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1 Abstract

2 The gut microbiota is involved in the regulation of the intestinal permeability (IP), whose 

3 disruption is a frequent condition in older people and is associated to the development of 

4 several diseases. The diet can affect the gut microbiota and IP, although the molecular 

5 mechanisms involved are unclear. Metabolomics is one of the suitable approaches to 

6 study the effects of diet on gut microbiota and IP, although up to now the research has 

7 focused only on few dietary components. The aim here was to review the most recent 

8 literature concerning the application of metabolomics to the study of the diet-induced 

9 alterations of gut microbiota and the effects on IP, with a particular focus on the molecular 

10 pathways involved. An additional aim was to give a perspective on the future research 

11 involving dietary polyphenols, because despite their potential use in the management of 

12 increased IP, few studies have been reported to date.
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26 Introduction 

27 The gastrointestinal tract (GI) is responsible for a wide range of functions, including 

28 digestion and absorption of nutrients, water and ions, regulation of host immunity, 

29 protection against the ingress of pathogenic microorganism, and the the metabolism and 

30 detoxification of xenobiotics. The GI also hosts the largest microbial population of the 

31 human body, which works in symbiosis with the host to accomplish these various 

32 intestinal functions. Gut bacteria are particularly important for host health, being involved 

33 in the synthesis of vitamins, secondary bile acids and neurotransmitters, and playing a 

34 direct role in the metabolism and degradation of dietary components and drugs, that can 

35 affect their bioavailability and absorption 1. It has been estimated that over than 1,000 

36 different bacterial species populate the intestinal environment, with a genome comprising 

37 100-fold more genes than those found in human genome 2. The physiological variations 

38 in the small intestine and colon, such as the presence of distinct chemical environments, 

39 nutrients and host immune activity allow distinct groups of bacterial species to populate 

40 the different regions of the lower gastrointestinal tract 3,4, and this variability becomes 

41 even more complex considering the inter-individual variations and the influence of host 

42 genetics 5-7. Nevertheless, most human gut microbiota share a core set of resident bacteria 

43 and related microbial genes 8,9. Firmicutes, Bacteroidetes and, secondly, Actinobacteria 

44 are the three most abundant phyla, among the over 50 that have been identified by 

45 metagenomic approaches 10,11. A synergistic equilibrium among the different species and 

46 the maintenance of a microbial diversity are of crucial importance for health, since the 

47 microbiota plays a central role on the proper functioning of the intestinal barrier and 

48 maintaining appropriate intestinal permeability (IP), which is directly involved in the 

49 development of numerous disorders.  In this vein, a low diversity and a scarce abundance 

50 of species as Bifidobacterium spp. and Faecalibacterium prausnitzii have been associated 
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51 with gut disease states, e.g. Crohn’s disease 12, type 1, type 2 and gestational diabetes 13-

52 15, celiac disease 16 and obesity 17.  

53 Diet, as a source of macro- and micro-nutrients and other bioactive components, is one 

54 of the factors that most can affect the microbiota. Among the dietary constituents, 

55 polyphenols have been in the spotlight in recent years, due to their particular 

56 physicochemical properties and their potential to directly affect microbiota activity and 

57 host health. Polyphenols are secondary metabolites of plants, fruits and vegetables, and 

58 major components of commonly consumed foods and beverages such as chocolate, tea 

59 and coffee 18-20 which, due to their characteristic (poly)hydroxylated phenyl moieties and 

60 the presence of ionizable functional groups on their scaffolds, have a low bioavailability 

61 and are scarcely absorbed by the intestine 21,22. Consequently, they are prone to catabolism 

62 by the gut microbiota, which leads to the production of smaller molecular weight (MW) 

63 compounds that can be absorbed across the intestinal wall, enter the bloodstream and 

64 eventually, undergo further transformation and conjugation in the liver 23,24. It has been 

65 estimated that total polyphenol absorption in the small intestine is around 5%–10%, while 

66 the remaining 90%–95% transits to the large intestinal lumen and accumulates in the 

67 millimolar range 25. Hence, microbial polyphenol derivatives could be responsible for the 

68 biological effects attributed to their parent compounds, or at least contribute to the overall 

69 activity. Catechins from green tea, for example, have been reported to exert antioxidant, 

70 anti-inflammatory and anti-tumorigenic activities 26-28. However, the most representative 

