

EXPLORING SPATIAL ANALYSIS CAPABILITIES IN GOOGLE MAPS MASHUP

USING GOOGLE FUSION TABLES: A CASE STUDY IN LAND LEASE DATA

RETRIEVAL

A THESIS PRESENTED TO

THE DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

By

MICHAEL WEN

NORTHWEST MISSOURI STATE UNIVERSITY

MARYVILLE, MISSOURI

July, 2014

EXPLORING GOOGLE MAPS MASHUP

Exploring Spatial Analysis Capabilities In Google Maps Mashup Using Google Fusion

Tables: A Case Study in Land Lease Data Retrieval

Michael Wen

Northwest Missouri State University

THESIS APPROVED

Thesis Advisor, Dr. Yanfen Le Date

Dr. Patricia Drews Date

Dr. Naijun Zhou Date

Dean of Graduate School Date

iii

Exploring Spatial Analysis Capabilities in Google Maps Mashup Using Google Fusion

Tables: A Case Study in Land Lease Data Retrieval

Abstract

 This study examines whether a map mashup application created with Google

Maps API and Google Fusion Tables API can be used to supplement traditional desktop

GIS applications in certain geographical studies. Historically, researchers have used

online mapping tools like Google Maps to aid in their geographical research but these

online tools have typically played a supporting role; most of the spatial analysis is still

done using desktop GIS software. In order to determine whether online tools can handle

some of the analytical tasks, a map mashup application that can be used to aid in oil and

gas lease management is developed. The application can be used to perform a number of

tasks that were traditionally associated with desktop GIS, such as performing attribute

and spatial analysis, drawing buffers and polygons, and retrieving data from an external

data source.

 This study uses Google Maps API and Google Fusion Tables API programmed

with JavaScript, a popular interpreted computer programming language that is an integral

part of most web browsers, to develop a map mashup application. The application has the

ability to display polygons as a feature layer, to draw polygons to delineate the

boundaries of study areas, to store the location and attributes of sample points selected

from a map, to draw buffers around point features, and to perform spatial and attribute

iv

queries from a table of spatial records. An accuracy assessment performed on the external

data retrieving capability shows an accuracy of 100 percent. The application met all of

the functional requirements and successfully demonstrated the utility of map mashup

applications in GIScience research. Among some of the major impediments for more

widespread adoption of map mashup applications are legal restrictions Google placed on

commercial use and several technical limitations enforced by Google to reduce server

load.

v

Table of Contents

Abstract ... i

Table of Contents ... iii

List of Figures .. iv

Chapter 1: Introduction ..1

1.1 Research Objective ..4

1.2 Study Area ...5

Chapter 2: Literature Review ..7

2.1 Google Maps and Google Maps API ..8

2.2 Google Fusion Tables API ..10

2.3 JavaScript and APIs ..11

2.4 Web Services ..12

Chapter 3: Conceptual Framework and Methodology ...14

3.1 Description of Data ...14

3.2 Methodology ...15

3.2.1. Display Feature Layer ...16

3.2.2. Identify Feature Function..17

3.2.3. Drawing Polygons...18

3.2.4. Attribute/Spatial Queries and Buffers...21

3.2.5. Using External Data Sources and Data Validation ...25

3.2.6. Deploying the Application ...29

Chapter 4: Analysis Results and Discussion ..32

4.1 Displaying the PLSS Survey Polygon Layer ..33

4.2 Drawing Areas of Interest ...34

4.3 Attribute and Spatial Queries ..34

4.4 Drawing Buffers ...36

4.5 Accuracy Assessment ...37

Chapter 5: Conclusion ..39

5.1 Research Summary ..39

5.2 Limitations of Results ..40

5.3 Suggested Further Research...43

References ...45

vi

List of Figures

Figure 1 - Study area ... 8

Figure 2 - JavaScript code in HTML .. 14

Figure 3 - Legal description overlay ... 14

Figure 4 - “Identify” feature popup window... 14

Figure 5 - Drawing polygons in ArcMap .. 14

Figure 6 - Showing uploaded polygons in Google map ... 14

Figure 7 - Drawing polygon on the map mashup ... 20

Figure 8 – Existing leases ... 22

Figure 9 - Map mashup application buttons ... 23

Figure 10 - Spatial and attribute query results .. 24

Figure 11 - Inserting sample points .. 25

Figure 12 - Sample points selected for accuracy assessment ... 31

Figure 13 – Logging into the application .. 32

Figure 14 – Viewing the application on browser .. 33

Figure 15 - Markers used to indicate recently added sample points 38

Figure 16 - Comparison between web service retrieved legal descriptions and those

obtained by spatial query using ArcMap .. 40

1

Chapter 1: Introduction

The Internet and mobile devices that connect to it have become ubiquitous

features of contemporary life. It is therefore widely recognized that future developments

in Geographical Information Systems (GIS) will center on Internet-centered GIS

technology that uses the Internet as the primary means to access data, conduct spatial

analysis, and provide location-based services (Peng and Zhang, 2004; Zhang and Tsou,

2009). This trend is driven in part by map mashups which were made possible by two

developments. First, a number of popular online map providers like Google Maps,

Yahoo! Maps, Microsoft Bing Maps, ESRI ArcGIS Online and MapQuest made an

enormous amount of online maps and other spatial data available to the public at little or

no cost. Second, the Application Programmable Interface (API) offered by these map

service providers and other organizations online allows developers to retrieve and

manipulate data over the web (Li and Gong, 2008).

 On the web the term mashup means taking information published from multiple

sources and integrating it into a new information stream (Gong, 2007). Mashups can be

created by developers, professional programmers or amateurs using different

technologies like eXtensible Markup Language (XML), web services, Real Simple

Syndication (RSS), screen scrapping and Asynchronous JavaScript and XML (Ajax) (Li

and Gong, 2008). Map mashups are a special type of mashup that combines at least one

map data source with information from another source to create a new map (Gong, 2007).

A typical map mashup uses a three level architecture: the first level contains data sources,

the second level handles the business logic and the last level implements the user

5

interface (Gong, 2007). At the time of writing, ProgrammableWeb, a premier reference

site for mashups, lists over 7,000 known mashup sites (ProgrammableWeb, 2013).

 Despite their popularity among web developers relatively little was written to

document the contribution or the potential role of map APIs and mashups in the

development of Internet GIS applications (Chow, 2008). Most of the existing map

mashups were created by using map APIs. A map API is a source code interface

published by map service providers that grants web developers access to a program

library and to request services in generating maps over the Internet (Chow, 2008). In a

typical but relatively simple map mashup the map API is used to modify the content

displayed on the map while data from other sources are retrieved from sites like Craigslist

by using their APIs, by custom applications that extract pertinent information from web

pages or with other technology (Miller, 2005). In addition to map APIs other types of

APIs provide functions like querying, returning and updating data at an external source,

geocoding based on addresses, and authenticating users (Chow, 2008; GeoCommunicator,

2013; Li and Gong, 2008).

Despite their versatility online maps and most existing map mashups do not really

provide the same level of support of spatial analysis that we enjoy from a desktop GIS

(Peng and Zhang, 2004; Chow, 2008; Batty, 2010). However Google Fusion Tables, a

new tool released by Google in 2009, has the potential to overcome these deficiencies. It

is an experimental application that lets users store, share, query, and display data tables.

