Exploring Volatility Derivatives: New Advances in Modelling

Bruno Dupire Bloomberg L.P. NY

bdupire@bloomberg.net

Global Derivatives 2005, Paris

May 25, 2005

1. Volatility Products

Historical Volatility Products

- Historical variance: $\frac{1}{n} \sum_{i=1}^{n} ln(\frac{S_i}{S_{i-1}})^2$
- OTC products:
 - Volatility swap
 - Variance swap
 - Corridor variance swap
 - Options on volatility/variance
 - Volatility swap again
- Listed Products:
 - Futures on realized variance

Implied Volatility Products

- Definition
 - Implied volatility: input in Black-Scholes formula to recover market price:
 - Old VIX: proxy for ATM implied vol
 - New VIX: proxy for variance swap rate
- OTC products
 - $-\operatorname{Swaps}$ and options
- Listed products
 - VIX Futures contract
 - $-\operatorname{Volax}$

1. Volatility Products: VIX Futures Pricing

Vanilla Options

Simple product, but complex mix of underlying and volatility :

Call option has:

- \bullet Sensitivity to S: Δ
- \bullet Sensitivity to σ : Vega

These sensitivities vary through time and spot, and vol:

Global Derivatives 2005, Paris

Volatility Games

To play pure volatility games (eg bet that S&P vol goes up, no view on the S&P itself)

- Need of constant sensitivity to vol
- Achieved by combining several strikes;
- Ideally achieved by a log profile: (variance swaps)

Global Derivatives 2005, Paris

Log Profile

- Under BS: $dS = \sigma S dW$, $\mathbb{E}[ln \frac{S_T}{S_0}] = -\frac{\sigma^2}{2}T$
- For all S,

$$ln\frac{S}{S_0} = \frac{S - S_0}{S_0} - \int_0^{S_0} \frac{(K - S)^+}{K^2} dK - \int_{S_0}^\infty \frac{(S - K)^+}{K^2} dK$$

• The log profile is decomposed as:

$$\frac{1}{S_0} \text{Futures} - \int_0^{S_0} \frac{P_{K,T}}{K^2} dK - \int_{S_0}^{\infty} \frac{C_{K,T}}{K^2} dK$$

• In practice, finite number of strikes \Rightarrow CBOE definition:

$$VIX_t^2 \equiv \frac{2}{T} \sum \frac{K_{i+1} - K_{i-1}}{2K_i^2} e^{rT} X(K_i, T) - \frac{1}{T} (\frac{F}{K_0} - 1)^2$$

