
Exploring Transferability in Deep Neural Networks
with Functional Data Analysis and Spatial Statistics

Richard McAllister
Gianforte School of Computing

Montana State University
Bozeman, MT, USA

richard.mcallister@msu.montana.edu

John Sheppard
Gianforte School of Computing

Montana State University
Bozeman, MT, USA

john.sheppard@montana.edu

Abstract—Recent advances in machine learning have brought
with them considerable attention in applying such methods to
complex prediction problems. However, in extremely large datas-
paces, a single neural network covering that space may not be
effective, and generating large numbers of deep neural networks
is not feasible. In this paper, we analyze deep networks trained
from stacked autoencoders in a spatio-temporal application area
to determine the extent to which knowledge can be transferred
to similar regions. Our analysis applies methods from functional
data analysis and spatial statistics to identify such correlation. We
apply this work in the context of numerical weather prediction
in analyzing large-scale data from Hurricane Sandy. Results of
our analysis indicate high likelihood that spatial correlation can
be exploited if it can be identified prior to training.

I. INTRODUCTION

It has long been known that the black-box nature of neural
networks introduces challenges to wide-spread adoption of this
technology, especially in safety-critical domains. The DARPA
Broad Agency Announcement (BAA) for Explainable Artifi-
cial Intelligence [1] solicited research proposals for techniques
for creating artificial intelligence models such as artificial
neural networks (ANN) that, upon training, would enable users
to understand why such models make the decisions that they
make. In particular, a major factor that hinders the adoption
of ANNs in many domains is that it is very difficult to
understand why they produce the answers that they produce
[2]. What has been learned in a trained, functioning, reliable
ANN remains opaque; therefore, the model is limited in ways
it can enhance the understanding of the governing processes of
the system under examination. Thus one of the key focus areas
in modern neural network research is in developing approaches
to improve insight into what has been learned by these models,
essentially opening the black box so that adopters can see
inside.

The promise offered by the effectiveness of modern deep
learning methods also suggests potential wide applicability in
solving many of these critical problems. Unfortunately, the
computational complexity of training such models, combined
with the large data requirements, further limit adoption of
this technology. This motivates research in transfer learning
whereby trained models can be re-used as starting points in
other problem areas, thus significantly reducing the compu-
tational burden in their training. Intuitively, efforts to apply

transfer learning assume that it is possible for a model to have
learned something fundamental to a more abstract universe
that encompasses both the domain within which the model
was trained and the domain within which it will be applied.

These two problem areas motivate the current work. For
our approach, we focus on a single type of deep network
and apply techniques from functional data analysis (FDA)
and spatial statistics to develop insight into what the network
has learned. We then apply that insight to select portions of
the model to be transferred and test the effectiveness of the
transferred knowledge in a new setting. More specifically, we
defined a highly controlled environment in which we started
by creating a single stacked autoencoder and initializing the
weights randomly. Then for each area of interest (AOI) in
the dataspace we cloned this single network and pre-trained
the clones on the data from their respective AOIs in exactly
the same fashion, effectively removing any stochasticity in
the training process. This allowed us to remove uncontrollable
sources of variation and uncertainty across the entire dataspace
and concentrate on how different areas of this dataspace affect
training. We utilized this structure as the foundation for our
experiments.

For this analysis, we chose a problem from meteorology
as our test case. Weather modeling and prediction have been
in the domain of deterministic methods for many years [3].
We assert that an opportunity exists for deep learning to
supplement the state of the art in weather modeling and
prediction, particularly by informing traditional computational
models. To do this in a way that instills confidence in users of
traditional models, we need to gain an understanding of what
ANNs learn when they are trained on this data.

The main contributions coming from this work are as
follows. First, we provide a highly structured, highly con-
trolled approach to evaluate learnability and transferability in
deep ANNs. To support this, we draw on the disciplines of
functional data analysis and spatial statistics in a novel way.
We then develop an approach to apply the results of spatial
analysis to determine what components of a deep network
are transferable. Finally we test the transferability of deep
networks that have been trained based on this approach.

This paper is organized as follows. Section II discusses
relevant literature to provide both background information and



results of similar research. In Section III, we describe the data
collection process for our domain of study. We then discuss
how we apply techniques from FDA to prepare the data for
analysis in Section IV. In Section V, we provide a detailed
explanation of our experimental and analysis approach. The
results of our analysis are given in Section VI, and we provide
conclusions and areas of future work in Section VII.

II. RELATED WORK

The idea behind stacked autoencoders is to use layers of
autoencoders to represent lower-dimensional encodings of a
dataset under study [4]. The layers are stacked together in a
fashion that facilitates constructing an abstraction hierarchy
of features by having learned features derived directly on the
response of the lower-level feature detectors. These feature
detectors are developed through an iterative process of un-
supervised pre-training, where resulting autoencoders migrate
towards important basins of attraction expressed in data [5].
In this work, we control the training process to gain a better
understanding of these basins of attraction in the context of
a problem exhibiting high spatio-temporal correlation. This
permits us to apply tools to support analysis of the learned
features as a function of both space and time.