It offers the ability to manage data rows online and query the table for all rows that match

spatial or data conditions through an API (Getting Started, 2013). It is a tool that has

great potential to provide many online spatial analysis capabilities because it is designed

6

to work in conjunction with Google Maps. There is no comparable product on the market

that is as widely available and free to use. This tool is relatively new, having been around

for only four years and so there have not been many formal studies done to apply its

capabilities to GIScience. It is unique because in addition to offering database and

spreadsheet like capabilities online, it also provides a number of spatial functions. With

code written to manipulate these capabilities through the Google Maps API and Google

Fusion Tables API, it should be possible to replicate in a Google Maps mashup some of

the functions currently found only in desktop GIS applications.

The Public Land Survey System (PLSS) is a survey system used in most of the

United States. Most of the lands in the public domain in the U. S. are subject to

subdivision by this rectangular system of surveys, which is regulated by the U.S.

Department of the Interior, Bureau of Land Management. It is used in the continental

U.S. except for areas covered by the original 13 colonies and Texas (National Atlas of the

United States, 2013b). The PLSS typically divides land into 6-mile-square townships,

and townships are then subdivided into 36 one-mile- square sections. Sections can be

further subdivided into quarter sections, quarter-quarter sections, or irregular government

lots. A legal description of a section includes the State, Principal Meridian name,

Township and Range designations with directions, and the section number. Courthouses

in states that use PLSS use it to record land leases, and it is the survey system by which

oil and gas companies manage their lease holdings (National Atlas of the United States,

2013b).

This study proposes a method of taking advantage of some of the newer

capabilities of Google Fusion Tables to perform spatial and attribute queries through the

7

use of the API for Google Maps and Google Fusion Tables. These capabilities are

exclusive to Google Fusion Tables as of now. For example, none of the other online map

service providers including Yahoo or MapQuest offer data manipulation functionality

common to spreadsheet applications like search and sort that is easily accomplished in

Google Fusion Tables. The goal of this study is to demonstrate that many of the spatial

and attribute query capabilities that are previously available only in desktop GIS software

can now be made available online for free through the use of these technologies. It is not

the goal of this study to develop a commercially viable application, but to demonstrate

the potential of these capabilities, so some of the real life concerns in software

development like licensing and legal issues are not addressed. A study like this one can

also expose limitations of these tools and associated technology in their current state.

1.1 Research Objective

The objective of this study is to determine whether a map mashup created with

Google Maps API and Google Fusion Tables API can be used to produce accurate legal

descriptions for land leases in PLSS. In particular, it seeks to find if Google Fusion

Tables used in conjunction with Google Maps API can be used to perform some of the

commonly used attribute and spatial queries and analysis on the web that currently

require the data to be downloaded to desktop GIS. Additionally, this study also explores

other common GIS capabilities, including the ability to draw buffers around point

features, opening popup windows displaying attributes of clicked geographical location,

retrieving data from external sources based on selected locations, and making attribute

and distance queries on selected features.

8

1.2 Study Area

The Uinta Basin and Mountains are located in the northeast corner of the state of

Utah (Figure 1) and are part of a larger physiographic area known as the Colorado

Plateau Province. The Uinta Basin lies south of the Uinta Mountains. It is about a two-

and-a-half hour drive east of Salt Lake City. The southern rim of the basin is formed by

the Tavaputs Plateau of the Book Cliffs, and the western rim is formed by the Wasatch

Mountains. The central portion of the basin has an elevation of 5,000 to 5,500 feet. Two

major rivers intersect this area; the Green River flows southward out of the Uinta

Mountains to the north, crossing the Uintah Basin while the Colorado River crosses the

eastern portion of this section, cutting off an area of some 40 miles in diameter. This area

was selected because it has seen a great deal of oil and gas related activities in recent

years (Fuller, 2013).

Figure 1 - Study Area

9

Chapter 2: Literature Review

Since the advent of map mashup applications in 2004, this technology was

recognized as having the potential of playing a pivotal role in supporting new

developments in geography such as Public Participation GIS (PPGIS) and locational

aware applications (Batty et al., 2010; Newman et al., 2010). It was quickly recognized

that applications built with this technology allow users with limited mapping knowledge

to use GIS-like functions for a wide range of applications (Polczynski and Polczynski,

2013). However online maps and most existing map mashup applications do not yet

contain the ability to perform common spatial operations like buffering, spatial querying,

geoprocessing or performing map algebra. These features are not currently supported in

the map APIs offered by many of the free major map service providers like Yahoo Maps

and Google Maps. This deficiency has hampered the adoption of online maps in

GIScience studies. For example, existing online maps lack the ability to produce random

statistical samples, and currently such samples can only be created by first downloading

the entire dataset to the desktop first (Wampler et al., 2013). Studies have been done that

use various workarounds to take advantage of the open and freely available spatial

content provided by map mashups while utilizing the advanced spatial analysis

capabilities of traditional desktop GIS software. Many of the techniques focused on

finding ways to export data from map mashups to local hard drives in order to perform

spatial and attribute analysis with desktop GIS and spreadsheet applications. The most

common approaches involved exporting data to files in Keyhole Markup Language

(KML) or Comma-Separated Values (CSV) formats (Chow, 2008; Wampler et al., 2013).

Some studies even adopted the approach of constructing maps by writing new KML from

10

scratch which while low in cost is understandably a training intensive approach

(Polczynski and Polczynski, 2013).

Other studies were done that sought to find ways to perform spatial analysis on

web applications without using desktop GIS. Peng and Zhang (2004) proposed a strategy

to use Geographic Markup Language (GML) as a coding and data transporting

mechanism to achieve data interoperability, Scalable Vector Graphics (SVG) to display

GML data on the web, and Web Feature Service (WFS) as a data query mechanism to

access and retrieve data at the feature level in real time on the web. While these

technologies are not strictly speaking used for spatial analysis, they can be used for

representational storage and transfer. This approach essentially uses these standards to

duplicate the standard geoprocessing functionality of a desktop GIS. Chow (2008) took

the GML-centric approach further by proposing a conceptual model that consists of three

major steps: (1) convert the GIS database into GML or any web-compatible raster

imagery; (2) query the spatial data by parsing the GML data or loading the web-

compatible raster imagery; and (3) overlay the spatial data into corresponding map API

classes for visualization. These approaches will no doubt play a much bigger role in

Internet GIS a decade from now compared to the modest techniques used in this study but

the amount of programming involved in developing these applications is much greater.

2.1 Google Maps and Google Maps API

 Originally a C++ program designed by two Danish brothers Lars and Jens

Rasmussen at the Sydney-based company Where 2 Technologies, Google Maps was

acquired by Google, Inc. in 2004 and transformed into a web application (LeMay, 2005).

The application is based on a close variant of the Mercator projection, but the coordinates

11

of the features on Google Maps are GPS coordinates based on the WGS 84 datum (Map

Types, 2014). It suffers from limitations of the Mercator projection, such as not being

able to show the poles. Instead it cuts off coverage at 85.051125° north and south which

is atan(sinh(π))×180/π, a requirement that the map is a square (Map Types, 2014).

