

 System CPU Time (seconds)

Memory (k)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

Standard
DATA Step PROC SQL

DATA Step
HASH

1.1 (1st Sort*) 0.00 N/A N/A

 1,153.03 N/A N/A

1.2 (2nd Sort†) 1.49 N/A N/A

 920,448.01 N/A N/A

1.3 (3rd Sort‡) 0.04 N/A N/A

 4,850.18 N/A N/A

2.1 (1st Pre-join†) 0.09 2.09 N/A

 1,865.40 915,295.29 N/A

2.2.1 (2nd Pre-join‡) 0.01 N/A N/A

 1,321.31 N/A N/A

2.2.2 (2nd Pre-join‡) 0.01 0.03 N/A

 1,881.18 15,494.03 N/A

3 (Join) 0.03 0.14 0.32

 2,196.40 2,194.93 22,629.90

Total 1.67 2.26 0.32

 933,715.51 932,984.25 22,629.90

 OS Memory (k)

Step
Standard
DATA Step PROC SQL

DATA Step
HASH

 1.1 (1st Sort*) 35,564 N/A N/A

 # of # of
1.2 (2nd Sort†) 955,048 N/A N/A

 Obs. Vars

1.3 (3rd Sort‡) 39,568 N/A N/A

*Test Code Lookup 86 5
2.1 (1st Pre-join†) 35,308 948,256 N/A

†Lab Results 337,453 21

2.2.1 (2nd Pre-join‡) 35,564 N/A N/A

‡Cancelled Lab Test 786 19
2.2.2 (2nd Pre-join‡) 35,308 48,512 N/A

Final 338,239 23

3 (Join) 35,568 35,568 56,600

Total 1,171,928 1,032,336 56,600

Table 16. Benchmark statistics of moderate size data sets with few variables

Exploring HASH tables vs. SORT/DATA step vs. PROC SQL, continued

14

 Real Time (seconds)

User CPU Time (seconds)

Step

Standard
DATA
Step

PROC
SQL

DATA
Step
HASH

Standard
DATA Step PROC SQL

DATA
Step
HASH

1.1 (1st Sort*) 0.08 N/A N/A

0.00 N/A N/A

1.2 (2nd Sort†)

1,257.10 N/A N/A

120.60 N/A N/A

1.3 (3rd Sort‡) 0.13 N/A N/A

0.00 N/A N/A

2.1 (1st Pre-join†) 82.49

3,004.86 N/A

59.20 219.54 N/A

2.2.1 (2nd Pre-join‡) 1.91 N/A N/A

0.00 N/A N/A

2.2.2 (2nd Pre-join‡) 0.04 3.10 N/A

0.00 0.04 N/A

3 (Join) 81.74 104.37 275.36

55.66 65.00

70.20

Total 1423.49 3112.33 275.36

235.46 284.58

70.20

 System CPU Time (seconds)

Memory (k)

Step

Standard
DATA
Step

PROC
SQL

DATA
Step
HASH

Standard
DATA Step PROC SQL

DATA
Step
HASH

1.1 (1st Sort*) 0.01 N/A N/A

 1,672.59 N/A N/A

1.2 (2nd Sort†) 59.99 N/A N/A

1,054,363.43 N/A N/A

1.3 (3rd Sort‡) 0.01 N/A N/A

 4,849.71 N/A N/A

2.1 (1st Pre-join†) 2.85 153.20 N/A

 1,976.84 1,058,804.53 N/A

2.2.1 (2nd Pre-join‡) 0.00 N/A N/A

 1,321.75 N/A N/A

2.2.2 (2nd Pre-join‡) 0.03 0.10 N/A

 1,880.59 15,489.28 N/A

3 (Join) 3.04 3.35 14.15

 2,308.15 2,308.06 22,629.78

Total 65.93 156.65 14.15

1,068,373.06 1,076,601.87 22,629.78

 OS Memory (k)

Step

Standard
DATA
Step

PROC
SQL

DATA
Step
HASH

1.1 (1st Sort*) 35,308 N/A N/A

 # of # of
1.2 (2nd Sort†) 1,088,704 N/A N/A

 Obs. Vars

1.3 (3rd Sort‡) 39,312 N/A N/A

*Test Code Lookup 86 5
2.1 (1st Pre-join†) 35,308 1,092,548 N/A

†Lab Results 10,620,791 21

2.2.1 (2nd Pre-join‡) 35,564 N/A N/A

‡Cancelled Lab Test 786 19
2.2.2 (2nd Pre-join‡) 35,308 48,768 N/A

Final 10,621,577 23

3 (Join) 35,824 35,824 56,856

Total 1,305,328 1,177,140 56,856

Table 17. Benchmark statistics of large size data sets with few variables

	Abstract
	Introduction
	introduction to hash tables
	Syntax and SOME METHODS of hash tables
	Illustration of Hash Table
	Differences Between the Three Methods
	Benchmarks of the Three Methods
	When it is Ideal to Use One Method Over the Other
	limitations
	Conclusion
	References
	ACKNOWLEDGMENTS
	DISCLAIMERS
	Contact Information
	Appendix A – Additional Hash Table Example
	Appendix B – Benchmark Methods
	Appendix C – Full Benchmark Results

