
UNIVERSITY OF PATRAS

Exploring term-document matrices from matrix
models in text mining

I. Antonellis and E. Gallopoulos

February 2006

Technical Report HPCLAB-SCG 03/02-06

LABORATORY: High Performance Information Systems Laboratory

GRANTS: University of Patras “Karatheodori” Grant; Zosima Foundation Scholarship under grant
1039944/891/B0011/21-04-2003 (joint decision of Ministry of Education and Ministry of Economics).

REPOSITORY http://scgroup.hpclab.ceid.upatras.gr

REF: To appear in Proc. SIAM Text Mining Workshop, SIAM Conf. Data Mining, 2006. Supersedes HPCLAB-SCG
01/01-06

COMPUTER ENGINEERING & INFORMATICS DEPARTMENT, UNIVERSITY OF PATRAS, GR-26500, PATRAS, GREECE www.ceid.upatras.gr

Exploring term-document matrices from matrix models in text mining∗

Ioannis Antonellis † Efstratios Gallopoulos ‡

Abstract
We explore a matrix-space model, that is a natural extension to the
vector space model for Information Retrieval. Each document can
be represented by a matrix that is based on document extracts (e.g.
sentences, paragraphs, sections). We focus on the performance of
this model for the specific case in which documents are originally
represented as term-by-sentence matrices. We use the singular
value decomposition to approximate the term-by-sentence matrices
and assemble these results to form the pseudo-“term-document”
matrix that forms the basis of a text mining method alternative
to traditional VSM and LSI. We investigate the singular values of
this matrix and provide experimental evidence suggesting that the
method can be particularly effective in terms of accuracy for text
collections with multi-topic documents, such as web pages with
news.

1 Introduction
The vector space model (VSM), introduced by Salton [20],
is one of the oldest and most extensively studied models for
text mining. This is so because it permits using theories and
tools from the area of linear algebra along with a number of
heuristics. A collection of n documents is represented by a
term-by-document matrix (tdm) of n columns and m rows,
where m is the number of terms used to index the collection.
Each element ai j of the matrix is a suitable measure of the
importance of term i with respect to the document and the
entire collection. Although numerous alternative weighting
schemes have been proposed and extensively studied, there
are some well-documented weaknesses that have motivated
the development of new methods building on VSM. The
best known is Latent Semantic Indexing (LSI) [10], where
the column space of the tdm is approximated by a space of
much smaller dimension that is obtained from the leading
singular vectors of the matrix. The model is frequently found
to be very effective even though the analysis of its success
in not as straightforward [18]. The computational kernel

∗Work conducted in the context of and supported in part by a University
of Patras KARATHEODORI grant.

†Computer Engineering and Informatics Department, University of Pa-
tras, Greece. Supported in part by a Zosima Foundation Scholarship under
grant 1039944/891/B0011/21-04-2003 (joint decision of Ministry of Edu-
cation and Ministry of Economics). Email: antonell@ceid.upatras.gr

‡Computer Engineering and Informatics Department, University of Pa-
tras, Greece. Email: stratis@ceid.upatras.gr

in LSI is the singular value decomposition (SVD) applied
on the tdm. This provides the mechanism for projecting
data onto a lower, k-dimensional space spanned by the k
leading left singular vectors; cf. the exposition in [4, 5, 12].
In addition to performing dimensionality reduction, LSI
captures hidden semantic structure in the data and resolves
problems caused in VSM by synonymy and polysemy. A
well-known difficulty with LSI is the cost of the SVD for the
large, sparse tdm’s appearing in practice. This complicates
not only the original approximation but also the updating
of the tdm whenever new documents are to be added or
removed from the original document collection. These are
obstacles to the application of LSI on very large tdm’s, so
several efforts in the area are directed towards alleviating
this cost. These range from techniques for lowering the
cost of the (partial) SVD (e.g. exploiting sparse matrix
technology and fast iterative methods, cf. [3, 7, 23]), to the
application of randomized techniques ([1, 11]) specifically
targeting very large tdm’s. One approach that appears to
be promising is to approximate the tdm by operating on
groups of documents that either arise naturally (e.g. because
the documents reside at distant locations) or as a result of
clustering [9, 13, 25]. It was shown in [25], for example,
that by clustering and then using few top left singular vectors
of the tdm corresponding to each cluster could lead to
economical and effective approximation of the tdm.

In this “work in progress”, we explore a family of text
mining models arising as a natural extension of VSM and
present cases where they appear to be able to capture more
information about text documents and their structure. Our
starting point is that the tdm utilized in VSM and LSI has
no “memory” how it was constructed; in particular, any
of the tdm columns can be decomposed in an unlimited
number of ways as linear combination of other vectors. We
can, however, express each document vector as the sum of
vectors resulting from the document terms appearing at a
selected level of the document’s hierarchical structure (e.g.
sections, paragraphs, sentences etc.) We can thus consider
each of the document vectors to be the product of a “term-
by-extract unit” matrix with a vector of all 1’s. Based
on this, it is a natural next step to consider approximating
each term-document vector. We would be loosely referring
to the general idea as Matrix Space Model (MSM). MSM
permits us to capture suitable decompositions of document

vectors based on the document’s hierarchical structure (into
sections, paragraphs, sentences etc.) and store them into
a matrix. To explore the model’s properties, we study a
specific instance based upon document decomposition into
sentences. Sentence based decompositions have already
been applied in text classification and summarization [2,
8, 21, 24], therefore the analysis we provide is also of
independent interest. We also note an elegant recent proposal
for a matrix-based IR framework close, but not the same,
as ours in [19] as well as another phrase-based framework
[14] for clustering of semi-structured Web documents. We
discuss these approaches later in this paper. As will become
apparent in the sequel, one common useful feature of MSM-
type models is that they can readily lead to the tdm of the
original VSM.