where X is a Put if $K_i < F$, a Call otherwise

Global Derivatives 2005, Paris

Option prices for one maturity

SPX	↓ 1	095	. 45	+8	. 33	1094.97	7/1095.6	58	In	dex C	DMON
At 16:59	Op 108	87.12	Hi 109	5.69 L	o 1087.	12					
Template	e List 🖕		Edit	, (Contract Moi	nths 🖕	Security Lis	st 🖕 <mark>S</mark> I	PX Ind	ex	Go
			Op	tion M	onitor:	S&P 500) INDEX				
Center	1095	.45 Nu	mber o	f Stri	kes 1	-or-	🛛 🗶 from	n Centi	er E	xchang	еC
									Ξ.	omposi	te)
		OIT2						PUIS		0111-001	
Ticker	Strike	Bid	Ask	Last	Volume	Ticker	Strike	Bid	Ask	Last	Volume
SPX 22 MAY 0	4 (Contr	ract Size:	100)			SPX 22 MAY 0	14 (Contr	act Size:	100)		
1) SPQ+EH	1040	53.00	55.00			19) SPQ+QH	1040	1.25	1.75	1.35	3078
2) SPQ+EJ	1050	43.80	45.80	47.00	4385	20) SPQ+QJ	1050	2.00	2,50	2.40	3283
3) SPQ+EL	1060	34.90	36,90	36.00	1	21) SPQ+QL	1060	3.00	3.70	3.20	2382
4) SPQ+EM	1065	30.60	32,60	30.10	1	22) SPQ+QM	1065	3,80	4.50	4.00	795
이 SPQ+EN	1070	26+60	28.60	28.00	10	23) SPQ+QN	1070	4.70	5.40	4.80	2023
6) SPQ+E0	1075	22.70	24.70	23.80	111	24) SPQ+Q0	1075	6.00	6.30	6.30	6859
7) SPQ+EP	1080	18-30	20-90	19.20	117	25) SPQ+QP	1080	7.50	8.08	8.20	1468
8) SPQ+ER	1090	12,90	14.40) 13.00	783	26) SPQ+QR	1090	11.00	11.90) 11.70	1923
9) SPT+ET	1100	8.10		8.70	11438	27) SPT+QT	1100	15-30	16-88	16.90	15701
10) SPT+EB	1110	4.60	5.00	4.90	683	28) SPT+QB	1110	21.40	23.40	22.10	1266
11) SPT+EC	1115	3,30	3.60	3.20	738	29) SPT+QC	1115	25.10	27.10	26.00	24
12) SPT+ED	1120	2.25	2,95	3.00	1239	30) SPT+QD	1120	29.10	31.10	30.00	131
13) SPT+EE	1125	1.65	2.10	1.90	3978	31) SPT+QE	1125	33,30	35.20	31.50	1532
14) SPT+EF	1130	1.15	1.40	1.35	461	32) SPT+QF	1130	37.70	39.70	40.00	34
15) SPT+EG	1135	.65	1.05	.90	1521	33) SPT+QG	1135	42.30	44.30	43.50	12
16) SPT+EH	1140	.50	.60	.65	1548	34) SPT+QH	1140	47.00	49.00	48.30	85
17) SPT+EI	1145	.30	.50	.50	1	35) SPT+QI	1145	51.80	53.80	52.50	25
18) SPT+EJ	1150	.30	.40	.30	6754	36) SPT+QJ	1150	56.70	58.70	54.20	27

Australia 61 2 9777 8600 Brazil 5511 3048 4500 Europe 44 20 7330 7500 Germany 49 69 920410 Hong Kong 852 2977 6000 Japan 81 3 3201 8900 Singapore 65 6212 1000 U.S. 1 212 318 2000 Copyright 2004 Bloomberg L.P. G403-707-1 11-May-04 17:26:05

Global Derivatives 2005, Paris

Perfect Replication of $VIX_{T_1}^2$

We can buy today a PF which gives $VIX_{T_1}^2$ at T_1 : buy T_2 options and sell T_1 options.

Global Derivatives 2005, Paris

Theoretical Pricing of VIX **Futures** F^{VIX} **before launch**

• F_t^{VIX} : price at t of receiving $\sqrt{PF_{T_1}} = VIX_{T_1} = F_{T_1}^{VIX}$ at T_1

$$Ft^{VIX} = \mathbb{E}[\sqrt{PF_T}] \le \sqrt{\mathbb{E}_t[PF_T]} = \sqrt{PF_t} = \text{Upper Bound (UB)}$$

• The difference between both sides depends on the variance of PF (vol vol), which is difficult to estimate.

Global Derivatives 2005, Paris

Pricing of F^{VIX} after launch

Much less transaction costs on F than on PF (by a factor of at least 20)

 \longrightarrow Replicate PF by F instead of F by PF!

$$PF_{T_1} = (F_{T_1}^{VIX})^2 = (F_t^{VIX})^2 + 2\int_t^{T_1} (F_s^{VIX} - F_t^{VIX}) dF_s^{VIX} + QV_{t,T_1}^{F^{VIX}}$$
$$PF_t = \mathbb{E}_t [(F_{t_1}^{VIX})^2] = \mathbb{E}_t [F_{T_1}^{VIX}]^2 + \mathsf{Var}_t [F_{T_1}^{VIX}]$$
$$\implies F_t^{VIX} = \mathbb{E}_t [F_{T_1}^{VIX}] = \sqrt{PF_t - \mathsf{Var}_t [F_{T_1}^{VIX}]} (\leq \sqrt{PF_t} = UB)$$

Global Derivatives 2005, Paris

Bias estimation

$$F_t^{VIX} = \sqrt{UB^2 - \textit{Var}_t[F_{T_1}^{VIX}]}$$

• $Var[F_{T_1}]$ can be estimated by combining the historical volatilities of F and Spot VIX.

• Seemingly circular analysis: F is estimated through its own volatility!