71 green tea catechin, (−)-epigallocatechin gallate, is scarcely absorbed from the intestine 

72 and is extensively metabolized by gut microbiota 29 to form smaller MW derivatives that 

73 not only contribute to the observed bioactivities of green tea, but can also exert higher 

74 activity than the parent compound 30. Polyphenols and their microbial metabolites could 

75 also exert antimicrobial and bacteriostatic activities, hence regulating the overgrowth of 
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76 harmful bacteria on the intestinal and urinary tract epithelia 20,31. As an example, 

77 cranberry (Vaccinium macrocarpon Ait.) fruits, rich sources of type-A procyanidins 

78 (PAC-A), are known to exert anti-adhesive activity against the uropathogenic bacteria 

79 responsible for most of the lower urinary tract infections, although the mechanisms of 

80 action are still unknown and the outcomes of in vitro assays and in vivo clinical trials 

81 aimed at reducing urinary tract infections are frequently inconsistent 32. Recent studies 

82 conducted in both rats and human volunteers show that, after supplementation with dry 

83 cranberry extracts, urine samples exert effective anti-adhesive activity against 

84 uropathogenic E. coli, despite their negligible contents of intact PAC-A 33,34. However, 

85 the same urine samples were characterized by high amounts of hydroxyphenyl-valeric 

86 acid and hydroxyphenyl-valerolactone derivatives, previously reported as end-products 

87 of microbial degradation of flavan-3-ols 35, indicating the important contribution of the 

88 microbial metabolites of procyanidins to the observed bioactivity 33,34. Finally, the effects 

89 of polyphenols on microbiota, inflammation and oxidative stress and their capacity to 

90 regulate the synthesis and expression of specific proteins on the intestinal epithelium 

91 seem to be part of the mechanisms by which these compounds can regulate the 

92 permeability of the intestinal barrier 36, whose alterations are related to the development 

93 of several diseases, especially in older subjects. 

94 Many efforts have been made to characterize the microbial community colonizing the 

95 human intestine, for which the widespread use of metataxonomics based on 16S rRNA 

96 gene profiling and metagenomics (microbiomics) has been particularly important. 

97 However, although representing powerful tools for bacterial identification and 

98 classification, microbiomics does not allow to obtain information about fluctuations in 

99 metabolic activities 1. To this purpose, metabolomics is the most suitable approach, and 

100 numerous reports based on metabolomic analysis have been reported over the last decade 
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101 37. Focusing on the application of metabolomics in the study of diet-microbiota 

102 interactions and searching for the keywords “metabolomics AND diet AND microbiota” 

103 in PubMed, we found that the number of publications almost doubled from 2014 to 2018, 

104 as an index of the popularity that metabolomics gained during the recent years (Figure 1). 

105 Metabolomic approaches have been widely used to study the transformation of nutrients 

106 and xenobiotics by intestinal microbiota 38-43, thus allowing the characterization of 

107 hundreds of metabolites derived from macro- and micronutrients and polyphenols coming 

108 from fruits and vegetables. In 2009, Jacobs published a first review article regarding the 

109 role of colonic microbiota in the degradation of non-digestible food ingredients and their 

110 impact on gut health and immunity 44. For the first time, the importance of metabolomics 

111 in the study of the links between the bioconversion of non-digestible food ingredients, 

112 their bioavailability and their downstream effects on microbiota composition and host 

113 metabolism was recognized 44. More recently, the use of integrated multi-omics 

114 approaches has facilitated the study of the molecular interactions between diet and 

115 microbiota, and has led to the identification of several metabolites that are produced as a 

116 result of microbial metabolism of various dietary constituents. Nevertheless, considering 

117 the challenges to study the mutual relationship between gut microbiota and the host, its 

118 tight connection with diet, environment and lifestyle, and the still incomplete 

119 characterization of the huge microbial metabolome, the path to assess precise and 

120 validated metabolites to link the microbial activity to specific effects on health is just 

121 starting. In a way to find a clinical relevance of metabolomics data and offer to clinicians 

122 a robust tool to predict, prevent and treat several diseases, further progress is necessary.  