Based on the representation of the tdm as a matrix
whose columns are obtained by multiplying a “term-by-
extract unit” matrix with a vector of all 1’s, we approximate
each column based on this decomposition. It is worth
noting that our proposed approach has an analogue in the
numerical solution of partial differential equations, namely
domain decomposition techniques based on substructuring
[6]. These are powerful tools that also lend themselves to
parallel processing.

The rest of the paper is structured as follows. In Sec-
tion 2 we describe the matrix space models and show their
relation with classic VSM and its variants. We also provide
a formal study of the text analysis using document decom-
position into its sentences and introduce formal definitions
for the term-by-sentence and other matrices useful for MSM.
Based on these, we describe a general IR method based on
this approach and specify its use for the case of sentence-
based analysis. In Section 3 we analyze the method and its
relevant costs, and derive spectral information for the matrix
underlying the IR strategy. Section 4 presents our experi-
mental analysis. Finally in Section 5 we give our conclusions
and future directions.

Throughout the paper, we use pseudo-MATLAB nota-
tion. We would be referring to the j-th column of any matrix
A as a j, so that a j = Ae j, where e j denotes the j-th column
of an (appropriately sized) indentity matrix I. We will also
represent A as

A = [a1, . . . , . . . am] .

and use bestk (A) to denote its best rank-k approximation.
We will use e to refer to the vector of all 1’s, whose
size is assumed to be appropriate for the computation to
be valid. Given scalars (square submatrices) φ j, we use
diag[φ1, ...,φ j] to denote the corresponding diagonal (block
diagonal) matrix. When the need arises (e.g. two “e”-vectors
of different dimension in the same formula) a superscript will
be used to show the difference, e.g. e(k).

2 Matrix space models for IR
In the VSM, each document is represented using an m-
dimensional vector. Each of the m dimensions refers to an
indexing term and each coordinate of the vector is computed
using some combination of a local and/or global weighting
scheme. Weighting schemes can be seen as heuristics that
help eliminate problems arising from the non-orthogonality
of the different indexing terms and have been proven to be
efficient for improving “precision” and “recall”.

We next observe that for a vector representation of a
document, there are unlimited decompositions into a (given)
number of components. Using the vector space model, such
components could be seen as different “concepts”, which
combined, generate the concept of the given document. In
fact, some reasonable decompositions would create the com-
ponents using consecutive document’s extracts. As VSM
stores only the final vector of each document, it is obvi-
ous that it doesn’t exploit such kind of extra information.
The goal of MSM’s is to utilize meaningful document de-
compositions that are based upon its structure; cf. [14, 19].
As document structure often builds a hierarchy into sections,
paragraphs and sentences, we can decompose each document
into the vector space representation of non-overlapping and
sequential extracts that correspond to them and store such de-
compositions into a term-by-extract matrix (tem) (also called
“term-location” matrix in [19].) The choice of the hierar-
chy’s level that the decomposition will rely on, can result in
document representation using term-by-section (tsm), term-
by-paragraph (tpm) or term-by-sentence (tsm) matrices. The
common thread is that MSMs use matrices to store vector
space representations of document’s extracts. The j-th col-
umn of such a matrix refers to the vector space representation
(based only on term frequency) of the j-th extract of the doc-
ument. These are features that our paper shares with [14, 19].
On the other hand, [14] addresses primarily the issue of ef-
fective indexing - via subgraphs and document index graphs
- for sentence-based analyses, while [19] is concerned with
the formal framework surrounding term-location and term-
document matrices. None of these papers, however, consid-
ers the idea proposed herein, namely the replacement of the
original document vectors with approximants and the effect
of such replacements on retrieval performance.

As Figure 1 illustrates, MSM can be used as a transi-
tional phase before producing the document vector. Given a
tem H ∈ R

m×n of a document D, we can construct its vector
space representation that is based on an arbitrary combina-
tion of local and/or global weighting scheme. As elements
hi j of H are based only on term frequency, the vector space
representation of any document vector a ∈R

m in the tdm can
be written as a = GH p, where G ∈ R

m×m and p ∈ R
n. Ma-

trix G is a diagonal matrix with nonzero diagonal elements
accounting for the global weighting scheme. Column vec-
tor p corresponds to the local weighting scheme applied on

Figure 1: Transition between matrix space and vector space.

document D. For example, G = I corresponds to the appli-
cation of no global weighting scheme, while p = e corre-
sponds to “term frequency” local weighting. Hereafter, we
will assume that transition from matrix space to vector space
is done by applying G = I and p = e to the tem. However, our
results can be generalized to include more complex weight-
ing schemes.

In the following section, we study MSM based upon
document representation using tsm’s. For simplicity, we de-
fine a “sentence” to be text delimited between two consec-
utive periods (“.”). We do not address here the interesting
issues involved in sentence identification (e.g. see [8, 17].)