Transfer learning in ANNs is an area of very active research
[6], [7]. It exploits knowledge gained from auxilliary domains
in order to facilitate predictive modeling in the new domains
[8]. There have been studies applying transfer learning in
meteorology, which is the domain of interest here. In one
example, Hu, Zhang, and Zhou applied transfer learning with
stacked autoencoders to improve wind speed prediction in
areas lacking sufficient data to appropriately train models from
scratch [9].

While praising the success that many AI models have had in
recent years, Samek, Wiegand, and Muller [2] state that “it is
not clear what information in the input data makes them arrive
at their decisions.” In this paper we take steps to determine
this information, although we do not make the claim that this
information will be human-understandable.

While there does appear to be considerable literature in re-
cent years on transfer learning and explainable AI individually,
there does not appear to be any significant work combining the
two. The novelty of the work performed in this paper is using
analysis for explanability approaches to facilitate the transfer
process.

The process of analyzing data that is generated as a result
of some underlying process is referred to as “functional data
analysis,” where the data can be modeled and represented as
a function, often in time or space. Silverman and Ramsay
provide one of the first texts on the subject of FDA where
they describe several analysis methods directly applicable to
the type of data analyzed here (namely, weather data) [10]. In
recognizing that weather occurs as a function of both space
and time, we use methods from FDA to assemble features
expressed in meteorological data as a hurricane moves over
an area of the Earth. FDA is not without precedent in Earth
science. King [11] explored functional analytic methods in

Table I: Features for the Hurricane Sandy Dataset

Reading Source Reading Name

Radiometry Measurement

Temperature
Pressure

Cloud Density
Rain Density

Ice Density
Snow Density

Graupel Density

Wind Speed Indicator
Wind u (East/West)

Wind v (North/South)
Wind w (Up/Down)

analyzing climate change. In that work the author fit spline
functions to temperature time series data in order to track
temperature changes in US cities over the last few decades.
She did not, however, apply FDA in a machine learning
context.

III. DATA

The type of data we consider here is highly multidimen-
sional, spatial, temporal, and functional. It is multidimensional
in that for each AOI, we have temperature, pressure, precip-
itation, humidity, and wind data. It is spatial because we are
examining these same dimensions across a three-dimensional
physical space, and these spatial relationships are a significant
factor in the behavior of the system. It is temporal because
data at each location are represented as a time series as it
tracks a storm over a 24-hour period. It is functional because
changes in one area propagate through the space according
to atmospheric forces and dynamics as a function of (among
other things) space and time.

The data that we used for this investigation were generated
by Zhang and Gasiewski in [12]. The data comes from a
Weather Research and Forecasting (WRF) model of one day
in the life of Hurricane Sandy from 2012 with data collected
every 15 minutes. It is an aggregation of two datasets: one
consisting of radiometric readings from space and one con-
sisting of spatially and temporally located wind vectors. Since
radiometers cannot measure wind speed, we considered it
useful to use deep learning to predict wind vector components
from such inputs.

Table I shows the data that were available for each point in
our study. The radiometric and wind datasets are from different
sources, but all of their respective measurements have been
aligned with one another with respect to space and time.

IV. THE ROLE OF FUNCTIONAL DATA ANALYSIS

In this paper we examine weather data as being functional
in nature. We assume that the behavior of the data from
each of the points of interest is influence by common factors
that influence all of these points together. Because of this,
we hypothesize that the encodings that result from training
networks on the data from each point of interest contain
transferrable knowledge. We want the use the understanding
gained through this examination to broaden the predictive
capability of similarly trained neural networks, and we further
hypothesize that spatio-temporally correlated feature detectors



a

b

c

Figure 1: Pedestrians Along Road with Passing Firetruck

Time

Vo
lu

m
e

a
b
c

Figure 2: Volume Levels by Time for Each Pedestrian

in a trained network can be extracted and used to train
networks for other parts of the dataspace more efficiently and
more accurately.

To illustrate the role that FDA plays in our analysis, we use
the following toy example. Suppose three people are standing
along the side of a road as a firetruck passes by with its
siren blaring. When the three pedestrians are in the same
relative position to the street as the firetruck passes, each
of their experiences will be exactly the same in terms of
the volume of the siren they perceive. However, when they
are at different distances from the edge of the street and
at inconsistent intervals along the length of the street, the
power of the functional treatment of this data is much more
readily apparent. Figure 1 shows three pedestrians positioned
in this way, and Figure 2 shows a notional plot of the
corresponding volume perceived by each pedestrian. Notice
how added distance causes the overall volume to be lower
and the volume change to be flatter, in contrast with the
experience of the pedestrian closest to the street. Also, the
time of experiencing the change in volume of the siren varies
based on the lateral position of the pedestrian.