 Google launched Google Maps API in 2005 in order to allow web developers to

integrate Google Maps into their websites (Taylor, 2005). It has since become the most

heavily used web application development API on the Internet, used in the development

of over 1,000,000 web sites (ProgrammableWeb, 2013). At the time of writing it is a free

service and does not require advertisements, but the terms of use state that Google

reserves the right to display ads in the future. It is also free for some commercial usage,

provided that the site on which it is being used is publicly accessible, does not charge for

access, and is not generating more than 25,000 map requests a day (Google Maps/Google

Earth APIs Terms of Service, 2014). Sites that do not meet these requirements can

purchase the Google Maps API for Business, which allows up to 100,000 map requests a

day and also comes with technical support, a higher maximum resolution and an

advanced analytics tool that enables you to see how visitors interact with your maps

(Google Maps for Business, 2014).

 The workflow involved in embedding Google Maps inside a web page involves

the following six steps (Getting Started with JavaScript, 2014):

1. Declare the application as HTML5 using the <!DOCTYPE html> declaration.

2. Include the Maps API JavaScript using a script tag.

3. Create a div element named "map-canvas" to hold the Map.

4. Create a JavaScript object literal to hold a number of map properties.

12

5. Create a JavaScript "map" object, passing it the div element and the map

properties.

6. Use an event listener to load the map after the page has loaded.

None of these steps require the use of any professional software development

applications. A simple text editor like Microsoft Notepad is more than adequate for this

purpose.

2.2 Google Fusion Tables API

 The Google Fusion Tables API 1.0 is an API published by Google that allows

developers to create and manage Fusion Tables resources such as tables, columns, rows,

templates, and styles. It uses the Representational state transfer (REST) architectural style

that uses the four HTTP methods GET, POST, PUT and DELETE to execute different

operations. Unlike Simple Object Access Protocol (SOAP) based web services which try

to model the exchange between client and server as calls to objects, REST tries to be

faithful to the web domain by keeping the calls in the Uniform Resource Locator (URL)

format, the one that is also used for web addresses (Getting Started, 2013).

Through the Google Fusion Tables API developers can use SQL statements to

query and manipulate rows and work with tables, columns, styles, and templates (Getting

Started, 2013). Security for the data in Fusion Tables is provided by an authentication

scheme that requires requests sent to the Fusion Tables API to be accompanied by a

unique identifier which can be either an API key string or an access token. The API

allows the response for a successful call to be either JavaScript Object Notation (JSON)

typed data, which is the default, or an untyped CSV or JSON (typed or untyped) data if

using SQL to query rows. A typed data field returns its value in a specific predefined

13

format depending on the content of the field. For example, latitudes and longitudes are

returned as two numeric values with eight decimal places while KML data are returned in

the format specified by the GeoJSon specification (Butler et al., 2008). Like the Google

Maps API the bulk of the programming tasks involves parsing and sending the API

requests, followed by the waiting for, receipt and then the processing of the response.

Visualizing the content of resources in Google Fusion Tables as a feature layer on

a Google Map involves the use of the FusionTablesLayer object. A FusionTablesLayer

object can be created in JavaScript by using the table's encrypted ID in a line of code

(Fusion Table Layers (Experimental), 2014). The code segment below is used to create a

FusionTablesLayer on a Google Map application based on the content of an entire Fusion

Table. In this example '1mZ53Z70NsChnBMm-qEYmSDOvLXgrreLTkQUvvg' is the Fusion

Table’s encrypted ID.

var layer = new google.maps.FusionTablesLayer({

 query: {

 select: 'Geocodable address',

 from: '1mZ53Z70NsChnBMm-qEYmSDOvLXgrreLTkQUvvg'

 },

2.3 JavaScript and APIs

 Both Google Maps and Google Fusion Tables have an API based on JavaScript,

an interpreted computer programming language that come as a part of most web

browsers, the implementation of which allows client-side scripts to interact with the user,

control the browser, communicate asynchronously, and alter the document content that is

displayed (JavaScript Introduction, 2014). This language offers some flexibility in where

the program code can reside, and the simplest approach is to place the code directly on

the web page itself. This approach has the additional benefit of allowing everyone with

access to the web page the ability to view the source code through the use of the “View

14

Source” function of the browser. As shown in Figure 2 the JavaScript code was entered

directly into the body of the HTML page. No specialized software development

environment was needed for this study.

Figure 2 - JavaScript code in HTML

2.4 Web Services

 One of the many ways to provide communications between data providers and

data consumers is through the use of web services. The World Wide Web Consortium

(W3C) defines a web service as “a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in a

machine-processable format (specifically the Web Service Definition Language (WSDL).

Other systems interact with the web service in a manner prescribed by its description

using SOAP messages, typically conveyed using HTTP with an XML serialization in

conjunction with other web-related standards.” (Booth, 2004, #1.4). Aside from returning

data web services can also be used for other tasks, such as conducting backend business

15

transactions, performing analytical function, and authenticating users and IP addresses.

Basically, many of functions currently done by desktop software can be performed by

web services. One of the potential concerns involved in using web services is security.

Because of the potential risks posed by malicious code, many of the top web browsers on

the market do not permit JavaScript calls to be made to web services that reside on a

network domain other than the one the JavaScript originates from. This security feature

must be dealt with by the use of Cross-Origin Resource Sharing (CORS) mechanisms

which allows developers to define ways to allow or disallow such the cross-origin

requests (Geller, 2013).

 The web service used by this study, the TownshipGeocoder service, is a JSON

web service (TownshipGeocoder, 2014). It is provided for free by the Department of the

Interior – Bureau of Land Management (BLM) and uses the government’s PLSS data in

NAD83 as the source. The application developed for this study sends a lat/long pair to

this web service to retrieve a township/range/section value, but the web service is also

capable of returning lat/longs of a specified township/range/section.

16

Chapter 3: Conceptual Framework and Methodology

The Google Fusion Tables API allows developers to use HTTP requests to

programmatically perform common tasks available in the Google Fusion Tables

application (Getting Started, 2013). Through this API a program can perform routine

tasks like updating a table's data and the visualization of the data, adding and populating

new columns for a table, reading a public table's metadata, or querying a table’s content.

It also provides the ability to perform spatial queries to find features located within a

certain distance or inside a bounding box, and this study explores this capability. The

mashup application developed for this study uses the Google Fusion Tables API to

perform data manipulation tasks like attribute and spatial queries, while at the same time

it uses the Google Maps API to customize the visualization of resulting records in Google

Maps.

3.1 Description of Data

 The township/range/section legal description polygons used for overlay and for

accuracy assessment are obtained from the GeoCommunicator website operated by the

Bureau of Land Management (GeoCommunicator, 2013). They are downloaded as

shapefiles and loaded into ArcMap for data validation. The data is first trimmed to

remove records outside of the study area and then exported to KMZ using ArcMap. The

KMZ file is converted to KML format and uploaded to a Fusion Table, which is then

used to create the feature layer on the map mashup by creating a FusionTablesLayer on

that table.