2.1 Text analysis based on sentences. Let A denote a
tdm of rank r and let its SVD be

A = UΣV> =
r

∑
i=1

σiuiv>i , (2.1)

where the rightmost expression is the dyadic decomposition
and, as usual, the singular values are arranged in non-
increasing order. We also write bestk(A) for the best rank-k
approximation of A (we assume here that σk > σk+1):

bestk(A) =
k

∑
i=1

σiuiv>i (2.2)

Note also that

a j =
(
∑r

i=1 σiuiv>i
)

j = ∑r
i=1 σiuivi j (2.3)

and similarly for the j-th column of bestk(A):

bestk(A)e j =
k

∑
i=1

σiuivi j (2.4)

Having assumed that matrix A is a tdm, the j-th column of A
will correspond to the vector space representation of the j-th
document of the collection. So, we can write

a j =
m

∑
k=1

sk, (2.5)

where sk, k = 1 . . .m, is the vector space representation of
the k-th sentence of document j of the collection and m the
total number of sentences of the j-th document. We can now
construct the tsm of document j of our collection according
to the following definition:

DEFINITION 2.1. Let document D contain m sentences and
d be its vector space representation. The term-by-sentence
matrix of document D is the matrix

SD = [s1,s2, . . . ,sm] , (2.6)

where sk refers to the vector space representation of the k-th
sentence of D.

Using the above notation, Equation 2.5 can be written as

a j = Ae j = SDe(m)
. (2.7)

We also introduce the notion of the “term-by-sentence matrix
for a matrix collection”. For example, if we have two
documents D1,D2, their tsm’s are SD1 and SD2 , and the usual
tdm from the VSM is the matrix of two columns A = [a1,a2],
then the tsm for the collection is the matrix SC = [ŜD1 , ŜD2],
where ŜD j is an embedding of the original SD j into a matrix
with as many rows (terms) as A. In other words, we augment
each one of the tsm’s SD j with zero rows corresponding to
those terms in the collection’s vocabulary but not present in
D j. In general, we have the following:

DEFINITION 2.2. Let C be a collection of k documents
D1, D2, . . . Dk, where the i-th document consists of mi
sentences. The term-by-sentence matrix of the collection C
is the matrix SC:

SC =
[
ŜD1 , ŜD2 , . . . ŜDk

]
(2.8)

where ŜD j is an embedding of the original SD j into a zero
matrix with as many rows as the tdm of the VSM representa-
tion for C.

The MSM provides a more general framework for IR
[14, 19]. Our objective, here, was to investigate the per-
formance of such a scheme and evaluate it relative to LSI
and VSM. As we show, in specific cases the method can
achieve results similar to LSI with respect to accuracy mea-
sures such as precision and recall, while keeping the compu-
tational costs to the levels of simple VSM.

The rationale of our method is that by projecting sen-
tence vectors of tsm’s onto the subspace spanned by the sin-
gular vectors corresponding to the k largest singular values
for some small value of k, permits us to eliminate polysemy
and synonymy phenomena within the document. This is ac-
complished by the rank reduction of tsm’s that SVD pro-
duces. It is obvious that, as these phenomena are eliminated

Algorithm: Construct pseudo-tdm based on tsm
Input: Document collection {D1, ...,Dm}
Output: Pseudo-tdm A
I. For each document D j:

1. Prepare tsm SD j

2. Select k′ ≤ rank(S)

3. a j = bestk′(S)e(t)

II. Assemble pseudo-tdm A := [a1, ...,am]

Table 1: Construction of pseudo-tdm from document collec-
tion.

locally in every document it will be difficult to improve on
LSI.

However, when the method is applied to collections with
documents whose context is not semantically specific but
multi-topic (e.g. documents from web pages with news)
or to collections with large percentage of different terms
per document, we provide experimental evidence that its
performance surpasses classic vector space and comes close
to LSI’s performance. The objective is, when a document
that refers to k semantically well-separated topics is given as
input, for the projection to identify the principal directions
of these topics. Then, by using the projected sentence
vectors (instead of the original ones) we can transition to the
vector space (from the MSM that uses tsm) by constructing
approximations to the vectors of the VSM tdm according
to some weighting scheme. We would thus be referring
to this tdm with approximated columns as “pseudo-tdm”.
In particular, the j-th column of matrix A is not computed
according to Equation 2.7 but as follows: Let D j the j-
th document, S the corresponding tsm, r its rank and t the
number of columns (sentences) of in D j. Then

S =
r

∑
i=1

σiuiv>i and bestk′(S) =
k′

∑
i=1

σiuiv>i , (2.9)

where k′ ≤ r, (σi,ui,vi) are singular triplets of S with the σi’s
arranged in decreasing order, and σk′ > σk′+1. Then column
a j of the pseudo-tdm A can be constructed as

a j = bestk′(S)e(t)
. (2.10)

The steps for the sentence-oriented algorithm we are
experimenting with are shown in Table 1. Query vectors
q are therefore compared to the columns of the pseudo-
tdm. Cosine similarity can be computed using the following
formula:

cos θ j =
(Ae j)

>
q

‖Ae j‖2‖q‖2

=

(
∑m

t=1 ∑k′
i=1 σiu>i vi,t

)>
q

‖Ae j‖2‖q‖2

(2.11)

Figure 2 depicts schematically how MSM can be used
to develop a new IR method. Transitional representation
of a document in the matrix space permits the application
of matrix transformations (in our case, approximation via
SVD) before producing the vector that will represent the
document in the tdm. Each approximated document vector
is “assembled” from structures that are local to the document
(substructures).

Figure 2: Using MSM as a tool for developing a new IR method.

