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1. Volatility Products
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Historical Volatility Products I

. . . 1 n Si \2
e Historical variance: ~» ", ln(m)
e OTC products:

— Volatility swap

— Variance swap

— Corridor variance swap

— Options on volatility /variance

— Volatility swap again

e Listed Products:

— Futures on realized variance
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Implied Volatility Products |

e Definition

— Implied volatility: input in Black-Scholes formula to recover market price:
— Old VIX: proxy for ATM implied vol

— New VIX: proxy for variance swap rate
e OTC products

— Swaps and options
e Listed products

— VIX Futures contract

— Volax
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1. Volatility Products: VX Futures Pricing
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Vanilla Options I

Simple product, but complex mix of underlying and volatility :

A A
i : Call
Call option has: call
e Sensitivity to S: A Vega
. YA
e Sensitivity to o : Vega
c 4 >
S )

These sensitivities vary through time and spot, and vol:

F
Delta
/(
} =
K S
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Volatility Games I

To play pure volatility games (eg bet that S&P vol goes up, no view on the S&P itself)

e Need of constant sensitivity to vol
e Achieved by combining several strikes;
e |deally achieved by a log profile: (variance swaps)

y

log
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Log Profile '

2

o Under BS: dS = 0.SdW, Elintt] = -5 T

2
e For all S,

_ S0 Q)+t 00 . +
lnS:S So_/ (K —5) o (S — K) I
0

So So K? S K?
e The log profile is decomposed as:
1 % Prer “Ckr
gOFutures — R dK — . K dK

e In practice, finite number of strikes = CBOE definition:

2 K.1—K,_ 1 F
2 2 : i+1 i—1 T 2

where X is a Put if K; < F', a Call otherwise
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Option prices for one maturity
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Perfect Replication of V'] X%l

Implied Volatiities
0.45 .
S 04-]
2 2 . T 40T
VIX: = —zpprice(ln o ) ke
St S i
L . 2 L T1+(5T 0.3 -]
= prlcet[5TlnS 2In 5 —
= price,| PF| 62
045
0.1 =

Strike 12000 e : Maturity

We can buy today a PF which gives V[X%1 at 17 : buy 75 options and sell T options.
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Theoretical Pricing of VX Futures FV{X before launch I

° FtV]X: price at t of receiving /PFp, = VIXp = F}/lIX at 1}

A UB=VPF¢

Ft"1X = E[\/PFy| < \/E,|PFr| = \/PF, = Upper Bound (UB)

e The difference between both sides depends on the variance of PF (vol vol), which is

difficult to estimate.
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Pricing of 7YX after launch I

Much less transaction costs on F than on PF (by a factor of at least 20)
A PF:(F.I'!’;”"{)2

—— Replicate PF by F
instead of F by PF!

VIX 2VIX
F F
t T

FVIX

11
PFT1 _ (F%IX)Z _ (FtV]X)Q + 2/ (FSVIX o FtV]X)dFSVIX + Q‘/t,Tl
t

PF, = E[(F)/ ")) = By[F ) + Var [F'

— B/ — Ry [FYY] = \/ PF, — Var,[F¥!X|(< /PF, = UB)
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Bias estimation I

FYIX =\ JUB? — Var [}

e Var|Fr,| can be estimated by combining the historical volatilities of F and Spot VIX.

e Seemingly circular analysis: F is estimated through its own volatility!

Example : 192 = /2002 — 562
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VIX Fair Value Page I
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Behind The Scene

J
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VIX Summary I

e VIX Futures is a FWD volatility between future dates 17 and 75.
e Depends on volatilities over T} and T5s.

e Can be locked in by trading options maturities 7} and 7T5.

e 2 problems :

— Need to use all strikes (log profile)

2

— Locks in 07, not ¢ — need for convexity adjustment and dynamic hedging.
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2. Linking Various Volatility Products
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Volatility as an Asset Class: A Rich Playfield |

e Options on S (C(9))
e OTC Variance/Vol Swaps (VarS/VolS)
— (Square of) historical vol up to maturity
e Futures on Realised Variance (RV)
— Square of historical vol over a future quarter
e Futures on Implied (VIX)
e Options on Variance/Vol Swaps (C(Var S))
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Plentiful of Links I