123 The aim of this work was to review the most recent literature regarding the application of 

124 metabolomics in the study of the interactions between food components and gut 

125 microbiota and the effects on IP, with a particular focus on the elucidation of the 
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126 molecular pathways involved. Since to date the research has mainly focused on the 

127 degradation of non-digestible fibers and tryptophan and on the bioactivity of their 

128 metabolites, a major part of the work will be dedicated to these important dietary 

129 components. Additionally, a perspective on the future research involving the role of 

130 dietary polyphenols in modulating the activity and composition of gut microbiota and the 

131 effects on IP will be discussed, given that, despite their potential implication in the 

132 prevention and treatment of several diseases, few clinical studies have been performed up 

133 to now. 

134

135 The role of microbiota and microbiota-derived dietary metabolites in regulating 

136 intestinal permeability: the application of metabolomics for the discovery of new 

137 biomarkers

138 The intestinal wall represents a barrier that selectively transports nutrients, ions and water 

139 from the lumen to the bloodstream, via passive and active mechanisms. A layer of 

140 epithelial cells constitutes the main physical barrier between the intestinal lumen and the 

141 mucosal tissues 45. Tight junctions (TJ), composed of transmembrane proteins and 

142 junctional adhesion molecules that regulate the flow of water, ions and small molecules, 

143 seal the paracellular spaces 46. Several distinct proteins contribute to form the TJ, 

144 including mainly occludins and claudins, depending on the tissue and location that 

145 interlink within the paracellular space 47. Although highly cross-linked, the structure of 

146 TJ is dynamic, so that it can be ‘opened’ and ‘closed’ following specific stimuli 48. 

147 Physiological stimuli could shrink the TJ to prevent the diffusion of toxins, viruses or 

148 bacterial fragments to the mucosal layer, while they can open the paracellular space to 

149 allow the diffusion of nutrients 49. For instance, the activation of the sodium dependent 

150 glucose transporter led to the opening of TJ and allowed the diffusion of small molecules 
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151 and peptides with MW < 40,000 Da 50. On the other hand, the physiological structure and 

152 dynamism of TJ could be altered due to pathological states 51, leading to a condition of 

153 increased IP, also known as “leaky gut”. Celiac disease, inflammatory bowel disease and 

154 type I diabetes are three of the principal pathological causes of leaky gut 52, which leads 

155 to the permeation of potentially harmful molecules, organisms or microbial fragments 

156 from the intestinal lumen to the mucosal layer, inducing a cascade of events that result in 

157 immune activation and local or systemic inflammation. Older people are frequently 

158 affected by decreased intestinal barrier function and consequently leaky gut 53. Among 

159 the causes, the aging-related decline of immune function (namely immune-senescence), 

160 the remodeling of intestinal epithelium and the alterations of gut microbiota composition 

161 are thought to be the most important ones 53-55. As observed in disease-associated 

162 increased IP, the dysfunction of the intestinal barrier in older subjects facilitates the 

163 diffusion of toxic substances or peptides and microbial fragments to the mucosal layer 

164 and to the bloodstream and the triggering of a systemic inflammatory response 56. 

165 As previously stated, diet plays an important role in the maintenance of the gut barrier 

166 integrity and is hence determinant for IP. The short-chain fatty acids (SCFAs), produced 

167 by the degradation of dietary fibers by several bacteria in the gut (including Clostridium, 

168 Eubacterium, and Butyrivibrio), have been the most studied microbial catabolites 

169 involved in the regulation of IP to date. Among them, butyrate has been identified as a 

170 marker of the positive effects of non-digestible dietary fiber consumption on microbiota 

171 composition and intestinal permeability. It exerts several activities on the intestinal wall, 

172 such as controlling inflammation by altering the expression of pro-inflammatory 

173 cytokines 57, preserving the intestinal barrier function by inducing the expression of TJ 

174 proteins claudin-1 and claudin-2 58, and modulating composition of gut microbiota by 

175 inhibiting the growth of pathogenic bacteria 59 (Figure 2). Food is the only source of non-
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176 digestible carbohydrates, and alterations in diet lead to variations in the production of 

177 intestinal butyrate. In aged mice, the increased butyrate production after the consumption 

178 of high doses of soluble fiber was associated with an induced expression of the TJ proteins 

179 Tjp2 and Ffar2 and to a counterbalance of the age-related microbiota dysbiosis, with a 

180 significant amelioration of the increased IP condition typical of older individuals 60. 