It is worth noting that in the algorithm presented in Table
1, each k′ is selected to be k′ ≤ r, where r is the rank of the
particular tsm. Therefore, if we choose k′ = r, the resulting
vector becomes identical to the one obtained in the tdm of
the classical VSM (before any weighting); furthermore, there
is no need to perform an SVD of the tsm. Therefore, if
this choice is made for every document, the whole pseudo-
tdm reverts to the usual tdm, highlighting that MSM is a
generalization of VSM.

2.2 Computational costs. As with LSI, the method also
relies on the (partial) SVD. The difference with LSI is that
there are multiple SVD’s, one per tsm for each document.
Note that the tsm’s can differ widely in size. Furthermore,
the number of rows of each tsm will typically be much
smaller than the full tdm since the number of terms in each
sentence is expected to be much smaller than the total num-
ber of terms in the collection. More importantly, even though
the approximate term-document vector resulting from this
process for each document might be far less sparse than
the term-document vector corresponding to the original tdm,
many zeros will be introduced at the embedding phase, to
take into account terms that are present in other documents
but not this one. It is also worth noting, though we leave
it for future study, that the SVD’s are independent for each
document and hence can be processed in a distributed man-
ner. It can happen, of course, that the number of sentences
in each document can be large, even larger than the number
of documents in the entire collection. To address this, we
can make use of the flexibility of the proposed methodology,

and adjust our analysis at any level of the document’s hierar-
chy that is convenient (sentences, paragraphs, sections, ...).
This is work in progress and we plan to report on it in the
future. Table 2 illustrates indicative sizes for the tsm’s re-
sulting from the MEDLINE datasets. These tsm’s appear to
be small enough compared to the tdm and therefore the appli-
cation of our method to them results on computational costs
very close to that of VSM. We finally note that another ad-
vantage of this approach is that as the approximation is per-
formed locally for each document, the method does not entail
significant costs when performing document updates. In par-
ticular, the update of the pseudo-tdm using a new document
will only cause a non-trivial change on existing document
vectors if terms that already existed in these documents but
were not accounted for till then, e.g. because of low global
frequency. In that case, we would need to update, in some
way, the SVD of the tsm of each affected document.

MED terms sentences total total
per doc. per doc. terms docs.
1 45 (0.81%) 6 (0.58%) 5526 1033
2 90 (1.62%) 13 (0.62%) 5526 2066
3 135 (2.44%) 19 (0.61%) 5526 3099
4 180 (3.25%) 24 (0.58%) 5526 4132
5 225 (4.07%) 28 (0.54%) 5526 5165
6 270 (4.88%) 34 (0.55%) 5526 6198
7 315 (5.70%) 40 (0.55%) 5526 7231
8 360 (6.51%) 47 (0.57%) 5526 8264
9 405 (7.32%) 52 (0.56%) 5526 9297
10 450 (8.14%) 58 (0.56%) 5526 10330

Table 2: Example sizes for tsm’s (average number of terms
and sentences per document for the datasets we used).

3 Analysis
To shed further light into the nature of the matrix resulting
from tsm’s, in this section, we study the behavior of the
singular values of a collection’s pseudo-tdm that has been
constructed using this approach. We show that pseudo-
tdm’s preserve the so-called low-rank-plus shift property of
tdm’s([22]). Note that this property can be put to practical
use to enhance the effectiveness of update algorithms ([27]).
Even though we do not study such update schemes here, it is
useful to know that they could be applied on pseudo-tdm’s.

DEFINITION 3.1. (LOW RANK PLUS SHIFT STRUCTURE)
A matrix A ∈ R

m×n is said to have “low rank plus shift”
structure if it satisfies:

A>A
m

≈CWC> +σ2I (3.12)

where C ∈R
n×k and matrix W ∈R

k×k is a symmetric positive
definite matrix.

When A represents a collection’s tdm, C ∈ R
n×k is the ma-

trix whose columns represent latent concepts of the collec-
tion. The use of the terminology “low rank plus shift” comes
from the fact that in IR applications, k � min{m,n}. The
singular values of such matrices have the following distri-
bution: The first few singular values are large but decrease
rapidly and then the curve becomes flat but not necessarily
zero. In order to determine if a matrix satisfies this property,
we follow the analysis of Zha and Zhang ([27]) and inves-
tigate the following matrix approximation problem: Given
a rectangular matrix, what is the closest matrix that has the
low rank plus shift property. We can then define a matrix set
for a given k > 0,

Jk = {B ∈ R
m×n | σ1(B) ≥ . . . ≥ σmin{m,n}(B),

σk+1(B) = · · · = σmin{m,n}(B)} (3.13)

Using this notation, the matrix approximation problem is
reduced to finding the distance between a general matrix A
and the set Jk. The next theorem provides as such a solution.

THEOREM 3.1. (ZHA AND ZHANG [22]) Let the SVD of
A be A = UΣV>, Σ = diag[σ1, . . . ,σmin{m,n}] and U, V
orthogonal. Then for k ≤ min{m,n} we have:

arg min
J∈Jk

‖A− J‖p = UkΣkV>
k + τpU⊥(V⊥

k)>,

where Σk = diag(σ1, . . . ,σk),U = [Uk,U⊥
k], V = [Vk,V⊥

k] and
p refers to either the Frobenius (p = F) or the spectral
(p = 2) norm. Furthermore,

τF =
min{m,n}

∑
i=k+1

σi

(min{m,n}− k)

and

τ2 =
σk+1 +σmin{m,n}

2

Using the above theorem, we can examine experimentally
how close is a given tdm to the set of matrices with the “low
rank plus shift” structure. For our experimental analysis,
we used the MEDLINE dataset that contains relatively small
documents and one topic per document. We also constructed
artificial, additional datasets based on MEDLINE, so as
to test the performance of our method when applied to
multi-topic documents. The documents of these datasets
(MED 1, MED 2, ..., MED 10) consist of joint documents of
original MEDLINE. Documents of MED i dataset, contain i
MEDLINE documents; MED 1 is identical to MEDLINE.