S

e uix
SN~

C(VarS)  VarS: "RV
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RV / Var$ I

e The pay-off of an OTC Variance Swap can be replicated by a string of Realized

Variance Futures:

e From 12/02/04 to maturity 09/17/05, bid-ask in vol: 15.03/15.33

e Spread=.30% in vol, much tighter than the typical 1% from the OTC market
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RV/V]XI

e Assume that RV and VIX, with prices RV and F are defined on the same future period
(71 /13

elfatly, RV < FO2 then buy 1 RV Futures and sell 2 Fy VIX Futures

o At 17,
PL, = RVi — RV — 2Fy(F, — F)

> RV, — F2 — 2Fy(Fy — )
— RV, — F2 4+ (F, — F)?

o If RV} < F? sell the PF of options for F7 and Delta hedge in S until maturity to
replicate RV.

e |n practice, maturities differ: conduct the same approach with a string of VIX Futures
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3. Volatility Modeling
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Volatility Modeling I

e Neuberger (90): Quadratic variation can be replicated by delta hedging Log profiles

e Dupire (92): Forward variance synthesized from European options. Risk neutral
dynamics of volatility to fit the implied vol term structure. Arbitrage pricing of

claims on Spot and on vol
e Heston (93): Parametric stochastic volatility model with quasi closed form solution

e Dupire (96), Derman-Kani (97): non parametric stochastic volatility model with

perfect fit to the market (HJM approach)
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Volatility Modeling 2 '

e Matytsin (99): Parametric stochastic volatility model with jumps to price vol deriv-

atives

e Carr-Lee (03), Friz-Gatheral (04): price and hedge of vol derivatives under assumption

of uncorrelated spot and vol increments

e Duanmu (04): price and hedge of vol derivatives under assumption of volatility of

variance swap

e Dupire (04): Universal arbitrage bounds for vol derivatives under the sole assumption

of continuity
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Variance swap based approach (Dupire (92), Duanmu (04)) I

oV = QVI(0,T) is replicable with a delta hedged log profile (parabola profile for

absolute quadratic variation)

— Delta hedge removes first order risk

— Second order risk is unhedged. It gives the quadratic variation

e |/ is tradable and is the underlying of the vol derivative, which can be hedged with

a position in V'

e Hedge in V' is dynamic and requires assumptions on

Vi=E[V]=QVo: + E[QVi 1]
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Stochastic Volatility Models I

e Typically model the volatility of volatility (volvol). Popular example: Heston (93)

d
Sy _ VI dW,
Sy

dvy = K(Voo — 14)dt + a/1dZy

e Theoretically: gives unique price of vol derivatives (1st equation can be discarded),

but does not provide a natural unique hedge

e Problem: even for a market calibrated model, disconnection between volvol and real

cost of hedge.
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Link Skew / Volvol I

e A pronounced skew imposes a high spot/vol correlation and hence a high volvol if

the vol is high

e As will be seen later, non flat smiles impose a lower bound on the variability of the

quadratic variation

e High spot/vol correlation means that options on S are related to options on vol: do

not discard 15! equation anymore

From now on, we assume (0 interest rates, no dividends and V is the

quadratic variation of the price process (not of its log anymore)
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Carr-Lee approach |

e Assumes

— Continuous price

— Uncorrelated increments of spot and of vol

e Conditionally to a path of vol, X (T') is normally distributed, = X++/V g (g: normal

sample)

e Then it is possible to recover from the risk neutral density of X (7T) the risk neutral

density of V
e Example: E[(X1 — X()*"| = E[V"¢*"] = po,E[V"]

Global Derivatives 2005, Paris May 25, 2005 Bruno Dupire

28



4. Lower Bound
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Densities of X and V I

e How can we link the densities of the spot and of the quadratic variation VV7? What

information do the prices of vanillas give us on the price of vol derivatives?
e Variance swap based approach: no direct link

e Stochastic vol approach: the calibration to the market gives parameters that deter-

mines the dynamics of V'

e Carr-Lee approach: uncorrelated increments of spot and vol gives perfect reading of

density of X from density of V/
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Spot Conditioning I

e Claims can be on the forward quadratic variation
e Extreme case: f(vr) where vy is the instantaneous variance at T’

o If f is convex,
Elf(vr)] = E[E[f(vr|Xr = K)|] 2 E[f(E[vr| X = K])] = E[f (v10.(K, T))]