181 Similar effects of a high fiber diet were also observed in mice affected by autoimmune 

182 hepatitis, characterized by an imbalance of Treg/Th17 cells and increased IP 61. 

183 Metabolomics analysis of feces showed increased levels of butyrate after dietary 

184 intervention, and the expression of TJ proteins ZO-1, occludin and claudin-1 was induced 

185 in the ileum, with consequent increased intestinal barrier function and decreased 

186 translocation of bacterial components through the intestinal wall 61 (Table 1). The same 

187 effects were also observed in mice treated with sodium butyrate, indicating a direct 

188 involvement of this bacterial metabolite in the regulation of IP 61. Similar results were 

189 recently reported by Fachi and coll., who showed that an inulin-enriched diet protects 

190 mice from Clostridium difficile-induced colitis through the production of SCFAs 62. 

191 Metabolomics analysis of feces showed the increased production of butyrate, propionate 

192 and acetate after dietary intervention (Table 1). Butyrate reduced the levels of pro-

193 inflammatory cytokines and increased the anti-inflammatory cytokine IL-10 in the colon 

194 at the peak of infection, leading to an overall attenuation of the intestinal inflammation 

195 62. Butyrate induced the expression of genes associated with claudin-1 and occludin, 

196 leading to a reduction of the IP and consequently to a reduction of the microbial 

197 translocation in the liver and spleen 62. 

198 Microbial tryptophan metabolites also play an important role in regulating barrier 

199 functions and gut microbiota activity. A metabolomic approach allowed to obtain 

200 preliminary elucidations about the role of tryptophan and its microbial and endogenous 
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201 derivatives in the regulation of immune tolerance toward intestinal microbiota 63. Starting 

202 from these findings, further research has elucidated the role of other microbial-derived 

203 tryptophan metabolites in the regulation of gut permeability, by direct effects on epithelial 

204 cells. Venkatesh et al. showed that indole-3-propionic acid (IPA), produced by the 

205 firmicute Clostridium sporogenes, regulates mucosal integrity and intestinal barrier 

206 function by activating the pregnane X receptor (PXR) and upregulating junctional 

207 protein-coding mRNAs 64. More recently, Dodd et al. used an integrated targeted-

208 untargeted approach to identify 12 microbial metabolites derived from the reductive 

209 activity of C. sporogenes on aromatic amino acids (phenylalanine, tyrosyne and 

210 tryptophan), of which nine (lactate, acrylate and propionate derivatives) were reported to 

211 accumulate in host plasma 65. The authors particularly focused on IPA and its effects on 

212 gut barrier and the mucosal immune system, and their results supported the findings of 

213 Venkatesh and coll. about the PXR-mediated effect on gut permeability 64,65 (Table 1). A 

214 treatment with 20 mg kg−1 IPA for four consecutive days was shown to significantly 

215 decrease the IP in HFD-fed obese T2D mice 66, which, prior to treatment, were 

216 characterized by higher IP and lower circulating IPA levels compared to lean animals. 

217 Plasma IPA amounts were also reported to increase in obese subjects 3 months after 

218 Roux-en-Y gastric bypass (RYGB) surgery 66, indicating, once again, the direct 

219 involvement of gut microbiota in the maintenance of the intestinal barrier functions. 

220 Furthermore, results from in vitro assays reported by the same authors showed that IPA 

221 could reduce the permeability of T84 cell monolayer compromised by pro-inflammatory 

222 cytokines 66. Other metabolites derived from the same degradation pathway of 

223 tryptophan, i.e. indole (produced by Escherichia coli, Clostridium bifermentans, Proteus 

224 vulgaris, Paracolobactrum coliforme, Achromobacter liquefaciens, and Bacteroides 

225 spp.) 67, indole-3-acetic acid (produced by C. sporogenes) and tryptamine (produced by 
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226 C. sporogenes and Ruminococcus gnavus) 68, were also reported to exert anti-

227 inflammatory activity both in the intestinal lumen and in the liver 68,69, and to up-regulate 

228 the expression of several proteins involved in the trans-epithelial cells linkage on the 

229 intestinal wall, such as tight junction proteins TJP1, TJP3, and TJP4, and gap junction 

230 proteins GJE1, GJB3, GJB4, and GJA8, among others 67. A schematic resume of these 

231 results is reported in Figure 2.