In analyzing this situation, functional data registration
would cause the peaks of these curves to be aligned (shift
registration) and the amplitudes to be modified (amplitude
registration) as much as possible to bring the overall shapes
of the phenomena into alignment, while maintaining the
individual differences of the functions [10]. Our example
dataset characterizes the behavior of a hurricane, which like
the firetruck in the above example, is a spatio-temporal phe-
nomenon that is moving through our area of interest. As the
phenomenon makes its way through every location on the map
its “locations” in the phenomenon affect “locations” in the
space in a related way, like the siren on the firetruck.

Figure 3: Analysis Locations for Training the Neural Networks

V. APPROACH

A. Overview

To extract information that we can use to generalize across
the dataspace, we perform a two-stage training of a set of
stacked autoencoders. The layers of these stacked autoen-
coders are trained using unsupervised pre-training. Except for
the primary random initialization of the prototype network, we
remove all sources of randomness in the pre-training procedure
to facilitate a controlled analysis of the learned features.
The initial weights of each of the autoencoders are cloned
from a single random initialization and replicated across the
spatial area in our dataspace so that they are exactly the
same. The data used to do the pre-training are fed into each
autoencoder in the same order, so there is time-correspondence
across the dataspace. Maintaining this numerical consistency
allowed us to trace the effects of the data using a consistent
model, ensuring our focus on the dataspace rather than the
model itself. The resulting weights are then analyzed with
respect to how they vary across the dataspace. We use the
results of applying semi-variograms from spatial statistics to
determine information that may be shared across networks that
correspond to each area of interest.

B. Data Preparation

1) Area of Interest Instance Data: Figure 3 shows the
distribution of areas of interest where our data was collected.
The left side of the figure shows the Eastern seaboard of the
United States from Long Island on the upper left to Florida
and Grand Bahama in the lower left. This square region is the
section over which all of the data was collected, and the dots
show the locations of each geographical area we analyzed.
Each dot represents the center of a grid cell in a geodesic
Discrete Global Gridding System (DGGS) [13] superimposed
over the entire planet.

Figure 4 depicts one area of interest, corresponding to one
of the points from Figure 3. Each numbered cell is a 15km
resolution DGGS cell. We train networks to predict the wind
vector conditions in cell 0 at each location for each succeeding
time step in the dataset. We assume, as was assumed in [14],
[15], that the wind vector values in cell 0 for the current time



0
1

2
3

4
5

6

Figure 4: One DGGS Area of Interest

slice (excluding those forces not represented in the data) can
be determined by the radiometric readings of that same cell for
the current time slice and the radiometric and wind readings
of all cells in the previous time slice.

2) Time Shift Instance Data: The task before us is to take
data from radiometric readings at a particular point in time t,
which we denote r0t , . . . , r

n
t . We use this data to predict the

wind vectors at time t + 1, which we denote ut+1 (zonal,
or east-west), vt+1 (meridional, or north-south), and wt+1

(vertical, or up-down) respectively. Thus we set this up as
a one-step time series prediction problem.

3) Scale Data: Each input and output data variable varied
in magnitude greatly. Each of the data variables was also cap-
tured using differing units, for example: kilometers per hour
for wind and degrees Celsius for temperature. To minimize the
impact such variability, we scaled the values for each of the
variables to a range between 0 and 1. Each of the data variables
was scaled individually so that the functional character of the
data represented was preserved.

4) Separation of Input and Output Data: The radiometry
measurements were the main features used for prediction. In
the future we would like to use the wind vector predictions
from the prior time step as inputs for the next time step, cre-
ating a more comprehensive system with enhanced predictive
capabilities. But for now we wanted to provide the networks
with as little information as possible about the state of the
wind vector, save for the ground truth outputs in training.

5) Random Data Padding: To overcome an underflow issue
with the functional data registration procedure, we padded
each input dimension with a random value between 0.0001
and 0.001. This small value was adequate to prevent underflow
while not being large enough to affect the overall patterns
within the data. This was not necessary for the output data
dimensions.

6) Functional Data Registration: To bring the shapes of
each of the input dimensions into greater relief we performed
functional data registration over the dataset. This included
shifting the functional form of the data to bring them into
alignment with regard to time and intensity. This is referred
to as shift and amplitude registration—shift registration de-
scribing the adjustment of the function’s time dimension to
align features along the abscissa, and amplitude registration
describing the increase or reduction in intensity to align
features along the ordinate.