Which is a quantity observable from current option prices
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X(T) not normal = V not constant

e Main point: departure from normality for X (7') enforces departure from constancy

for V', or smile non flat = variability of V/
e Carr-Lee: conditionally to a path of vol, X (7T) is gaussian
e Actually, in general, if X is a continuous local martingale
— QV(T) = constant = X (T) is gaussian
— Not: conditional to QV(T') = constant, X(7T') is gaussian
— Not: X(7T) is gaussian = QV (') = constant
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The Main Argument |

o If you sell a convex claim on X and delta hedge it, the risk is mostly on excessive

realized quadratic variation
e Hedge: buy a Call on V!

e Classical delta hedge (at a constant implied vol) gives a final P&L that depends on

the Gammas encountered

e Perform instead a “business time” delta hedge: the payoff is replicated as long as the

quadratic variation is not exhausted
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Delta Hedging I

e Extend f(z) to f(x,v) as the Bachelier (normal BS) price of f for start price x and

variance U:

1 (y—7)?
z,v) =E"f(X)] = e 2 d
o) =B = o [ ey
with £(z,0) = f(z)

e Then, fv(xv V) — %faz:c(xa V)

e \We explore various delta hedging strategies

Global Derivatives 2005, Paris May 25, 2005 Bruno Dupire

34



Calendar Time Delta Hedging I

e Delta hedging with constant vol: P&L depends on the path of the volatility and on
the path of the spot price.

(X o(T 1) = [odX, — o ft + 5 fedQVi,

1
— fdet - ifa::z:(d@‘/o,t — O'th)

e Calendar time delta hedge: replication cost of

T
f(Xo, 0'2T> + %/0 Jrx(dQVh, — OQdu)

e In particular, for o = 0, replication cost of f(X;)

1 T
P05 [ FadQVi
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Business Time Delta Hedging I

e Delta hedging according to the quadratic variation: P&L that depends only on

quadratic variation and spot price

1
df<Xt7 L — Q%,t) — f:cht — fudQ%,t + éfxdeVb,t — fa:dXt

e Hence, for QVor < L
f(Xt7 L — Q%,t) — f XOa / fa: Xw L — Q% u)dXt

And the replicating cost of f(X;, L — QVy,) is f(Xo, L)
f(Xo, L) finances exactly the replication of f until 7: QVy, = L
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Daily P&L Variation

P&L from delta hedging
0.005 : T ! T w
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Tracking Error Comparison

Calender time vs Business time hedging
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Hedge with Variance Call I

e Start from f(Xy, L) and delta hedge f in “business time"

o If VV < L, you have been able to conduct the replication until 7" and your wealth is
f(X7, L=V) > f(X7)

o lf V > L, you “run out of quadratic variation” at 7 < 1". If you then replicate f

with 0 vol until T, extra cost:

/ J/,‘iT int / dQLt (i L)
Whele Mf = SUP / ”(Qj)

e After appropriate delta hedge, f(Xy, L) + %C’all% dominates f(X7) which has a
market price f(X, L/)
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Lower Bound for Variance Call I

° C’X: price of a variance call of strike L. For all f,

Cy > E(f(Xoy L') - f(Xo, L))

e \We maximize the RHS for, say, My <2

e We decompose f as
flx) = f(Xo)+ (x — Xo) f'(Xo) + /f"(K)Vam’llaK(:C)dK

Where Vanillag(x) = K — x if K < X and x — K otherwise.
Then, C] > [ f"(K)(Vang (L") — Vang(L))dK
where C7 is the price of Vanillay/(z) for variance V' and L is the market implied

variance for strike K

Global Derivatives 2005, Paris May 25, 2005 Bruno Dupire

40



Lower Bound Strategy

e Maximum when " =2on A=K : L" > L, 0 elsewhere

e then, f(x) =2 [, Vanillag(x)dK (truncated parabola) and C] > 2 [, (Vang(L")—
Vang(L))dK

0.045

Variance call value graph

0.04 1,
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0.015
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Arbitrage Summary I

e If a Variance Call of strike L and maturity 1" is below its lower bound:
e 1) at t=0,

— Buy the variance call

— Sell all options with implied vol < \/%
e 2) between 0 and T,

— Delta hedge the options in business time

—If 7 < T, then carry on the hedge with 0 vol

e 3) at T, sure again
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5. Conclusion
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Conclusion I

e Skew denotes a correlation between price and vol, which links options on prices and

on vol
e Business time delta hedge links P&L to quadratic variation
e We obtain a lower bound which can be seen as the real intrinsic value of the option

e Uncertainty on V' comes from a spot correlated component (IV) and an uncorrelated
one (TV)

e |t is important to use a model calibrated to the whole smile, to get IV right and to

hedge it properly to lock it in
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