232 In recent years, polyphenols have been widely considered for their beneficial effects on 

233 health and polyphenol-rich diets have been evaluated for the prevention of several chronic 

234 diseases, ranging from metabolic disorders to inflammation and cancer. Some studies 

235 have also evaluated the consumption of polyphenol-rich food for the prevention of 

236 diseases associated to aging, such as cognitive impairment 70 and depression 71, although 

237 up to now the reported effects have been inconsistent. However, numerous in vitro and 

238 animal studies show that the consumption of polyphenol-rich food could positively affect 

239 IP, reinforcing the barrier properties of the intestinal epithelium by direct influence on the 

240 synthesis and expression of tight junction proteins 72,73 or by interaction with gut 

241 microbiota. As previously described, this latter is directly involved in the metabolic 

242 transformation of plant polyphenols and in the production of smaller MW derivatives 74, 

243 which in turn contribute to the maintenance of barrier function and drives changes in gut 

244 microbiome constituents 75,76, with important effects for host health. However, although 

245 several molecular targets of dietary polyphenols and their metabolites on the intestinal 

246 epithelium have been elucidated 77, it is unclear how the interaction of the same 

247 compounds with gut microbiota leads to beneficial effects on the intestinal barrier. In 

248 recent studies, through integrated metagenomics-metabolomics analyses of feces and 

249 plasma, some authors correlated the variations of the amounts of specific gut-derived 

250 metabolites to the effects of polyphenol ingestion on IP (Table 1). It was observed that a 
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251 high-fat diet supplemented with 4% w/w powdered green tea leaves rich in flavanols leads 

252 to an increased intestinal population of Akkermansia spp. after 22 weeks 78, a bacterium 

253 that has been implied in the maintenance of a functional intestinal barrier through the 

254 preservation of mucus layer thickness 79. Li et al.  reported that the consumption of a 

255 medium-dose (20 mg/kg per day) of bilberry anthocyanin extract (BAE) promoted the 

256 generation of SCFAs (acetic acid, propionic acid and butyric acid) in aging rats, through 

257 the regulation of the intestinal microbiota 80. Specifically, several starch-utilizing and 

258 butyrate-producing bacteria (among whom Lactobacillus and Bacteroides) were induced 

259 by BAE, while harmful species such as Verrucomicrobia and Euryarchaeota where 

260 inhibited. These variations, associated with decreased levels of TNF-α and IL-6 in the 

261 colon induced by BAE consumption, contributed to the restoring of the intestinal barrier 

262 function typically altered in older individual 80. In a more recent work by Nieman and 

263 coll., the authors observed the effects of the association of acute moderate physical 

264 activity (sustained walking for 45 min and moderate-intensity running for 2.5 h) and a 

265 two-week flavonoid supplementation on the IP in healthy volunteers 81. The results, 

266 obtained using a targeted metabolomics approach, showed that acute moderate exercise 

267 leads to higher circulating amounts of 15 metabolites derived from flavonoids metabolism 

268 by gut microbiota (mainly hippuric acid, methoxybenzoic acid and benzaldehyde 

269 derivatives; Table 1). The increased levels of these compounds were correlated to the 

270 significant decrease of IP observed in both “walking” and “running” groups of volunteers, 

271 although information about the mechanism(s) of action involved are lacking 81. 

272 Overall, the data published up to now indicate that the effects of polyphenols on IP are 

273 related to both direct activity on the expression of TJ proteins and to changes induced to 

274 the intestinal microbiota, with an increase in the prevalence of species that can preserve 

275 barrier functions through the production of active metabolites or by direct action on the 
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276 mucous layer (Figure 2). On the other hand, the data supporting these observations are 

277 still scarce, and up to now only few compounds (e.g. butyrate and some gut-derived 

278 polyphenol metabolites) correlating the polyphenol-induced modifications of gut 

279 microbiota to the effects on the intestinal integrity and permeability have been discovered. 

280 Nevertheless, as demonstrated by the works of Li 80 and Nieman 81, the integration of 

281 metagenomics and metabolomics approaches for the study of the bacterial and metabolic 

282 composition of feces and biological fluids represents one of the most suitable approaches 

283 for the identification of the pathways leading to the effects of polyphenols on gut 

284 microbiota and IP, as well as for the assessment of the key metabolites involved. 