Example : $192 = \sqrt{200^2 - 56^2}$

VIX Fair Value Page

GRAB			Search	- / /	Actions	J Setting	s R	elated Funct Index	ions <mark>Help</mark>
		VI	ΧF	utur	res F	air Va	alue		
Ti	.cker	Expiration	Days	Risk Free	Upper Bound	Volatility of Vi×	Fair Value	Futures Price	Fair - Futures
UX	(X4	11/17/04 12/18/04*	12	<mark>1.65</mark> % 1.74%	<mark>141.99</mark>	<mark>82.42</mark> 2 Historical	140.44	138.20	2.24
UX	(F5	1/19/05 3/19/05*	75	<mark>1.88</mark> % 2.04%	164.05	<mark>66.44</mark> 2 Historical	156.80	152.00	4.80
UX	(G5	2/16/05 3/19/05*	103	<mark>1.97</mark> % 2.04 <mark>%</mark>	<u>164.05</u>	<mark>64.45</mark> 2 Historical	154.73	157.30	-2.57
UX	(K5	5/18/05 6/18/05*	194	<mark>2.15</mark> % 2.19%	<mark>163.50</mark>	<mark>58.87</mark> <mark>2</mark> Historical	149.13	170.00	-20.87
'* Opti	ons of	f these addi	tional	maturi	ties are	used to com	npute th	e Fair Pr	rice of
the co	orrespo	onding futur	es con Fact	tracts.	D Cnot	Fact - C			
		140.	nast Ofi	14	в зрот 0.30 —	-0.24	1 1		
Australi Hong Kor	ia 61 2 97 ng 852 297	777 8600 E 77 6000 Japan 81 3	3razil 551 3 3201 890	1 3048 4500 O Singaporo	D E e 65 6212 10	urope 44 20 7330 ; DO U.S. 1 212 318	7500 2000 Copyr: 6516-7	Germany 49 (ight 2004 Bloc 704–1 05–Nov–(59 920410 omberg L.P. 04 14:32:17