The list of existing oil gas leases in the study area used in the spatial and attribute

section of the study was downloaded from the Bureau of Land Management’s Land &

17

Mineral Legacy Rehost 2000 System (BLM, 2014). It is downloaded in shapefile format.

To load the data into the map mashup, the shapefile is converted to KMZ format in

ArcMap and then converted to KML. The KML is then uploaded to a new Fusion Table.

Since this dataset does not contain an expiration date column, one is created in Google

Fusion Table and test values are then entered randomly into the table to enable searches

by expiration date. The reason this is done is to allow the application to perform a search

on the expiration date value because that is one of the most common attribute searches in

land lease management based on the author’s experience in the oil and gas industry.

The web service used by the application to retrieve the township/range/section

legal description is the TownshipGeocoder service hosted by the Geocommunicator

website (TownshipGeocoder, 2014). This web service returns data in XML format, and

the desired township/range/section information was parsed out of the XML by a specially

written JavaScript function. All of the other spatial data and services needed for this

study are hosted by Google, including the base map that appears on the application’s

background and both of Google Fusion Tables and Google Maps and their associated

APIs.

3.2 Methodology

 This study seeks to demonstrate that a map mashup application made with Google

Maps API and Google Fusion Tables API can be used to perform some of the tasks and

operations that are more commonly done today with desktop GIS and spreadsheet

applications. To that end a Google Maps mashup application was developed in JavaScript

using Google Maps API and Google Fusion Tables API that satisfies the requirements

specified in the following sections.

18

3.2.1. Display Feature Layer

Since one of the most basic and commonly used functions of desktop GIS is to

display a feature layer on top of a base map the first requirement of the mashup

application developed for this study is that it should have the ability to display a layer of

PLSS township polygons as a feature layer over a base map. This is accomplished by

downloading a shapefile containing township/range/section legal description polygons

from BLM’s website, remove data from outside of the area of interest, convert the

shapefile to KML and then load the KML to a Fusion Table. Once the data is loaded into

a Fusion Table it can be displayed on the map mashup application through JavaScript by

creating a FusionTablesLayer object. After adjusting the opacity of the

FusionTablesLayer, the desired effect of imposing the township/range/section polygons

on top of the base Google maps is achieved as seen in Figure 3. Users can bring up the

PLSS layer by clicking on the “Show PLSS” button at the top.

Figure 3 - Legal description overlay

19

3.2.2. Identify Feature Function

It is relatively simple to display a polygon layer on a Google Maps mashup by

creating a FusionTablesLayer, but unfortunately, it is not quite as easy to show labels on

each of the polygon features (Issue 97, 2010). Steps like creating another layer just for

labels based on an attributes in the Fusion Table may be necessary to produce the desired

labeling effect, but this may require too much time to complete. Fortunately, features

displayed by using FusionTableslayer contain limited inherent interactivity where the

user can bring up a display window showing the values of all attribute columns in the

Fusion Table of a selected record simply by clicking on it as shown in Figure 4. This

feature works in the same way as the “Identify” function in ArcMap and is a convenient

way for users to find all attributes associated with features on a map.

Figure 4 – “Identify” feature popup window

20

3.2.3. Drawing Polygons

It is fairly simple to import and export spatial data from desktop GIS to a Google

Maps mashup application, and some of the past studies have taken advantage of this

technique to move polygons drawn in ArcMap into an online map mashup application.

Wampler et al. (2013) took this approach to display the boundaries of their areas of

interest in Google Earth. They loaded polygons of the areas of interest drawn in ArcMap

and moved them to Google Earth in order to take advantage of the latter’s recent high

resolution imagery so as to help them identify clusters of dwellings in their study, but we

can easily imagine other reasons where areas of interest need to be uploaded to an online

map. For example, an oil company land management team can use this tool to delineate

areas where potential new leases can be acquired.

The current approach of creating newly drawn polygons in desktop GIS to

indicate areas of interest and then exporting these polygons to an online map are

numerous and time consuming. The steps involved are as follows:

1. Create a new feature class in ArcCatalog to store the new polygons by creating a

polygon shapefile.

2. Create a new map in ArcMap and load the necessary base map that shows the

study area, and then load the shapefile created in step 1.

3. Draw the polygons in ArcMap by starting an edit session and then use the

“Construction Tools” tool. Figure 5 shows the polygons as drawn in ArcMap.

4. Export the new polygons to KML format by using the “Layer to KML” tool.

5. Unzip the KMZ file produced in step 4 to extract the KML file with an unzipping

utility.

21

6. Load the KML file to the online map. This can be done by simply uploading the

KML file to Google Drives, or by loading it to a Google Fusion Table and then

use JavaScript to create a new FusionTablesLayer. It was decided that the first

approach is more suitable for the purpose of this study. Figure 6 shows what the

polygons look like once uploaded onto Google Maps.

Figure 5 - Drawing polygons in ArcMap

22

Figure 6 - Showing uploaded polygons in Google map

To demonstrate that the tasks described above can also be done by functions

developed in Google Maps API, a drawing feature was developed that also provides the

capability to draw “areas of interest” polygons. Users would be able to turn this drawing

feature on by clicking on the “Draw” button and then draw the polygons by clicking on

the map. The current version of the application allows the users to draw one polygon,

which can be deleted by clicking on the “Delete Existing Polygon” button. The locations

of the polygons’ vertices are stored in a Fusion Table where each record represents a

vertex so that the polygon can be saved and re-displayed at a later time by other users

with access to this map mashup application. To better display the area enclosed by the

polygons, a fill color of salmon pink was drawn with some degree of transparency as seen

in Figure 7. In order to compare and contrast the ease and speed of this approach to the

ArcMap and upload approach, the amount of time and number of steps needed to

accomplish this task using each method were measured.

23

Figure 7 - Drawing polygon on the map mashup

Creating new polygons by using the drawing tool developed for this study is much

simpler once the code was written. The new workflow contains only three steps:

1. Create a new Fusion Table or clear the content of an existing one to be used for

storing the vertices of the polygons drawn.

2. Click on the “Draw” button to start the drawing process.

3. Draw the polygons.

3.2.4. Attribute/Spatial Queries and Buffers

The next step is to showcase the attribute and spatial querying capabilities of

Google Fusion Tables. Currently, if a user wants to perform spatial and/or attribute

queries on features residing on an online map, he or she would have to first download the

queries into a format that can be loaded into either a desktop GIS or a spreadsheet

application, and then perform the queries there. To replace this rather cumbersome

approach, a function that provides the ability to select leases based on their location and

24

expiration date was developed. The requirement of the attribute search function is that

users would be allowed first to enter a date and then, with the click of the “Query by

Expiration Date” button, have the application display all of the leases with expiration date

values that are before the entered date. As explained before in section 3.1, expiration date

is the most commonly searched field, and that is why it is used as an example in this

application. The user also has the option to incorporate location into the search by

clicking on the “Spatial Query On” button, select a search point, and then enter a number

that restricts the search results to those leases that are within a circle centered on the start

point with the entered number of meters as its radius. The spatial search can be turned off

by clicking on the “Spatial Query Off” button. If successfully implemented, the ability to

perform attribute and spatial queries directly online without first downloading the data to

desktop GIS as is currently done can greatly enhance the utility of online maps in

GIScience studies.