285

286 Conclusion and future perspective

287 Although the study of the effects of dietary interventions on gut microbiota and IP and 

288 investigations of the mechanisms of action have begun only recently, it appears clear that 

289 appropriate dietary habits and the regular consumption of vegetables and fruits rich in 

290 fibers and polyphenols play an important role in the maintenance of proper intestinal 

291 functions. The precursors of SCFAs and of several indole or phenolic derivatives 

292 produced by bacterial catabolism in the intestinal lumen, for example, are abundant 

293 constituents of both plant-derived foods, as cereals, nuts, fruits and vegetables rich in non-

294 digestible fibers 82, and animal-based foods such as dairy products, eggs and meat, which 

295 are rich sources of tryptophan 83. Thanks to the employment of integrated multi-omics 

296 approaches, the involvement of several partners (food components, microbiota and 

297 microbial-derived compounds) in the maintenance of the intestinal barrier function and 

298 the molecular pathways behind this activity are being gradually elucidated, although 

299 further efforts are required to link specific food components and their metabolites to 

300 specific mechanisms of action. Nevertheless, the increasing amounts of data regarding 
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301 specific metabolites (e.g. physicochemical properties, spectroscopic properties, location 

302 in biofluids, involvement in metabolic pathways) stored in freely available databases and 

303 the affordability of even more sensitive and robust instrumentations will allow, in the near 

304 future, to obtain further biological information to better understand the molecular 

305 mechanisms behind the effects of diet on gut microbiota and IP. Once that both 

306 metabolites and molecular pathways will be assessed and validated for clinical relevance, 

307 they will represent novel instruments available to clinicians for the assessment of the 

308 “intestinal health” and for the development of dietary plans aimed at managing and 

309 preventing diseases directly linked to increased IP, as chronic inflammation and 

310 immunological disorders, which are determinant for the gradual decline of health in older 

311 subjects.
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TABLE

Table 1

Intervention/
Condition

Source, dose and length of 
treatment

Model Biofluid/ 
biomatrix 
analyzed

Metabolomic 
approach *

Gut-derived metabolites 
correlated to effects on 
IP

Main outcomes of the study ** Reference

High-fiber diet Laboratory diet composed 
of 30% barley and 70% 
standard AIN-93 for 28 
days

Mouse, healthy Feces Targeted 
GC-MS

Butyrate, propionate, 
acetate

 Butyrate from fiber ↓ pro-inflammatory 
cytokines (IL-17A, IL-6, Cxcl-1)
 ↑ IL-10 and TGF-β mRNA expression 
 ↓ intestinal tract lesions 
 ↑ Claudin-1, occludin and ZO-1
 ↓ bacterial translocation

Hu et al.,
2018 61

Dietary 
fibers

Inulin-enriched 
diet

Laboratory diet 
supplemented with 5% 
cellulose and 25% inulin
for 7 days

Mouse, healthy 
and colonized 
with 1 × 108 
CFU 
Clostridium 
difficile

Feces Targeted 
GC-MS

Butyrate, propionate, 
acetate

 Butyrate from fiber ↓ pro-inflammatory 
cytokines (IL-6, IL-1b, Cxcl-1)
 ↑ anti-inflammatory cytokine IL-10 
 ↓ intestinal tract lesions
 ↑ Claudin-1 and occludin 
 ↓ bacterial translocation
 ↑ intestinal barrier integrity

Fachi et al., 
2019 62

Tryptophan Gavage with 
Clostridium. 
Sporogenes and 
standard chow 
diet

Standard chow (LabDiet 
5k67) containing 0.23% 
tryptophan for 4 weeks 

Mouse, germ 
free colonized 
with 
Clostridium. 
sporogenes by 
oral gavage (~ 1 
× 107 CFU)

Serum Targeted 
LC-MS

Indole 3-propionic acid 
(IPA)

 IPA produced by C. sporogens,
 Colonization with C. sporogenes ↓ intestinal 
permeability
 IPA signals through PXR to fortify the 
intestinal barrier

Dodd eta al.,
2017 65
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Gavage with 
probiotics 
(mice)/
Irritable Bowel 
Disease (IBD) 
(human)

Oral gavage with 0.6-2 × 
108 CFU 
Peptostreptococcus species 
every other day, for 2 weeks 
(mice)