Table 3 shows the value of quantity ‖A−best100(A)‖F
‖A‖F

for
different tdm’s (pseudo-tdm and the usual VSM tdm). Ac-
cording to Theorem 3.1, the smaller this value is for a given

matrix, the closer to low-rank-plus-shift structure the matrix
is. The notation we use for the naming of the datasets is of
the form NAME i j, where NAME is the dataset’s name, i
is the number of actual semantic topics per collection’s doc-
ument and j is the number of singular triplets of the term
by sentences matrix that were used for the construction of
approximated document vectors.

Dataset VSM tdm pseudo-tdm
MED 1 1 0.6738 0.6655
MED 2 1 0.5973 0.5807
MED 3 1 0.5232 0.5030
MED 4 1 0.4601 0.4379
MED 5 1 0.4015 0.3746
MED 6 1 0.3462 0.3172
MED 7 1 0.2852 0.2534
MED 8 1 0.2282 0.1982
MED 9 1 0.1644 0.1411

MED 10 1 0.0829 0.0660

Table 3: Value of ‖A−best100(A)‖F
‖A‖F

for a tdm constructed using
VSM and our method (pseudo-tdm).

As depicted on Table 3, the pseudo-tdm’s appears
to be closer to the “low rank plus shift” structure than
the VSM tdm’s. Furthermore, the distance becomes even
smaller for multi-topic collections. Figure 3 depicts singular
value distributions for classic and approximated tdm’s of
datasets MED 1 and MED 2 using k′ = 1,5 singular triplets
to approximate the tsm’s. We note that the singular values
of pseudo-tdm’s are bounded by the corresponding singular
values of VSM tdm’s. We next prove that this indeed holds.

3.1 Some spectral properties of pseudo-tdm’s. In the
sequel, when we compare the singular values of two matrices
with the same number of rows but different number of
columns we will count the singular values according to the
number of rows. We first state three simple results.

LEMMA 3.1. Let A ∈ R
m×n. Let V be orthonormal. Then

σi

(
AV>

)
= σi (A) , i = 1, . . . ,m. (3.14)

LEMMA 3.2. Let A = [A1,A2]. Then

σi (A1) ≤ σi (A) , i = 1, . . . ,m. (3.15)

LEMMA 3.3. Let A,B ∈ R
m×n and q = min{m,n}. Then

σi

(
AB>

)
≤ σi(A)σ1(B), i = 1, . . . ,q.

We next consider the tsm of a collection with two docu-
ments. The following theorem comes as a generalization of
a similar result of Zha and Simon [22, Theorem 3.3].

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

Approximated tdm

VSM tdm

200 400 600 800 1000 1200
0

20

40

60

80

100

Singular values

Approximated tdm

VSM tdm

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

Singular values

Approximated tdm

VSM tdm

0 100 200 300 400 500 600

20

40

60

80

100

120

140

Singular values

Approximated tdm

VSM tdm

Figure 3: Plots of singular values for the classic and the approxi-
mated tdm that arises when one singular value of term by sentences
matrix for MEDLINE-1 dataset (first), five singular values for
MEDLINE-1 dataset (second), one singular value for MEDLINE-
2 dataset (third) and five singular values for MEDLINE-2 dataset
were used.

THEOREM 3.2. Let A ∈ R
m×n and write A = [A1,A2]. Then

for any k1, k2, we have

σi ([bestk1 (A1) ,bestk2 (A2)]) ≤ σi ([A1,A2]) .

Proof. In the sequel, we remind that the SVD of a matrix A
can be written as

A = [Pk,P⊥
k]diag(Σk,Σ⊥

k)([Qk,Q⊥
k])>,

where Pk,Σk,Qk consists of the k leading left and write
singular triplets and P⊥

k ,Σ⊥
k ,Q⊥

k the remaining ones. Clearly,
P>

k P⊥
k and Q>

k Q⊥
k are 0 matrices. Then, for i = 1, . . . ,m,

σi([A1,A2]) =

= σi

(
[[Pk1 ,P

⊥
k1

]diag(Σk1 , Σ⊥
k1

),A2]
)

= σi

(
[Pk1Σk1 ,A2,P⊥

k1
Σ⊥

k1
]
)

= σi

(
[Pk1Σk1 Q⊥

k1
,A2,P⊥

k1
Σ⊥

k1
]
)

(by Lemma 3.1)

= σi

(
[bestk1(A1), [Pk2 ,P

⊥
k2

]diag(Σk2 ,Σ
⊥
k2

),P⊥
k1

Σ⊥
k1

]
)

= σi

(
[bestk1(A1),Pk2Σk2 ,P

⊥
k2

Σ⊥
k2

,P⊥
k1

Σ⊥
k1

]
)

= σi

(
[bestk1(A1),Pk2Σk2 Q⊥

k2
,P⊥

k2
Σ⊥

k2
,P⊥

k1
Σ⊥

k1
]
)

= σi

(
[bestk1(A1),bestk2(A2),P⊥

k2
Σ⊥

k2
,P⊥

k1
Σ⊥

k1
]
)

.