The drawing of buffer polygons on maps is a commonly used function of desktop

GIS and is essential to any online application that supports some GIS functions. Another

feature of the application that supplements the two querying functions is that a buffer

with the same radius is drawn around the selected point to display the search area. The

buffer circle displays the search area on the map and can help the user display the

locations of the search results.

In order to build this function, it is necessary to load existing lease data on which

to perform the spatial and attribute queries. To that end the current lease information

hosted by the Bureau of Land Management’s Land & Mineral Legacy Rehost 2000

System was downloaded and then loaded to a Fusion Table via KML. As shown in Figure

25

8, the feature layer of the existing leases are more irregular in shape than the PLSS layer.

Users can view existing leases by clicking on the “Show Current Leases” button.

Figure 8 – Existing leases

One of the requirements for the application is to provide the ability to search for

leases by expiration dates, but since the downloaded data does not contain an expiration

date field, a new empty column named “expiration date” was added to the Fusion Table

and then populated with sample expiration date values. In order to allow users the ability

to specify search criteria such as expiration date and search radius, a dropdown box and a

text box were added to the lower left corner of the application. The user also has the

ability to switch on both query modes by clicking on buttons in the top right of the

application. Figure 9 shows that most of the buttons are lined up in a row at the top of the

screen, but some are stacked along the right side as there is no more room at the top.

26

Figure 9 - Map mashup application buttons

As described above, the spatial query function displays the search area by

drawing a circular buffer around the selected search point. The size of the buffer depends

on the radius selected by the user in the dropdown box in the lowest left corner. All leases

that are within the specified distance from the search point are highlighted on the map. If

the attribute query functionality is also switched on, then only those leases that satisfy

both attribute and spatial criteria are returned as seen in Figure 10.

27

Figure 10 - Spatial and attribute query results

Through cursory examination of the application the two search functions appear

to meet the requirements. The spatial search returns leases that contain multiple plots of

land and returns polygons outside of the area defined in the buffer zone when part of the

lease is inside the buffer, as shown in Figure 10. This can be confusing to some of the

new users who are not very familiar with land lease management in oil and gas, but that

can be overcome by labeling the leases better. Unfortunately, that is not one of Fusion

Table API’s strengths.

3.2.5. Using External Data Sources and Data Validation

Finally, to test the accuracy of using an external web service as a data source, a

function was built into the mashup application that allows the user to click anywhere

within the map to add a new sample point, and the application first displays the

township/section/range number in a popup box and then stores it for accuracy assessment

later. These sample points will be used for accuracy analysis. A button at the top called

28

“Insert Samples” is built to let the user start the sample collection process as shown in

Figure 11. Unfortunately, this function is affected by the cross-domain restriction

described in section 4.3, and since no CORS mechanism is implemented here, this feature

is available only if the application is run locally. The user can click on the “Show Sample

Points” button to view all of the sample points entered so far.

Figure 11 - Inserting sample points

To validate the returned values, the location and legal description of the sample

points were downloaded in KML format from Fusion Tables and then loaded into

ArcMap where they were matched to respective township range section polygons using

“Join by Location” spatial queries. The table was then downloaded to an Excel

spreadsheet where the two columns were compared by using the Excel “Exact()” function,

which returns a True/False answer that can be converted to an integer, in this case a 0 for

false and 1 for true, by the formula IF(EXACT(A2,B2),1,0). The average of that column

can be calculated by the “Average()” function and can be used as the accuracy of the data

29

as it has the same value as the number of correct values divided by the sample size. Since

the data in question is not categorical, an error matrix is not suitable for evaluating the

data accuracy in this study and was not used. Thirty sample points were collected in the

entire study area. Efforts were made to select sample points near the borders and corners

of survey polygons, as these are areas most likely to produce errors. Figure 12 shows

some of the sample points selected for accuracy analysis.

Figure 3 - Sample points selected for accuracy assessment

3.2.6. Deploying the Application

The map mashup application developed for this study was placed online and made

accessible to others for study. After considering a number of options, it was decided that

Google Drives would be used to host the application because it is free and easy to use. To

deploy a web page using Google Drives, one simply needed to create a folder and then

share it to the public. Anyone with an Internet connection can access the application by

30

clicking on the link below:

https://7bfabc7566f4be707d65d1f22af6187758b45700.googledrive.com/host/0B-

d5TwA_JeutZzhmdjFmZFZETXM/GMapFTableMashupApp.html. In order to provide

authentication to access the content of the Fusion Tables, the application requires the

users to login (Figure 13). A test account was created in Google for this purpose. The

login for the account is gisthesisproject@google.com and the password is “nwmissouri”.

The user has to log out of all other Google account in order for the authorization process

to work.

Figure 13 – Logging into the application

The first time a user logs into the application a window will popup to prompt the

user for the login information provided above. Make sure to allow popup windows when

the application is opened; these popup windows are an integral part of the authentication

process. Because of this and the CORS issue discussed previously, this application is

currently supported on Internet Explorer only.

https://7bfabc7566f4be707d65d1f22af6187758b45700.googledrive.com/host/0B-d5TwA_JeutZzhmdjFmZFZETXM/GMapFTableMashupApp.html
https://7bfabc7566f4be707d65d1f22af6187758b45700.googledrive.com/host/0B-d5TwA_JeutZzhmdjFmZFZETXM/GMapFTableMashupApp.html
mailto:gisthesisproject@google.com

31

The application opens a map centered in the study area as can be seen in Figure

14. If the user has previously drawn a polygon with the Draw tool, then that polygon will

show automatically as the page is opened. If the screen gets too cluttered with features,

the user can clear all feature layers and draw polygons by clicking on the “Clear All

Layers” button. As mentioned before, all functions except for those called by “Insert

Samples” should work at this link. The source code of the application can be viewed by

clicking on https://drive.google.com/?tab=wo&authuser=0#folders/0B-

d5TwA_JeutZzhmdjFmZFZETXM.

Figure 14 – Viewing the application on browser

https://drive.google.com/?tab=wo&authuser=0#folders/0B-d5TwA_JeutZzhmdjFmZFZETXM
https://drive.google.com/?tab=wo&authuser=0#folders/0B-d5TwA_JeutZzhmdjFmZFZETXM

32

Chapter 4: Analysis Results and Discussion

 Contrary to initial expectations, it was possible to fit all of the code for the entire

map mashup application into one single html page. The application was written entirely

in JavaScript without the use of external libraries except the one for Google Maps API

v3. The whole application contains about 1100 lines of code, including the HTML. The

level of programming skills required to complete this application could be described as

intermediate level, because in addition to HTML and JavaScript some knowledge of

XML and object oriented programming concepts were used.

 The map mashup application developed for this study satisfied all of the

requirements listed in Chapter 3. It provides functions to display feature layers, to draw

new polygons, to identify feature layers, to perform attribute and spatial queries, to draw

buffers covering the search area, and to use external data sources to obtain

township/range/section information based on location.

However, for the most part it would be fair to say that the functions provided by

the application were either not as convenient or as powerful as those available in desktop

GIS. The literature suggests that there are ways of overcoming some of the limitations

discovered over the course of the application’s development but they invariably involve

more advanced programming techniques. For example, both of the Google Maps API and

the Fusion Tables API offer programmatic access to advanced styling features which this

application for the most part does not use.