Mouse, dextran 
sodium sulfate-
induced colitis/
Human, 
ulcerative colitis 
and Crohn’s 
disease

Feces Untargeted 
LC-MS

IPA, indoleacrylic acid 
(IA)

 Peptostreptococcus species ↑ barrier 
function through production of IPA and IA
 IA ↓ pro-inflammatory cytokine production 
 IA ↑ intestinal epithelial barrier function
 Microbes of IBD patients have reduced 
ability to cleave mucins and metabolize 
tryptophan
 ↓ mucin utilization by gut bacteria in IBD
 ↓ colonization of microbes that metabolize 
tryptophan in the intestine of IBD

Wlodarska et al.,
2017 69

High-fat diet 
(mice) 
supplemented 
with IPA/ 
Obese T2D 
subjects before 
and after RYGB 
(human)

Daily oral gavage with 20 
mg/kg IPA for 4 
consecutive days (mice)

Mouse, diet- 
induced obese 
(DIO)/ Human, 
obese with type-
2 diabetes

Plasma Targeted and 
Untargeted 
LC-MS, 
GC-MS

IPA, indoxyl 3-sulfuric 
acid (ISA), indole 3-acetic 
acid (IAA)

 IPA ↓ IP in DIO mice
 ↓ IPA, IAA and ISA in obese subjects
 ↑ IPA, IAA and ISA 3 months after RYGB
 IPA ↓ IP in obese subjects

Jennis et al.,
2018 66

Oral bilberry 
anthocyanin 
(BA) 
consumption in 
aging model

Old and young animals 
treated with 3 different BA 
doses (6 animal groups) for 
10 weeks: 
LBA group: 10 mg/kg/dia;
MBA group: 20 mg/kg/dia;
HBA group: 40 mg/kg/dia

Rat,
young (4 
months) and old 
(12 months), 
healthy

Cecal 
content

Targeted 
GC-FID

Butyrate, propionate, 
acetate

 BA ↑ starch-utilizing and butyrate-producing 
bacteria
 BA ↓ inflammatory factors (TNF-α, IL-6) 
and mucosa damages in the colon

Li et al.,
2019 80

Dietary 
polyphenols

Combination of 
flavonoid 
supplementation 
and moderate 
physical 
exercise (45 
min walking 
and 2.5 h 
running)

Capsule containing 329 mg 
total flavonoids: bilberry 
fruit extract (64 mg 
anthocyanins), green tea 
leaf extract (184 mg total 
flavan-3-ols), 104 mg 
quercetin aglycone.

Human, healthy Plasma Targeted 
LC-MS

Hippuric acid, 
3-hydroxyhippuric acid, 
quercetin-3-O-
glucuronide, delphinidin-
3-O-glucoside, 4-
hydroxycinnamic acid, 5-
(3′,4′-dihydroxyphenyl)-
γ-valerolactone, 3-(3-
hydroxy-4-

 Physical exercise ↑ absorption of gut-derived 
flavonoid metabolites 
 Flavonoid consumption associated to 
physical exercise ↓ IP
 Flavonoids and their gut-transformed 
metabolites ↑ intestinal barrier integrity

Nieman et al.,
2019 81
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1 capsule/dia for “walking” 
group; 2 capsules/dia for 
“running” group. 
Supplementation time: 2 
weeks

methoxyphenyl)propanoic 
acid-3-O-glucuronide, 
methoxybenzoic acid 
derivatives, benzaldehyde 
derivatives

* LC-MS: Liquid Chromatography coupled to Mass Spectrometry; GC-MS: Gas Chromatography coupled to Mass Spectrometry; GC-FID: Gas Chromatography coupled to Flame Ionization Detector.
** ↓ indicates “decrease”; ↑ indicates “increase”.
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FIGURE CAPTIONS

Figure 1. The increase of the scientific literature regarding the use of metabolomics in 

the study of the interactions between diet and gut microbiota during the last 11 years. 

Source: PubMed (https://www.ncbi.nlm.nih.gov/pubmed/).

Figure 2. Schematic representation of the mechanisms of action responsible for the 

effects of microbiota-derived dietary metabolites on intestinal permeability.

TABLE CAPTION

Table 1. Summary of the studies involving the application of metabolomics to the study 

of the effects of diet-gut microbiota interactions on intestinal permeability in vivo.
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