Global Derivatives 2005, Paris

Behind The Scene

	Microsoft Excel - VIX_spreadsheet_v4.xls S File Edit View Insert Format Tools Data Bloomberg Window Help [6] >											
17	» n 🛥 🗖 🗐		B B 🛷 🗠 - (· 6 41 71 40 23	2,	» Arial	• 14 • B	/ u ≣ ≣	三同 \$ %,	*.8 .08 E	A .
J) V	H2 +	=			21 AT KS (7	<u> </u>	• []s	inel ine ll	[· · · ,	.00	
8	E	F	G	Н		J	К	L.	М	N	0	P
1									1070			
2								VXBFast	VXB spot	SPUT-FAST		
3	VIX FUT	URES FAI	RVALUE		2011 T			140.217	140.20	-0.0168		
4			Contractor and the	Bid	Mid	Ask			-	Futures	CALLER C	
5	Futures Ticke	er 🛛	Expiry	1440404	Upper Bound		VOIVOI	Fair Value	Bid	Last Price	ASK	FAIR-PRICE
6	UX1 Index		11/1//2004	123.95	142.33	158.59	60.00%	141.49	136.8	138.2	138.0	3.29
7	UX2 Index		1/19/2005	138.60	164.30	186.49	50.00%	160.14	151	152	152	8.14
8	UX3 Index		2/16/2005	138.60	164.30	186.49	40.00%	160.63	157	198.3	158.2	2.33
9	UX4 Index		5/18/2005	139.50	163.38	184.20	30.00%	159.52	169	170	170	-10.48
11	c.				Variance	swan terr	n structure	Mid	Forward	d Variance term s	structure	Mid
17	Synthetic	Variance	ewan rates		vanance	awap ten	in scructure	Bid	i officia		a a o car o	Bid
12	Synthetic	variance	Swap rates		18.00			-a-Ask	22.00			Ask
13	Expiration	Rid	Mid	Ack	17.00				20.00			
14	14(20(2004	13.05	42.77	44 65	15.00	A summer and			18.00			4
15	10/19/2004	12.00	14.00	14.03	14.00				16.00			J
16	12/10/2004	10.17	14.00	14.93	13.00	-			14.00			
17	1/22/2003	13.31	14.20	14.91	12.00				14.00			
18	5/19/2005	14.47	15.19	10.88	11.00				12.00	-		
19	0/18/2003	10.10	10.07	10.19	10.00				10.00		50 50	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
20	9/1//2000	10.82	10.28	10.72	Nov- Dec-	Jan-Feb-N	Aar-Apr-May-Jun As As As As	- Jul- Aug- Sep-	0.1	ar o o	br-0 lay-0	
21				-	04 04	05 05	03 03 03 03	03 03 03		2	4 2	· . ∢
22	Realized	d Variance	Futures			Implied V	'ol skew		Forward	Variance sw	ap rate	S
23	(3-month)								Expiration	n Bid	Mid	Ask
24	Expiration		Mkt Quote		0.20				11/20/2004	12.39	14.23	15.86
25		bid	mid	as	0.20				12/18/2004	12.39	14.23	15.86
26	12/18/2004	161.00	166.00	171	0.23			_	12/18/2004	11.59	14.40	16.74
27	3/19/2005	231.00	238.50	241				Nov	1/22/2005	11.59	14.40	16.74
28	6/18/2005	266.50	271.00	276	i 0.18			Dec	1/22/2005	13.86	16.43	18.65
29	9/17/2005	288.50	293.50	298		- Brunnik	2 - 12 1 4	V Jan	3/19/2005	13.86	16.43	18.65
30					0.13			- 4	3/19/2005	13.95	16.34	18.42
31	9/18/2004		166.79		0.08		12		6/18/2005	13.95	16.34	18.42
32					1050 1100	0 1150	0 1200	1250	6/18/2005	14.85	17.68	20.11
33						Strik	e		9/17/2005	14.85	17.68	20.11
34				Ļ								
14 4	Main Vix Vix I	Futures / Nov 04 /	(Dec 04 / Jan 05 / Ma	r 05 / June I	05 / Sep 05 /			4				
Calculating Cells: 17%												
	🏨 Start 📔 🥔 🖄 🔣 🔯 📷 🗍 📣 MATL 🖻 Win 🔎 1-BL 🔎 2-BL 💭 3-BL 🗯 4-BL 🙀 4-BL 🙀 Figur 📣 MATL 🔄 Pilm 🧊 Help 🛛 🕅 Micr 🖋 Bloo 🛚 🗟 LVie 🛛 🔅 🕅 🏹 🔮 3:03 PM											

Global Derivatives 2005, Paris

VIX Summary

- VIX Futures is a FWD volatility between future dates T_1 and T_2 .
- Depends on volatilities over T_1 and T_2 .
- Can be locked in by trading options maturities T_1 and T_2 .
- 2 problems :
 - Need to use all strikes (log profile)
 - -Locks in σ^2 , not $\sigma \longrightarrow$ need for convexity adjustment and dynamic hedging.

2. Linking Various Volatility Products

Volatility as an Asset Class: A Rich Playfield

- Options on S(C(S))
- OTC Variance/Vol Swaps (VarS/VolS)

- (Square of) historical vol up to maturity

• Futures on Realised Variance (RV)

 $-\operatorname{Square}$ of historical vol over a future quarter

- Futures on Implied (VIX)
- Options on Variance/Vol Swaps (C(Var S))

Plentiful of Links

RV / VarS

• The pay-off of an OTC Variance Swap can be replicated by a string of Realized Variance Futures:

- From 12/02/04 to maturity 09/17/05, bid-ask in vol: 15.03/15.33
- Spread=.30% in vol, much tighter than the typical 1% from the OTC market

RV / VIX

- Assume that RV and VIX, with prices RV and F are defined on the same future period $[T_1, T_2]$
- \bullet If at T_0 , $RV_0 < F_0^2$ then buy 1 RV Futures and sell 2 F_0 VIX Futures
- At T_1 ,

$$PL_{1} = RV_{1} - RV_{0} - 2F_{0}(F_{1} - F_{0})$$

> $RV_{1} - F_{0}^{2} - 2F_{0}(F_{1} - F_{0})$
= $RV_{1} - F_{1}^{2} + (F_{1} - F_{0})^{2}$

- If $RV_1 < F_1^2$ sell the PF of options for F_1^2 and Delta hedge in S until maturity to replicate RV.
- In practice, maturities differ: conduct the same approach with a string of VIX Futures