To perform registration on the data, it must be converted
into a functional form. This means that we represented the
data using a set of basis functions and a corresponding set of

coefficients. The two choices for the basis functions explained
in [10] are the Fourier basis and the spline basis. Since the
Fourier basis function is primarily used in periodic data, and
our data only spanned a single day, we chose the spline basis
as being better suited for our non-periodic dataset.

7) Train, Validate, and Test Separation: Since this is a
study exploring the dataspace rather than an exhaustive valida-
tion of a training methodology, it was important that we kept
the treatment of the data consistent among training, validation,
and testing sets. For this reason, the time indices for the
training, validation, and testing segments of the data were
pre-selected before any of these processes proceeded. After
completing the aforementioned procedures, there were 93 data
instances for each area of interest. For training we reserved 73
of these, selected at random, and 10 each for validation and
testing.

8) Sequential Data Training: The data from all of the
points of interest on the map are bound together by time.
This means that the first instance for each location happens
at the same time as the first instance in all other locations,
and so on. Normally, during the training of neural networks,
the examples are fed to the procedure randomly. This would
have the effect of scrambling the temporal sequence across
the dataspace, rendering the instances incomparable. Since we
wanted total consistency in the training of these networks, and
so that there was no randomization during the training process,
exactly one ordering of data was used This was done to ensure
that the same time indices were used for all areas of interest
and all of the training epochs corresponded with each other.
This ordering was pre-selected and was applied system-wide.

C. Layer Pre-Training

1) Prototype Network: In the interest of removing all
sources of variation in the pre-training procedure, the networks
trained on the data from each area of interest were cloned from
a single, randomly initialized, autoencoder. Therefore, all pre-
training had the same random starting point. The prototype
autoencoder was a single layer of 150 nodes and its layer
weights were each initialized to random values between −1
and +1.

2) Node Profiles Pairwise Dot Products: After pre-training,
each network was the result of the original, cloned autoencoder
having been pre-trained on data from its respective area of
interest. To compare what was learned by each node across the
dataspace, we collected each node’s incoming weight vector.
Specifically, for each autoencoder and for each area of interest
we collected the weight vector of each corresponding node
and arranged them into a similarity matrix. Because of the
way the networks were trained, we assert that the feature
learned by a particular node at one location corresponds to
the same feature learned by that node in another location.
More formally, suppose we have two autoencoders A1 and
A2. Suppose we order the hidden nodes of each autoencoder as
h1, . . . , hn. Because of the controlled pre-training procedure
and the fact each autoencoder started from the same state,
we assert that node hA1

i and hA2
i are examining the same



feature of the underlying data and are, therefore, comparable.
We computed the pairwise dot products of the node weight
vectors for each node as the measure of similarity between
each of the node profiles for each location.

3) Semivariograms: Having the matrix of pairwise dot
products based on location allowed us to analyze the variance
as a function of distance between each node. For this we
used semi-variograms [16], [17], which depict the differences
in the dot products for all of the nodes for each location.
This geostatistical tool enabled us to examine the extent to
which the results of unsupervised pre-training were spatially
dependent [18]. A geostatistical analysis is appropriate here
because we have endeavored to remove all other randomness
from the model, and are instead analyzing the systems that re-
main: those of the pre-trained neural model and the mixture of
random and functional dynamics that are endemic to the storm
system [18]. The mathematical definition of a semivariogram
is as follows [17].

γ(~h) =
1

2
V ar

[
Z(~x+ ~h)− Z(~x)

]
where γ, is derived from spatially distributed random variables
Z(~x) and Z(~x+~h), and ~x and ~x+~h are the spatial positions
separated by ~h [17].

Figure 5 shows three examples of semi-variograms that were
produced during this procedure. Each of these charts uses
a different scale on the ordinate, since the scale of each of
the pairwise differences differed significantly. To remove the
influence of the scale in the expression of the patterns in the
data we individually scaled each of the semi-variograms to a
range between 0 and 1. This allowed us to pairwise compare
the patterns that were in the semivariograms, rather than the
data that generated them.

4) Hierarchical Agglomerative Clustering: Since all of the
semi-variograms were now on the same scale, we used hier-
archical agglomerative clustering (HAC) to determine inter-
relatedness among semi-variograms. Since the number of
clusters is an input parameter to HAC, we assessed each
clustering from 2 clusters through 9 clusters. To determine
what we regarded as an optimal clustering we used the
Calinski-Harabaz score (also known as the pseudo-F score)
[19] as follows.