Since JavaScript is a client-side scripting language, the logic of the code was

executed by the web browser. This feature facilitated the development process because

the code can be run from a basic web server environment without requiring additional

33

modules or add-ons to be installed. The entire development for this study was done from

a personal desktop computer running the Windows 7 operating system without using any

additional programming development tool. The barrier to entry for developing this type

of program is pretty low from a software standpoint.

For this study it is beneficial to release as much of the code as possible to users

for review, and so contrary to common programming practices, all of the styling

information was placed inside the html page instead of being stored in an external

Cascading Style Sheet (CSS) file, and all JavaScript code was entered into the html page

instead of using an external JavaScript (.js) file on the server.

4.1 Displaying the PLSS Survey Polygon Layer

 The steps involved in displaying the PLSS township polygon as a feature layer are

relatively straightforward. While all of the steps involved, from downloading the

shapefile from the BLM’s website, converting the file to KML, to loading the KML file

to Fusion Tables, can be automated in a script, this snapshot approach is not ideal.

However, for this study it is not an unreasonable solution because of the relatively static

nature of PLSS survey data. It may not be as useful an approach if the spatial layer

contains dynamic data, like temperature or rainfall. A more dynamic solution, like using

the Web Map Service, would be better for these types of data. However, an effort to use

the Web Map Service technology for this study was not successful as WMS is not easily

combined with Google Maps (Jackson, 2011).

 Another major drawback of the current approach is the difficulty in properly

labeling the polygon features. While the detailed display window that pops up when the

user clicks on a polygon is a good way for the user to identify a specific polygon’s

34

township/range/section legal description, it is not as convenient as showing the legal

description directly on the polygons as labels. This is a popular feature request to Google,

and it is hoped that an easier approach to labeling features will become a available in the

near future (Issue 97, 2010).

4.2 Drawing Areas of Interest

 The steps used to create and then export newly drawn polygons used to indicate

areas of interest are numerous and time consuming when ArcGIS was involved. They are

described in 3.2.3. and the entire process takes about fifteen minutes to complete,

including the time spent waiting for applications to load, if step six took the faster route

of loading the KML file to Google Drives. If the longer route of using JavaScript is used

to create a new FusionTablesLayer, then the process takes as many as twenty two

minutes.

The new workflow for drawing new polygons by using the drawing tool

developed for the mashup application as described in 3.2.3. contains only three steps and

takes only seconds to complete all of the tasks. It would also be possible to enhance the

application by developing additional functions such as the ability to draw multiple

polygons. Users can use the “Delete Existing Polygon” button to remove a previously

drawn polygon and start over. Sometimes users will see the old polygon when they

refresh the page due to cache refresh delay (Issue 396, 2011).

4.3 Attribute and Spatial Queries

 Most of the functions specified in the requirements listed in 3.2 were developed

without encountering any significant issues. The only significant issues were encountered

during the development of the function that returns the township/range/section legal

35

description by using a web service, and then saves the location and the legal description

to a Fusion Table. The security features of most of the common web browsers restrict the

access of data sources from outside of the current network domain. In order to bypass this

restriction, it was necessary to temporarily disable that security feature for the duration of

that feature’s use. Obviously, that does not present a sustainable solution for a

commercial application, but fortunately there are other programming languages or tools

that allow the use of cross-domain web services in map mashup applications without

compromising security, such as the use of signed digital certificates, Asynchronous

JavaScript and XML (Ajax), and JQuery (Geller, 2013). It was decided that

implementing one of these CORS solutions to the application would take too much time

and, in the opinion of the author, would not significantly enhance the core value of this

study. Implementing a CORS solution was added to the list of topics for further research.

 Another setback encountered during the development of the application was

caused by Google’s policy of setting a default two minute cache for its maps, which

impacted the process of sample point collection because the map would not show the

newly entered sample points (Issue 396, 2011). The function would be doing its job of

inserting the location and the township/range/section legal descriptions returned by the

web service of the selected sample points to the Fusion Table used to store them, but

these newly added points would not show on the online map until minutes later. This

behavior makes it hard to keep track of which areas needed more sample points.

Unfortunately, Google has not yet provided an easy way to refresh the map cache through

code. As a compromise code was added that adds bubble-like marker symbols that are

used as place holders to let the user know the location of the previously added sample

36

points as shown in Figure 15. These marker symbols are not stored and disappear once

the browser closes, but they would have done their job before then.

Figure 4 - Markers used to indicate recently added sample points

4.4 Drawing Buffers

 One of the functional requirements of the application developed for this study is a

function for drawing circular buffers around spatial search starting points. That task was

fairly easy using Google Maps API. The following lines of code are all that was required

for drawing a translucent circle centered on a point located at latitude y and longitude x

with a radius of x meters.

 circle = new google.maps.Circle({

 center: new google.maps.LatLng(y, x),

 radius: x,

 map: map,

 fillOpacity: 0,

37

 strokeOpacity: 0.5,

 strokeWeight: 1

 });

 These lines of code create a “circle” object and then proceed to assign various

properties to it. These properties can be reset in response to user generated events like

mouse clicks to provide interactivity to the user. While drawing circles around points was

easy, unfortunately there are no comparable built-in functions in Google Maps API

version 3.0 for drawing buffers around polyline or polygon features, but there are third-

party libraries like the JSTS Topology Suite that can be easily imported into the

application for these purposes (JSTS Topology Suite, 2014).

4.5 Accuracy Assessment

For this study an accuracy assessment was performed for the function that returns

the township/range/section legal description of clicked areas from a web service. Sample

points were selected from the entire study area, instead of within a small subsection, since

an online application such as this one would not likely be used for tasks that require high

spatial accuracy like determining survey boundaries. After the function was written,

sample points and their legal descriptions were collected from the study area,

downloaded from Fusion Table as a KML file, and imported to ArcMap. The point

features were then spatially joined to a township/range/section polygons feature layer that

was downloaded earlier from BLM, and the legal descriptions of the matched BLM

survey polygons were compared to the legal descriptions of the downloaded layer. The

downloaded BLM layer functioned as the ground truth data in this case. For this study the

38

only statistic suitable for accuracy assessment is accuracy, calculated by dividing the

number of correctly matched points by the number of total sample points.

The result of the accuracy assessment is very encouraging. All of the

township/range/section legal descriptions returned by the map mashup application were

identical to those returned by spatial query using ArcMap despite efforts by the author to

select sample points close to the edge of PLSS polygons where errors are more likely to

occur. Figure 16 shows the result of the Excel spreadsheet used to compare the two sets

of values. Values of “True” represent identical township/range/section legal descriptions.

Such a high level of accuracy is unexpected. An accuracy of 100% indicates that at least

an application that uses the TownshipGeocoder web service in conjunction with Google

Maps can be ready for prime time for the purpose of land lease management.