Noticing that [bestk1(A1), bestk2(A2)] is a submatrix of
[bestk1(A1),bestk2(A2),P⊥

k2
Σ⊥

k2
,P⊥

k1
Σ⊥

k1
] we obtain the result

by invoking Lemma 3.2.

Using Theorem 3.2, we can prove the following result
for the approximate tdm constructed by our method.

THEOREM 3.3. Let A ∈ R
m×n and write A = [A1,A2] where

A1 ∈ R
m×n1 and A2 ∈ R

m×n2 . Then for any k1, k2, we have

σi

(
[bestk1 (A1)e(n1)

,bestk2 (A2)e(n2)]
)

(3.16)

≤ σi

(
[A1e(n1)

,A2e(n2)]
)

Proof. Let Â = [bestk1(A1),bestk2(A2)]. Then we have:

[A1e(n1)
,A2e(n2)] = [A1,A2]

[
e(n1) 0

0 e(n2)

]

= A
[

e(n1) 0
0 e(n2)

]

and

[bestk1(A1)e(n1)
,bestk2(A2)e(n2)] = Â

[
e(n1) 0

0 e(n2)

]

We now define

B> =

[
e(n1) 0

0 e(n2)

]

and by invoking Lemma 3.3, we have:

σi([A1e(n1)
,A2e(n2)]) ≤ σi(A)σ1(B)

σi([bestk1(A1)e(n1)
,bestk2(A2)e(n2)]) ≤ σi(Â)σ1(B)

As σi(Â) ≤ σi(A) (by Theorem 3.2) the result follows.

Theorem 3.3 is readily generalized to provide bounds for
the singular values of matrices A = [A1,A2, . . .Ak] that cor-
respond to collection’s tem’s with k documents.

Note that since every term of the pseudo-tdm vector
that corresponds to the j-th document is the result of a local
operation on the document’s tsm, namely a j = bestk′(S)e(t),
the construction of each element of a j can be interpreted
as the result of a weight factor based on local information
applied on the corresponding term of Se(t).

MED VSM New LSI LSI New w.
k = 20 k = 100 LSI(20)
1 0.0313 0.0314 0.0284 0.0285 0.0279
2 0.0754 0.0728 0.0697 0.0815 0.0633
3 0.0544 0.052 0.0595 0.0503 0.0563
4 0.0793 0.0797 0.0866 0.0802 0.0919
5 0.0809 0.0795 0.0888 0.0842 0.094
6 0.088 0.0883 0.0949 0.0898 0.1027
7 0.0866 0.0904 0.0962 0.0897 0.092
8 0.0862 0.0928 0.0938 0.0867 0.1116
9 0.1031 0.1041 0.1057 0.105 0.0992

10 0.1048 0.1077 0.1015 0.1035 0.1016

Table 4: Mean precision for MEDLINE datasets. The
pseudo-tdm vectors were computed with k′ = 5 singular
triplets.

4 Experimental results
All experiments were conducted using MATLAB 6.5 run-
ning using Windows XP on a 2.4 GHz Pentium IV PC with
512 MB of RAM. In all cases we compute the necessary
singular triplets by means of the MATLAB svds function
that is based on implicitly restarted Arnoldi [15]. Our focus
was query evaluation using Equation 2.11 on the pseudo-tdm
constructed via the Algorithm of Table 1. We tested the new
method using k′ = 1 and 5 tsm singular triplets to build the
pseudo-tdm. We also used the new method in combination
with LSI, that is applying LSI on the pseudo-tdm, to get an
appreciation of the overall performance. These results were
compared with simple VSM (term frequency local weight-
ing) and LSI using the approximated tdm of rank k = 20,100.
All experiments were conducted using Text to Matrix Gener-
ator (TMG), a recent MATLAB toolbox [26]. To this effect,
we also enhanced TMG’s functionality to permit the creation

of tsm’s and pseudo-tdm’s.
Tables 4 and 5 tabulate the mean precision of VSM, LSI
(based on 20 and 100 singular triplets) and the new method
for the different MEDLINE datasets. They also illustrate the
performance of the method when it is combined with LSI
(column “New w. LSI” of Tables 4, 5).

MED VSM New LSI LSI New w.
k = 20 k = 100 LSI(20)
1 0.0313 0.0325 0.0284 0.0285 0.0283
2 0.0754 0.0657 0.0697 0.0815 0.0576
3 0.0544 0.0527 0.0595 0.0503 0.0534
4 0.0793 0.077 0.0866 0.0802 0.0779
5 0.0809 0.0792 0.0888 0.0842 0.0809
6 0.088 0.0816 0.0949 0.0898 0.0903
7 0.0866 0.0903 0.0962 0.0897 0.0948
8 0.0862 0.0867 0.0938 0.0867 0.103
9 0.1031 0.1008 0.1057 0.105 0.0949

10 0.1048 0.1006 0.1015 0.1035 0.1005

Table 5: Mean precision for MEDLINE datasets. The
pseudo-tdm vectors were computed with k′ = 1 singular
triplets.

Tables 6, 7 present the number of queries that each method
answers with greater precision, compared to the precision
of the other method’s answers. The new method appears
to offer significant improvements over the performance of
VSM, while in many cases the new methods performs better
than LSI.