Global Derivatives 2005, Paris

3. Volatility Modeling

- Neuberger (90): Quadratic variation can be replicated by delta hedging Log profiles
- Dupire (92): Forward variance synthesized from European options. Risk neutral dynamics of volatility to fit the implied vol term structure. Arbitrage pricing of claims on Spot and on vol
- Heston (93): Parametric stochastic volatility model with quasi closed form solution
- Dupire (96), Derman-Kani (97): non parametric stochastic volatility model with perfect fit to the market (HJM approach)

- Matytsin (99): Parametric stochastic volatility model with jumps to price vol derivatives
- Carr-Lee (03), Friz-Gatheral (04): price and hedge of vol derivatives under assumption of uncorrelated spot and vol increments
- Duanmu (04): price and hedge of vol derivatives under assumption of volatility of variance swap
- Dupire (04): Universal arbitrage bounds for vol derivatives under the sole assumption of continuity

Variance swap based approach (Dupire (92), Duanmu (04))

- V = QV(0,T) is replicable with a delta hedged log profile (parabola profile for absolute quadratic variation)
 - Delta hedge removes first order risk
 - $-\operatorname{Second}$ order risk is unhedged. It gives the quadratic variation
- $\bullet~V$ is tradable and is the underlying of the vol derivative, which can be hedged with a position in V
- \bullet Hedge in V is dynamic and requires assumptions on

$$V_t = \mathbb{E}[V] = QV_{0,t} + \mathbb{E}_t[QV_{t,T}]$$

Stochastic Volatility Models

• Typically model the volatility of volatility (volvol). Popular example: Heston (93)

$$\frac{dS_t}{S_t} = \sqrt{\nu_t} dW_t$$
$$d\nu_t = \kappa(\nu_\infty - \nu_t) dt + \alpha \sqrt{\nu_t} dZ_t$$

- Theoretically: gives unique price of vol derivatives (1st equation can be discarded), but does not provide a natural unique hedge
- Problem: even for a market calibrated model, disconnection between volvol and real cost of hedge.

- A pronounced skew imposes a high spot/vol correlation and hence a high volvol if the vol is high
- As will be seen later, non flat smiles impose a lower bound on the variability of the quadratic variation
- High spot/vol correlation means that options on S are related to options on vol: do not discard 1^{st} equation anymore

From now on, we assume 0 interest rates, no dividends and V is the quadratic variation of the price process (not of its log anymore)

Carr-Lee approach

- Assumes
 - Continuous price
 - $-\ensuremath{\,\text{Uncorrelated}}$ increments of spot and of vol
- Conditionally to a path of vol, X(T) is normally distributed, $= X_0 + \sqrt{V}g$ (g: normal sample)
- \bullet Then it is possible to recover from the risk neutral density of X(T) the risk neutral density of V
- Example: $\mathbb{E}[(X_T X_0)^{2n}] = \mathbb{E}[V^n g^{2n}] = \mu_{2n} \mathbb{E}[V^n]$

Global Derivatives 2005, Paris

4. Lower Bound

- How can we link the densities of the spot and of the quadratic variation V? What information do the prices of vanillas give us on the price of vol derivatives?
- Variance swap based approach: no direct link
- \bullet Stochastic vol approach: the calibration to the market gives parameters that determines the dynamics of V
- Carr-Lee approach: uncorrelated increments of spot and vol gives perfect reading of density of X from density of V

Spot Conditioning

- Claims can be on the forward quadratic variation
- \bullet Extreme case: $f(\nu_T)$ where ν_T is the instantaneous variance at T
- If f is convex,

 $\mathbb{E}[f(\nu_T)] = \mathbb{E}[\mathbb{E}[f(\nu_T | X_T = K)]] \ge \mathbb{E}[f(\mathbb{E}[\nu_T | X_T = K])] = \mathbb{E}[f(\nu_{loc}(K, T))]$