Figure 5 - Comparison between web service retrieved legal descriptions and those

obtained by spatial query using ArcMap

39

Chapter 5: Conclusion

5.1 Research Summary

 This study shows that a map mashup application developed using Google Maps

API and Google Fusion Tables API can perform some of the geographical analytical

tasks that are now more commonly done in desktop GIS, such as the ability to display

polygons as a feature layer, to draw polygons to delineate the boundaries of study areas,

to store the location and attributes of sample points selected from a map, to draw buffers

around point features, and to perform spatial and attribute queries from a table of spatial

records. In addition, such an application can take advantage of functions and data made

available by other online service providers through the use of web services to retrieve and

process information from external sources. This study also conducted an accuracy

assessment on the web service function used to retrieve the township/range/section legal

description, and the result showed that the data returned was 100 percent accurate. The

application also contains functions that are inherent to Google Map, such as Street View

and the ability to switch to satellite imagery and back.

The amount of coding needed to obtain the results was not very extensive, and the

development process did not involve the use of any proprietary software development

kits or platforms. This study also shows that Google Maps API and Google Fusion Tables

API programmed with JavaScript are adequate for the purpose of developing an

application meeting the requirements of this study. It seems that the barrier to entry for

developing such applications is not very high since no proprietary software development

tools were needed, and any GIScience professional with some programming proficiency

should be able to take on this challenge.

40

The technology landscape of online services made available by different providers

changes at a very fast pace, and some of the functions developed for this research may

either have already been, or will soon be, replicated in services offered by Esri or other

GIS vendors. For example, Esri offers the ArcGIS Online service which provides a

cloud-based solution that allows users to create, use and share spatial content as

published web layers. While using services like ArcGIS Online has its advantages, like

the ability to integrate features from other ArcGIS products like ArcGIS for Desktop,

ArcGIS for Server, ArcGIS Web APIs, and ArcGIS Runtime SDKs, such benefits only

extend to those already invested in ArcGIS software, while Google Fusion Tables is free

for personal use. Even though ArcGIS Online contains an option to create a free public

account for users, such accounts lack many of the features available to paid subscribers,

such as the ability to conduct spatial searches (ArcGISOnline, 2014).

5.2 Limitations of Results

 This study also uncovered a number of limitations on these technologies that may

need to be overcome before they can become widely adopted. First, although both the

Google Maps and Google Fusion Tables API provide an extensive list of functions, for

the most part they are not as rich or convenient as traditional desktop GIS. For example,

it is fairly difficult to label individual features in a feature layer using Google Maps API

while that can be done fairly easily in ArcMap. Customizing the symbology of features

requires programming using both APIs unlike in ArcMap where it is a built-in function. It

is also fairly difficult to perform common data manipulation tasks like inserting, updating

or deleting large numbers of records in Fusion Tables unlike in spreadsheet or relational

database management software. The types of spatial queries provided by the current

41

version of Fusion Tables API is also limited; the only type of spatial query that is

available now is to retrieve a list of features that are located within the boundary of a

geometric shape. ArcMap 10.1, on the other hand, offers fifteen types of spatial selection

methods. The current version of Fusion Tables API also lacks the ability to allow

multiple tables to be joined on a spatial column (Issue 88, 2010). Another deficiency is

that both APIs currently lack intrinsic and easy to use functions to provide for the storage

of new features drawn on the map, requiring code to be written for such basic functions.

 Other types of limitations encountered in the course of this study involve the

development tools used. JavaScript was selected as the programming language of choice

for this study because of its relative simplicity and wide availability, not because it is the

most powerful programming language in terms of capabilities. As a result of this choice

some of the issues encountered during the development of the mashup application would

not be an issue if another tool was selected. For example, problems were encountered

while writing the function for returning the township/range/section legal description

because it used a web service hosted on another server due to the restrictions most web

browsers placed on cross-domain requests, since allowing such access opens the door for

malwares to do harm. For the purpose of this study that security feature was briefly

disabled on the browser, but that clearly is not a suitable approach for a commercial

application. The literature, however, suggests that this limitation can be overcome by the

use more advanced programming languages and techniques (Geller, 2013).

 Another major limitation identified by this study is the significant delay in

updating the content of a Fusion Table which was uncovered while developing the

42

“Delete Existing Polygon” function. Such a delay would limit Fusion Tables to storing

information that does not need to be updated quickly or in real time.

Google also sets a number of restrictions on both Google Maps and Fusion Tables

to manage their server load. For example, Google Maps are on a two minute cache

refresh schedule, and so it was difficult to display recent changes to the data (Issue 396,

2011). Fusion Tables also restrict the number of updates it allows each day to 100 for

non-commercial users. Finally, since both technologies are provided by Google they are

subject to its terms of usage which may be changed at a whim. It may also not be possible

to develop certain commercial applications with these tools until Google moves Fusion

Tables past the experimental phase (Geographic design constraints, 2014) are as follows.

Google has in place the following technical restrictions for Fusion Tables as

stated in the Google Fusion Table’s APIs Terms of Service (Using the API, 2014):

 “Only the first 100,000 rows of data in a table are mapped or included in

query results.

 Queries with spatial predicates only return data from within this first 100,000

rows. Therefore, if you apply a filter to a very large table and the filter

matches data in rows after the first 100K, these rows are not displayed.

 When importing or inserting data, the total size of the data sent in one API call

cannot exceed 1MB.

 A cell of data in Fusion Tables supports a maximum of 1 million characters; it

may sometimes be necessary to reduce the precision of coordinates or

simplify polygon or line descriptions.

 The maximum number of vertices supported per table is 5 million.

43

 When looking at the map, you may notice: ◦The ten largest-area components

of a multi-geometry are shown.

 When zoomed farther out, tables with more than 500 features will show dots

(not lines or polygons). ”

5.3 Suggested Further Research

 Another study that performs an accuracy assessment on the attribute and spatial

querying capabilities of the Fusion Tables API is definitely needed before it can be fully

established that the web API technology is ready for prime time. While the map mashup

application developed for this study returned results that are consistent with expectations,

it would better demonstrate the efficacy of this technology if a statistically significant

accuracy analysis is conducted that compares the results of spatial queries done using a

map mashup application to those done using conventional desktop GIS software.

 Another promising avenue of future research would be to adopt some of the

techniques described in the literature to circumvent the technical challenges encountered

during the development of this application, such as by using Ajax or JQuery (Geller,

2013). For example, as mentioned before, JQuery can be used to provide access to data

provided by web services hosted by a server outside of the current domain without

compromising browser security. In addition, the styling features available in both Google

Maps API and Fusion Tables API can be explored further as this study did not make

extensive use of them. It would also be very useful to find another approach to publish

the feature layers besides loading them into Fusion Tables and creating

FusionTablesLayer. Techniques such as using WMS should be tried to make this process

more automatic and the mapped data layer more dynamic.

44

 Another area worth investigating is to see whether any of the other online

mapping tools can offer similar functions with comparable programming effort.

Alternative platforms like Yahoo! Maps API, Bing Maps Platform, MapQuest

Development Platform, and OpenLayers may provide more functionality or be easier to

use. Google Maps was chosen for this study not because it is necessarily the best online

mapping tool but because it is the most popular.

45

References

ArcGISOnline, 2014. [online]. ESRI. Available from:

http://www.esri.com/software/arcgis/arcgisonline/features/comparison-table

[Accessed 15 June 2014].