MED VSM New LSI LSI
k = 20 k = 100
1 2(7%) 9(30%) 9(30%) 7(23%)
2 3(10%) 8(27%) 9(30%) 9(30%)
3 4(13%) 3(10%) 14(47%) 8(27%)
4 4(13%) 7(23%) 15(50%) 4(13%)
5 4(13%) 6(20%) 13(43%) 5(17%)
6 3(10%) 7(23%) 11(37%) 7(23%)
7 4(13%) 9(30%) 13(43%) 2(7%)
8 3(10%) 5(17%) 14(47%) 7(23%)
9 2(67%) 7(23%) 9(30%) 10(33%)

10 6(20%) 9(30%) 13(43%) 1(3%)

Table 6: Number of queries that each method answers with
greater precision for MEDLINE datasets. The pseudo-tdm
vectors were computed with k′ = 5 singular triplets.

We also plot, in Figure 6, the N = 11-point interpolated
average precision for the different queries of MEDLINE

MED VSM New LSI LSI
k = 20 k = 100
1 1(3%) 15(50%) 7(23%) 6(20%)
2 4(7%) 8(27%) 9(30%) 9(30%)
3 3(10%) 7(23%) 14(47%) 6(20%)
4 4(13%) 6(20%) 14(47%) 5(17%)
5 4(13%) 6(20%) 14(47%) 5(17%)
6 4(13%) 9(30%) 8(27%) 7(23%)
7 5(17%) 8(27%) 11(37%) 4(13%)
8 3(10%) 7(23%) 13(43%) 5(17%)
9 1(3%) 8(27%) 8(27%) 11(37%)

10 7(23%) 8(27%) 12(40%) 3(10%)

Table 7: Number of queries that each method answers with
greater precision, for MEDLINE datasets. The pseudo-tdm
vectors were computed with k′ = 1 singular triplets.

datasets. The interpolated precision is defined as:

p =
1
N

N

∑
i=0

p̂
(

i
N −1

)

where:

p̂(x) = max{pi | ni ≥ xr , i = 1 : r}

1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

0.1

0.12

MEDLINE datasets

11
−i

nt
er

po
la

te
d

pr
ec

is
io

n

pseudo − tdm
VSM − tdm

Figure 4: VSM vs approximated

Figure 4 illustrates the performance of the new method
(using 5 singular triplets to approximate the tsms) compared
to VSM. Figure 5 provides experimental results for the new
method viewed as an alternative weighting scheme. The
new method and VSM have similar performance on datasets
MED 1 to MED 5. However, for MED 6 to MED 10,
the new method improves VSM. These results imply that
the SVD approximation of tsm’s indeed captures the topic
directions of multi-topic documents and thus improves the
overall IR performance. Furthermore, LSI’s performance
improves when based upon the pseudo-tdm.
Finally, in order to gain an appreciation for the method’s
cost, we present in Figure 7 the runtimes for performing a
query on tdm’s that correspond to classical VSM, LSI with
values of k = 20 and 100, the new method, and finally the
combination of LSI with the new method. In all experiments,

times include the cost of performing the necessary partial
SVD’s. Results indicate the new method has runtimes
similar to VSM.

1 2 3 4 5 6 7 8 9 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

MEDLINE datasets

LSI 20 (on VSM−tdm)
LSI 100 (on VSM−tdm)
LSI 20 (on pseudo−tdm)

Figure 5: The new method as an alternative local weighting
scheme. LSI based on the pseudo-tdm has better performance than
LSI on the VSM tdm.

5 Conclusions
Our theoretical and experimental results suggest that, at
the sentence level, matrix space models that have greater
awareness of each document’s local structure and are able to
capture additional semantic information for each document,
can be successfully used to improve existing IR techniques.
Our results provide significant evidence that further justify
proposals such as those in [14, 19] towards the use of
matrix based models and provide additional tools for IR
in such frameworks. We are currently studying the effects
of enabling additional levels of analysis (not only based
on sentences) and adding overall greater flexibility in the
algorithm, as well as the utilization of multilinear algebra
techniques (cf. [16]) and the use of parallel processing.

Acknowledgments. We thank the referees for their sugges-
tions.

References

[1] D. Achlioptas and F. McSherry. Fast Computation of Low
Rank Matrix Approximations. In Proc 33rd Annual ACM
Symposium on Theory of Computing, pages 611–618, 2001.

[2] I. Antonellis, C. Bouras, and V. Poulopoulos. Personalized
news categorization through scalable text classification. In
Proc 8th Asia-Pasific Web Conf, pages 391–401, 2006.

[3] M. Berry. Large Scale Sparse Singular Value Computations.
Int’l. J. Supercomputing Applications, 6:13–49, 1992.

[4] M. Berry, Z. Drmac, and E. Jessup. Matrices, vector spaces,
and information retrieval. SIAM Review, 41:335–362, 1998.