FNC =

NC∑
i=1

nid
2(ci, c)/(NC − 1)

NC∑
i=1

∑
x∈Ci

d2(x, ci)/(N −NC)

where NC is the number of clusters, N is the number of
objects in the dataset, ni is the number of examples in the
ith cluster, d(x, y) is the Euclidean distance between x and
y, ci is the center of the ith cluster, and c is the center of
the dataset. The Calinski-Harabaz measure is an evaluation of
cluster validity based on intra-cluster distance and inter-cluster
distance. An example Calinski-Harabaz score profile is shown

in Figure 6. The chart shows that, for this configuration, the
optimal HAC clustering to use is three clusters.

We identify the clusters inside the clusterings by their
silhouette scores, which is a quality measure based on pairwise
differences of between and within-cluster distances. After
using the Calinski-Harabaz score to select the number of
clusters as an input parameter, the clusters that were produced
using HAC had different silhouette scores, indicating varying
cluster quality. Since we know that a maximal silhouette
score is to be preferred, we wanted to see if cluster quality
in this respect had an impact on the resulting convergence
and prediction performance. The results depicted in Figure 9
are divided by average silhouette score for each cluster. The
silhouette score is defined as:

SilNC =
1

NC

NC∑
i=1

[
1

ni

∑
x∈Ci

b(x)− a(x)
max{b(x), a(x)}

]
where

a(x) =
1

n− 1

∑
x∈Ci,y 6=x

d(x, y)

and

b(x) = min
i,j

 1

nj

∑
y∈Cj

d(x, y)

 .
Again, NC is the number of clusters, n is the number
of objects in the dataset, d(x, y) is the Euclidean distance
between x and y, and ci and c are the centers of an individual
cluster and entire dataset respectively.

The three charts in Figure 5 are semi-variograms of nodes
that were examples of three clusters, each with different
average Silhouette coefficients (ASC). When we examined the
semi-variograms across the space of all nodes, we observed
this variety of patterns. It is this data that allows us to separate
nodes that we fix in the next step, as opposed to nodes that
we allow to vary.

5) Fixed Pre-Training: What we obtained from each cluster
is the fixed-set, which is a list of nodes to transfer to other
locations in the dataspace. This forms the basis for the transfer
learning experiment. In this procedure, the original autoen-
coder layers were once again copied from the single prototype
autoencoder. The node weights for the fixed-set of nodes were
then transferred into the copy of this prototype. Holding the
weights of the fixed-set constant throughout the pre-training
procedure, the resulting autoencoder layers were pre-trained
in this configuration. Figure 7 shows this situation for one
layer of the network. In this figure, the shaded (red) nodes
are copies from another network identified from a cluster of
spatially correlated feature detector nodes. In this paper we
only used a one-layer stacked autoencoder; however, we intend
to extend this to multiple layers in future work.

For the “Surrounding POI Experimnts” described in section
VI-A we refer back to Figure 3. The location in the upper left
indicated by the star shows an example area of interest whose
node weights were copied. The surrounding dots represent the
areas of interest to which these node weights were copied.



●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0 5 10 15

0.
0e

+
00

5.
0e

−
10

1.
0e

−
09

1.
5e

−
09

xp

yp

●

● ●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

0e
+

00
1e

−
09

2e
−

09
3e

−
09

4e
−

09

xp

yp

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

0 5 10 15

0.
0e

+
00

1.
0e

−
09

2.
0e

−
09

3.
0e

−
09

xp

yp

Node 19 (ASC = 0.11) Node 1 (ASC = 0.18) Node 18 (ASC = 0.43)

Figure 5: Example Semivariograms from Each Cluster In Selected Clustering. ASC = Average Silhouette Coefficient

2 3 4 5 6 7 8 9
Number of Clusters

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Sc
or

e

Figure 6: Calinski-Harabaz Score for Clusterings: 2–9 Clusters

Figure 7: Autoencoder Fixed Nodes

For the “Linear Cross Transfer Experiment,” whose results
are described in section VI-B we refer to Figure 11, where the
weights were copied from each corner location (locations 12,
19, 82, and 89) into the networks corresponding to the line
of AOI’s leading to the respective diagonal opposite corners.
For example, for location 12 in the Figure, the fixed-set was
copied to the networks to be trained on trained on data from
locations 23, 34, 45, 56, 67, 78, and 89.

D. Fine Tuning and Testing

After transfer and during fine-tuning, the training data are
fed into the network in the same order as they were fed
in for the unsupervised pre-training procedure. This, again,
is to remove as many sources of variation as we could
during the entire procedure. The number of iterations and
associated mean squared error of the networks were tracked
and compared to the original training to determine if the
transfer learning process was more efficient and effective as
hypothesized.

VI. RESULTS

A. Surrounding POI Experiments

Figure 8 shows the difference in convergence time that is
typical for each of the locations surrounding the location from
which we transferred the fixed-set. As can be seen, fixing the
nodes from the pre-training of the center cell had the effect
of substantially reducing convergence times. It also shows
consistently lower overall mean squared error with respect to
autoencoder reconstruction during the pre-training procedure.