Batty, M., 2010. Map mashups, Web 2.0 and the GIS revolution. Annals of GIS, 16(1), 1-

13.

BLM, 2014. Bureau of Land Management’s Land & Mineral Legacy Rehost 2000

System [online]. Available from: http://www.blm.gov/lr2000/ [Accessed 22

January 2014].

Booth, D. 2004. Web Services Architecture. [online]. W3C. Available from:

http://www.w3.org/TR/ws-arch/ [Accessed 16 February 2014].

Butler, H., Daly M., Doyle, A., Gillies, S., Schaub, T. and Schmidt, C., 2008. [online].

The GeoJSON Format Specification. Available from: http://geojson.org/geojson-

spec.html [Accessed 30 March, 2014].

Chow, T. E., 2008. The potential of maps API for internet GIS applications. Transactions

in GIS, 12(2), 179–191.

Fuller, C., 2013. [online]. Utah Government Services. Available from:

http://historytogo.utah.gov/utah_chapters/the_land/uintabasin.html [Accessed 21

April 2013].

Fusion Table Layers (Experimental), 2014. [online]. Available from:

https://developers.google.com/maps/documentation/javascript/layers#FusionTable

s [Accessed 5 February 2014].

Geller, I. 2013. ASP.Net Web API, CORS Authentication, SSL, and self signing

certificate. [online]. Available from:

http://www.codeproject.com/Articles/669152/ASP-NET-Web-API-CORS-

Authentication-SSL-and-self-s [Accessed 16 February 2014].

GeoCommunicator, 2013. [online]. Available from:

http://www.geocommunicator.gov/GeoComm/services.htm#Data [Accessed 23

September 2013].

Geographic design constraints, 2014. [online]. Available from:

https://developers.google.com/fusiontables/docs/v1/using [Accessed 21 February

2014].

46

Getting Started, 2013. [online]. Google Fusion Tables API. Available from:

https://developers.google.com/fusiontables/docs/v1/getting_started [Accessed 14

April 2013].

Getting Started with JavaScript, 2014. [online] Google, Inc. https://google-

developers.appspot.com/maps/documentation/javascript/tutorial [Accessed 6

February 2014]

Gong, J., 2007. Mashing up web-based participatory GIS : potential for future e-

government services. Theses (MS). Ryerson University.

Google Maps/Google Earth APIs Terms of Service, 2014. [online]. Google, Inc.

Available from: https://developers.google.com/maps/terms?hl=en [Accessed 15

February 2014].

Google Maps for Business, 2014. [online]. Google, Inc. Available from:

http://www.google.com/enterprise/mapsearth/products/mapsapi.html [Accessed

14 February 2014].

Issue 88: Support join of a point table with a polygon table, 2010. [online]. Fusion Tables

Issue Tracker. Available from: http://code.google.com/p/fusion-

tables/issues/detail?id=88 [Accessed 20 February 2014].

Issue 97: Labels on Points or Polygons on the Maps, 2010. [online]. Fusion Tables Issue

Tracker. Available from: http://code.google.com/p/fusion-

tables/issues/detail?id=97 [Accessed 17 February 2014].

Issue 396: Proper Caching of embedded maps, 2011. [online]. Fusion Tables Issue

Tracker. Available from: http://code.google.com/p/fusion-

tables/issues/detail?id=396 [Accessed 20 February 2014].

Jackson, G., 2011. Overlaying wms data using google maps v3 api. [online]. Gavinj.net.

Available from: http://www.gavinj.net/2011/02/overlaying-wms-data-using-

google-maps.html [Accessed 29 March 2014].

JavaScript Introduction, 2014. [online]. W3Schools. Available from:

http://www.w3schools.com/js/js_intro.asp [Accessed 11 February 2014].

JSTS Topology Suite, 2014. [online]. bjornharrtell. Available from:

https://github.com/bjornharrtell/jsts [Accessed 18 February 2014].

LeMay, R, 2005. Google mapper: Take browsers to the limit. [online]. C/Net. Available

from: http://news.cnet.com/Google-mapper-Take-browsers-to-the-limit/2100-

1038_3-5808658.html [Accessed 10 January 2014].

47

Li, S. and Gong, J., 2008. Mashup: A new way of providing web mapping/GIS services.

The International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences. 37(B4) 639-647.

Map Types - Google Maps JavaScript API v3 — Google Developers, 2014. [online].

Available from:

https://developers.google.com/maps/documentation/javascript/maptypes.

[Accessed 11 January 2014].

Miller, C. C., 2005. A beast in the field: The Google Maps mashup as GIS/2.

Cartographica, 41(3), 187-199.

Muro, M., 2013. Custom Google Maps. [online]. Available from:

http://webtide.wordpress.com/2008/08/27/custom-google-maps/ [Accessed 22

September 2013].

National Atlas of the United States, 2013a. National Atlas Data Download. [online].

Available from: http://nationalatlas.gov/atlasftp.html#plss00p [Accessed 22 April

2013].

National Atlas of the United States, 2013b. The Public Land Survey System (PLSS)

[online]. Available from:

http://www.nationalatlas.gov/articles/boundaries/a_plss.html [Accessed 19 April

2013].

Newman, G., Zimmerman, D., Crall, A., Laituri, M., Graham, J. and Stapel, L., 2010.

User-friendly web mapping: lessons from a citizen science website. International

Journal of Geographical Information Science. 24(12), 1851–1869.

Olea, P. P. and Mateo-Tomas, 2013. Assessing species habitat using Google Street View:

a case study of cliff-nesting vultures. Plos One, 8(1), 1-8.

Peng, Z. and Zhang, C., 2004. The roles of geography markup language (GML), scalable

vector graphics (SVG), and Web feature service (WFS) specifications in the

development of Internet geographic information systems (GIS). Journal of

Geographical Systems. 6(2), 95-116.

Polczynski, M. and Polczynski, M., 2013. A Microsoft Excel application for

automatically building historical geography GIS maps. Transactions in GIS, 2013,

17(1), 148–157.

ProgrammableWeb, 2013. Keeping you up to date with APIs, mashups and the Web as

platform [online]. Available from: http://www.programmableweb.com/ [Accessed

19 April 2013].

48

Taylor, B., 2005. The world is your JavaScript-enabled oyster. [online]. Google Official

Blog. Available from: http://googleblog.blogspot.com/2005/06/world-is-your-

javascript-enabled_29.html [Accessed 11 February 2014].

TownshipGeocoder, 2014. [online]. Geocommunicator. Available from:

http://www.geocommunicator.gov/TownshipGeocoder/TownshipGeocoder.asmx

[Accessed 20 January 2014].

Using the API, 2014. [online]. Google Fusion Tables API. Available from:

https://developers.google.com/fusiontables/docs/v1/using#Geo [Accessed 31

March 2014].

Wampler, P., Rediske, R. R. and Molla, A. R., 2013. Using ArcMap, Google Earth, and

Global Positioning Systems to select and locate random households in rural Haiti.

International Journal of Health Geographics, 12(3), 1-7.

Zhang, T. and Tsou, M., 2009. Developing a grid-enabled spatial Web portal for Internet

GIServices and geospatial cyberinfrastructure. International Journal of

Geographical Information Science. 23(5), 605-630.