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

queries

N
=

1
1

 i
n

te
rp

o
la

te
d

 p
re

c
is

io
n

Comparison for MED − collection

VSM
LSI 20
New method
LSI 100

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

queries

N
=

1
1

 i
n

te
rp

o
la

te
d

 p
re

c
is

io
n

Comparison for MED 2 − collection

VSM
LSI 20
New Method
LSI 100

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

queries

N
=

1
1

 i
n

te
rp

o
la

te
d

 p
re

c
is

io
n

Comparison for MED 5 − collection

VSM
LSI 20
New Method
LSI 100

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

queries

N
=

1
1
 i
n
te

rp
o
la

te
d
 p

re
c
is

io
n

Comparison for MED 7 − collection

VSM
LSI 20
New Method
LSI 100

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

queries

N
=

1
1
 i
n
te

rp
o
la

te
d
 p

re
c
is

io
n

Comparison for MED 9 − collection

VSM
LSI 20
New Method
LSI 100

Figure 6: Results for the new method using 5 singular triplets to
approximate the tsm, classic VSM and LSI with 20 and 100 singular
triplets, applied on MEDLINE datasets.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Datasets

Ti
m

es
 (s

ec
)

VSM
NEW
LSI 100 (on VSM−tdm)
LSI 20 (on VSM−tdm)
LSI 20 (on pseudo−tdm)

Figure 7: Runtimes (seconds) for methods discussed in this paper.

[5] M.W. Berry and M. Brown. Understanding Search Engines.
SIAM, Philadelphia, 1999.

[6] P. E. Bjørstad and O. Widlund. Iterative methods for the solu-
tion of elliptic problems on regions partitioned into substruc-
tures. SIAM J. Numer. Anal., 23(6):1097–1120, December
1986.

[7] K. Blom and A. Ruhe. A Krylov subspace method for
Information Retrieval. SIAM J. Matrix Anal. Appl., 26:566–
582, 2005.

[8] M. Castellanos. Hot-Miner: Discovering hot topics from
dirty text. In M.W. Berry, editor, Survey of Text Mining:
Clustering, Classification, and Retrieval, pages 123–157.
Springer Verlag, 2003.

[9] V. Castelli, A. Thomasian, and C.-S. Li. CSVD: Clustering
and singular value decomposition for approximate similarity
search in high-dimensional spaces. IEEE Trans. Knowledge
and Data Engin., 15(3):671–685, 2003.

[10] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman. Indexing by Latent Semantic Analysis.
Journal of the American Society for Information Science,
41(6):391–407, 1990.

[11] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay.
Clustering large graphs via the singular value decomposition.
Mach. Learn., 56(1-3):9–33, 2004.

[12] L. Elden. Numerical linear algebra in data mining. In Acta
Numerica. Cambridge University Press, Cambridge, 2006 (to
appear).

[13] H. Kargupta, W. Huang, K. Sivakumar, and E.L. Johnson.
Distributed clustering using collective principal component
analysis. Knowledge and Information Systems, 3(4):422–448,
2001.

[14] M.S. Kamel K.M. Hammouda. Efficient phrase-based doc-
ument indexing for Web document clustering. IEEE Trans.
Knowl. Data Eng., 16(10):1279–1296, Oct. 2004.

[15] R. Lehoucq, D.C. Sorensen, and C. Yang. Arpack User’s
Guide: Solution of Large-Scale Eigenvalue Problems With

Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia,
1998.

[16] N. Liu, B. Zhang, J. Yan, Z. Chen, W. Liu, F. Bai, and
L. Chien. Text representation: From vector to tensor. In
Proc. 5th IEEE Int’l. Conf. Data Mining (ICDM’04), pages
725–728. IEEE, 2005.

[17] D.D. Palmer, M.A. Hearst. Adaptive sentence boundary
disambiguation. In Proc. 4th Conf. on Applied Natural
Language Processing, pp 78-83, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[18] C.H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vem-
pala. Latent Semantic Indexing: A Probabilistic analysis. J.
Comput. Syst. Sci., 61(2):217–235, 2000.

[19] T. Roelleke, T. Tsikrika, and G. Kazai. A general matrix
framework for modelling information retrieval. J. Informa-
tion Processing & Management, 42:4–30, 2006.

[20] G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Comm. ACM, 18(11):613–620, 1975.

[21] J. D. Schlesinger, J. M. Conroy, M. E. Okurowski, and D. P.
O’Leary. Machine and human performance for single- and
multi-document summarization. IEEE Intelligent Systems
(special issue on Natural Language Processing), 18:46–54,
2003.

[22] H. Simon and H. Zha. On updating problems in latent
semantic indexing. SIAM J. Sci. Comput., 21:782–791, 1999.

[23] H.D. Simon and H. Zha. Low-rank matrix approximation us-
ing the Lanczos bidiagonalization process with applications.
SIAM J. Sci. Comp., 21(6):2257–2274, 2000.

[24] H. Wu and D. Gunopulos. Evaluating the utility of statistical
phrases and latent semantic indexing for text classification.
In Proc. 2002 IEEE Int’l. Conf. Data Mining (ICDM 2002),
pages 713–716. IEEE Computer Society, 2002.

[25] D. Zeimpekis and E. Gallopoulos. CLSI: A flexible approx-
imation scheme from clustered term-document matrices. In
H. Kargupta et al., editor, Proc. Fifth SIAM Int’l Conf. Data
Mining (Newport Beach), pages 631–635, Philadelphia, April
2005. SIAM. For an extended version, see Tech. Report
HPCLAB-SCG 2/10-04.

[26] D. Zeimpekis and E. Gallopoulos. TMG: A MATLAB
Toolbox for generating term-document matrices from text
collections. In J. Kogan, C. Nicholas, and M. Teboulle,
editors, Grouping Multidimensional Data: Recent Advances
in Clustering, pages 187–210. Springer, 2006.

[27] H. Zha and Z. Zhang. Matrices with low-rank-plus-shift
structure: Partial SVD and latent semantic indexing. SIAM
J. Matrix Anal. Appl., 21(2):522–536, 2000.