Figure 9 shows the test performance when predicting the
wind vectors for each of four configurations that we used. We
tested configurations that were both regularized (L1 regular-
ization) and unregularized, and we used both the ReLU and
hyperbolic tangent (tanh) activation functions in the networks
that were assembled from the autoencoder labels. Of particular
interest is the configuration that used regularization and the
ReLU activation function. In this configuration, using fixed



0 25 50 75 100 125 150 175
Epoch

0.00

0.05

0.10

0.15

0.20

M
SE

Convergence

Pre-Trained
Fixed Pre-Trained

Figure 8: Typical Convergence Comparison Plot

nodes from the cluster corresponding to the higher average
silhouette coefficient produced better predictive results, in gen-
eral, than either those of the fine-tuned pre-trained networks
or the fixed pre-trained configuration using the lower average
silhouette coefficient. In general, the results from the fixed pre-
trained configurations corresponding to the lower silhouette
coefficients produced more erratic results.

The heatmaps in Figure 10 are visual representations of
the average difference in predictive accuracy for the 8 cells
surrounding the cell from which the fixed-set was copied.
Again, in reference to Figure 3 the fixed-set was copied
from the location represented by the star. We created the
heatmaps by averaging the differences of the MSE’s of each
location surrounding the starred location. The darker cells
represent lower differences and the lighter cells represent
higher differences.

The first row of heatmaps represents the cluster with the
lowest silhouette coefficient, and the second row represents
the cluster with the highest silhouette coefficient. In these
heatmaps, we observe a greater mean squared error variability
in the cluster with the lowest silhouette coefficient. This may
suggest that greater transferability is achieved using the fixed-
set from the cluster with the greater silhouette coefficient. For
the u component, these differences are shown numerically in
Tables II and III.

B. Linear Cross Transfer Experiment

In this experiment we wanted to see how the convergence
properties and prediction accuracy changed as we moved far
across the data space. To achieve this the fixed-sets were taken
from the networks corresponding to the corners and copied to
the networks corresponding to the line crossing the data space
diagonally, as shown in Figure 11. For example, nodes were
copied from location 12 to each network along the path to
location 89, etc.

The convergence behavior resembled that from the previous
experiment, whose results are shown in Figure 8, with minor
variation. The convergence time was substantially lower and
the MSE converged to a similarly lower value.

Figure 12 shows the prediction performance of the resulting
networks for the configuration where no regularization was
used and ReLU was used as the activation function. For the
first two rows the locations moving to the right across the x
axis indicate a movement in the dataspace farther away from
the network from which the trained nodes were copied. In the
last two rows, movement to the left along the x axis indicates
this movement.

VII. CONCLUSIONS AND FUTURE WORK

We observe that selecting a clustering from a HAC clus-
tering with the highest Calinski-Harabaz score, and using this
clustering with the information about the silhouette scores of
the clusterings can provide information about what random
initializations allowed better generalization across the datas-
pace, given the context of the other initializations. We note,
however, that this procedure is not practical in the sense of
providing a general training and transfer process. But then,
coming up with such a procedure was not our goal. Rather,
our goal was to analyze spatial correlation in learned feature
detectors to determine whether or not such spatial correlation
might be exploited in transfer learning.

For future work, we will shift our focus from analysis to de-
veloping a practical training procedure. Specifically, our intent
is to apply model reduction strategies (e.g., weight pruning)
to determine those feature detectors in the network that are
likely to exhibit the desired spatial correlation. An alternative
approach might be to apply the ideas from the lottery ticket
hypothesis [20], [21] as a way of identifying transferable
subnetworks. These features might then be transferable and
tunable in the other areas of the dataspace.

An interesting component to this problem is in determining
whether or not spatial differences in this type of data cause the
behavior of the attendant phenomena to be different enough
to warrant an original network for each specific area to be
modeled. We do not think this is so, but if we are right then
there must be a way to divide the dataspace intelligently into
areas appropriate for application of models that were trained
on “compatible” areas. For this, we also need to determine
what we mean when we call these areas “compatible.” There
also may be a need to allow overlap, in which case we may
introduce fuzzy clustering or a type of mixture model.

REFERENCES

[1] D. Advanced, “DARPA XAI BAA,” pp. 1–52, 2016. https://www.darpa.
mil/attachments/DARPA-BAA-16-53.pdf

[2] W. Samek, T. Wiegand, and K.-R. Muller, “Explainable Artificial
Intelligence: Understanding, Visualizing, and Interpreting Deep Learning
Models,” ITU Journal: ICT Discoveries, no. Special Issue No. 1, 2017.

[3] T. T. Warner, Numerical Weather and Climate Prediction. Cambridge
University Press, 2011.

[4] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A Learning Algorithm
for Boltzmann Machines*,” Cognitive Science, vol. 9, pp. 147–169,
1985.



66 67 68 76 78 86 87 88
Location

0

50

100

150

200

250

M
SE

0.106
0.245
0.523
Pre-Trained

66 67 68 76 78 86 87 88
Location

0

50

100

150

200

250

M
SE

0.106
0.245
0.523
Pre-Trained

66 67 68 76 78 86 87 88
Location

0

50

100

150

200

M
SE

0.106
0.245
0.523
Pre-Trained

u Component, No Reg, ReLU v Component, No Reg, ReLU u Component, No Reg, ReLU

66 67 68 76 78 86 87 88
Location

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

0.215
0.231
Pre-Trained

66 67 68 76 78 86 87 88
Location

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

0.215
0.231
Pre-Trained

66 67 68 76 78 86 87 88
Location

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

0.215
0.231
Pre-Trained

u Component, No Reg, tanh v Component, No Reg, tanh w Component, No Reg, tanh

66 67 68 76 78 86 87 88
Location

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

0.19
0.226
Pre-Trained

66 67 68 76 78 86 87 88
Location

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
SE

0.19
0.226
Pre-Trained

66 67 68 76 78 86 87 88
Location

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

0.19
0.226
Pre-Trained

u Component, Reg, ReLU v Component, Reg, ReLU w Component, Reg, ReLU

66 67 68 76 78 86 87 88
Location

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

0.205
0.292
Pre-Trained

66 67 68 76 78 86 87 88
Location

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

0.205
0.292
Pre-Trained

66 67 68 76 78 86 87 88
Location

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

0.205
0.292
Pre-Trained

u Component, Reg, tanh v Component, Reg, tanh w Component, Reg, tanh

Figure 9: Prediction Results for location 77 (37.07°Lat, -73.79°Lon): Silhouette Coefficients Given in Legends

[5] D. Erhan, Y. Bengio, A. Courville, P. Vincent, and S. Bengio, “Why
Does Unsupervised Pre-training Help Deep Learning?” Journal of
Machine Learning Research, vol. 11, pp. 625–660, 2010.

[6] S. J. Pan and Q. Yang, “a Survey on Transfer Learning,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 1, no. 10, pp. 1345–
1359, 2010.

[7] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big Data, vol. 3, no. 1, p. 9, 12 2016.

[8] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Trans-
fer Learning using Computational Intelligence: A Survey,” Knowledge
Based Systems, vol. 80, no. 10, pp. 14–23, 2015.

[9] Q. Hu, R. Zhang, and Y. Zhou, “Transfer learning for short-term wind
speed prediction with deep neural networks,” Renewable Energy, vol. 85,
pp. 83–95, 1 2016.

[10] B. W. Silverman and J. O. Ramsay, Functional Data Analysis. Springer,
2005.

[11] K. King, “Functional Data Analysis With Application to United States
Weather Data,” Ph.D. dissertation, 2014. https://core.ac.uk/download/
pdf/51066752.pdf

[12] K. Zhang and A. J. Gasiewski, “Microwave CubeSat fleet simulation
for hydrometric tracking in severe weather,” in IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 5569–
5572.

[13] K. Sahr, D. White, and A. J. Kimerling, “Geodesic Discrete Global Grid
Systems Discrete Global Grid Systems: Basic Definitions,” Cartography
and Geographic Information Science, vol. 30, no. 2, pp. 121–134, 2003.

[14] R. A. McAllister and J. W. Sheppard, “Deep Learning for Wind



0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

u Component, SC = 0.190

Avg RMSE: 0.1240± 0.0029

v Component, SC = 0.190
Avg RMSE: 0.1292± 0.0035

u Component, SC = 0.190
Avg RMSE: 0.1364± 0.0053

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

u Component, SC = 0.226

Avg RMSE: 0.0456± 0.0012

v Component, SC = 0.226
Avg RMSE: 0.0365± 0.0006

w Component, SC = 0.226
Avg RMSE: 0.0507± 0.0012

Figure 10: Heat Maps Depicting Neighborhood Mean Squared Error Differences: Regularization, ReLU

Table II: Differences in Prediction Error in Surrounding Regions for Locations in Cluster with Silhouette Coefficient 0.190

0 1 2 3 4 5 6 7

0 0.071663 0.181648 0.091526 0.144587 0.142470 0.107549 0.144603 0.156638
1 0.173422 0.198090 0.120792 0.098738 0.134753 0.216859 0.180250 0.236516
2 0.146268 0.065116 0.107992 0.053564 0.069530 0.102851 0.129786 0.104743
3 0.152467 0.104508 0.108294 -0.031736 0.024594 0.015864 0.134914 0.167747
4 0.193729 0.172512 0.074459 0.117674 0.123894 0.061272 0.065049 0.122773
5 0.126530 0.127691 0.147620 0.155785 0.126462 0.115997 0.148730 0.251933
6 0.083317 0.183645 0.200183 0.159251 0.192128 0.101274 0.035824 0.133931
7 0.027401 0.126359 0.077443 0.208089 0.099937 0.045052 0.044794 0.148031

1219
2328

3437

4546

5556

6467

7378

8289

Figure 11: Linear Cross Training Locations

Vector Determination,” in IEEE Symposium Series on Computational
Intelligence, Honolulu, HI, 2017.

[15] R. McAllister and J. Sheppard, “Evaluating Spatial Generalization
of Stacked Autoencoders in Wind Vector Determination,” in FLAIRS
Conference, Melbourne, FL, 2018.

[16] A. E. Gelfand, P. J. Diggle, M. Fuentes, and P. Guttorpt, Handbook of
Spatial Statistics, 2010, vol. 20103158.

[17] M. Bachmaier and M. Backes, “Variogram or Semivariogram? Variance
or Semivariance? Allan Variance or Introducing a New Term?” Mathe-
matical Geosciences, vol. 43, no. 6, pp. 735–740, 8 2011.

[18] M. A. Oliver and R. Webster, Basic Steps in Geostatistics: The Vari-
ogram and Kriging, ser. SpringerBriefs in Agriculture. Cham: Springer
International Publishing, 2015.

[19] Y. Liu, E. Racah, Prabhat, J. Correa, A. Khosrowshahi, D. Lavers,
K. Kunkel, M. Wehner, and W. Collins, “Application of Deep Con-
volutional Neural Networks for Detecting Extreme Weather in Climate
Datasets,” in ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, 5 2016, pp. 81–88.

[20] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis: Finding
Small, Trainable Neural Networks,” Tech. Rep. https://arxiv.org/pdf/
1803.03635.pdf

[21] R. V. Soelen and J. W. Sheppard, “Pruned Networks for Transfer
Learning,” in IEEE International Joint Conference on Neural Networks,
2019.



Table III: Differences in Prediction Error in Surrounding Regions for Locations in Cluster with Silhouette Coefficient 0.226

0 1 2 3 4 5 6 7

0 -0.006103 0.026441 0.031365 0.079269 0.075486 0.113234 0.089962 0.010246
1 -0.046888 0.002377 -0.035044 -0.038244 -0.001453 0.061009 0.093929 0.087198
2 0.034286 0.017958 0.001052 -0.040874 -0.016071 0.062118 0.022195 0.059957
3 0.097574 -0.001716 -0.068291 -0.085860 -0.106535 0.004428 0.137219 0.085019
4 0.057002 0.008859 0.029313 0.019012 -0.083162 -0.054874 -0.026438 -0.000454
5 -0.009035 -0.054717 -0.061529 -0.013007 -0.050549 -0.055664 0.049241 0.116108
6 0.079068 0.029965 0.058726 0.026723 -0.056399 -0.039050 -0.068245 0.040383
7 -0.002633 0.000531 -0.000337 0.049586 -0.034041 0.017514 0.008220 0.102648

23 34 45 56 67 78 89
Location

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
SE

0.19
0.226
Pre-Trained

23 34 45 56 67 78 89
Location

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
SE

0.19
0.226
Pre-Trained

23 34 45 56 67 78 89
Location

0.0

0.1

0.2

0.3

0.4

M
SE

0.19
0.226
Pre-Trained

u Component, From Loc 12, v Component, From Loc 12 u Component, From Loc 12

28 37 46 55 64 73 82
Location

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

0.19
0.226
Pre-Trained

28 37 46 55 64 73 82
Location

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

0.19
0.226
Pre-Trained

28 37 46 55 64 73 82
Location

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
SE

0.19
0.226
Pre-Trained

u Component, From Loc 19 v Component, From Loc 19 w Component, From Loc 19

19 28 37 46 55 64 73
Location

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

0.19
0.226
Pre-Trained

19 28 37 46 55 64 73
Location

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
SE

0.19
0.226
Pre-Trained

19 28 37 46 55 64 73
Location

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

0.19
0.226
Pre-Trained

u Component, From Loc 82 v Component, From Loc 82 w Component, From Loc 82

12 23 34 45 56 67 78
Location

0

1

2

3

4

5

6

M
SE

0.19
0.226
Pre-Trained

12 23 34 45 56 67 78
Location

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
SE

0.19
0.226
Pre-Trained

12 23 34 45 56 67 78
Location

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
SE

0.19
0.226
Pre-Trained

u Component, From Loc 89 v Component, From Loc 89 w Component, From Loc 89

Figure 12: Cross Location Prediction Performance: Silhouette Coefficients Given in Legends