Which is a quantity observable from current option prices

X(T) not normal $\Rightarrow V$ not constant

- Main point: departure from normality for X(T) enforces departure from constancy for V, or smile non flat \Rightarrow variability of V
- \bullet Carr-Lee: conditionally to a path of vol, X(T) is gaussian
- Actually, in general, if X is a continuous local martingale

$$-QV(T) = \text{constant} \Rightarrow X(T)$$
 is gaussian

- Not: conditional to QV(T) = constant, X(T) is gaussian
- $-\operatorname{\mathbf{Not}}:\ X(T) \text{ is gaussian} \Rightarrow QV(T) = \operatorname{\mathbf{constant}}$

The Main Argument

- If you sell a convex claim on X and delta hedge it, the risk is mostly on excessive realized quadratic variation
- Hedge: buy a Call on V!
- Classical delta hedge (at a constant implied vol) gives a final P&L that depends on the Gammas encountered
- Perform instead a "business time" delta hedge: the payoff is replicated as long as the quadratic variation is not exhausted

Delta Hedging

• Extend f(x) to $f(x, \nu)$ as the Bachelier (normal BS) price of f for start price x and variance ν :

$$f(x,\nu) \equiv \mathbb{E}^{x,\nu}[f(X)] \equiv \frac{1}{\sqrt{(2\pi\nu)}} \int f(y) e^{-\frac{(y-x)^2}{2\nu}} dy$$

with f(x,0) = f(x)

- Then, $f_{\nu}(x,\nu) = \frac{1}{2}f_{xx}(x,\nu)$
- We explore various delta hedging strategies

Calendar Time Delta Hedging

• Delta hedging with constant vol: P&L depends on the path of the volatility and on the path of the spot price.

$$df(X_t, \sigma(T-t)) = f_x dX_t - \sigma^2 f_\nu dt + \frac{1}{2} f_{xx} dQV_{0,t}$$
$$= f_x dX_t + \frac{1}{2} f_{xx} (dQV_{0,t} - \sigma^2 dt)$$

• Calendar time delta hedge: replication cost of

$$f(X_0, \sigma^2 T) + \frac{1}{2} \int_0^T f_{xx} (dQV_{0,u} - \sigma^2 du)$$

• In particular, for $\sigma = 0$, replication cost of $f(X_t)$

$$f(X_0) + \frac{1}{2} \int_0^T f_{xx} dQ V_{0,u}$$

Global Derivatives 2005, Paris

Business Time Delta Hedging

• Delta hedging according to the quadratic variation: P&L that depends **only** on quadratic variation and spot price

$$df(X_t, L - QV_{0,t}) = f_x dX_t - f_\nu dQV_{0,t} + \frac{1}{2} f_{xx} dQV_{0,t} = f_x dX_t$$

• Hence, for $QV_{0,T} \leq L$

$$f(X_t, L - QV_{0,t}) = f(X_0, L) + \int_0^t f_x(X_u, L - QV_{0,u}) dX_t$$

And the replicating cost of $f(X_t, L - QV_{0,t})$ is $f(X_0, L)$ $f(X_0, L)$ finances exactly the replication of f until $\tau : QV_{0,\tau} = L$

Global Derivatives 2005, Paris

Daily P&L Variation

Tracking Error Comparison

Global Derivatives 2005, Paris

Hedge with Variance Call

- Start from $f(X_0, L)$ and delta hedge f in "business time"
- If V < L, you have been able to conduct the replication until T and your wealth is $f(X_T, L V) \ge f(X_T)$
- If V > L, you "run out of quadratic variation" at $\tau < T$. If you then replicate f with 0 vol until T, extra cost:

$$\frac{1}{2} \int_{\tau}^{T} f''(X_T) dQ V_t \le \frac{M_f}{2} \int_{\tau}^{T} dQ V_t = \frac{M_f}{2} (V - L)$$

where $M_f \equiv \sup f''(x)$

• After appropriate delta hedge, $f(X_0, L) + \frac{M}{2}Call_L^V$ dominates $f(X_T)$ which has a market price $f(X_0, L^f)$

Global Derivatives 2005, Paris

Lower Bound for Variance Call

• C_L^V : price of a variance call of strike L. For all f,

$$C_L^V \ge \frac{2}{M_f} (f(X_0, L^f) - f(X_0, L))$$

- \bullet We maximize the RHS for, say, $M_f \leq 2$
- We decompose f as

$$f(x) = f(X_0) + (x - X_0)f'(X_0) + \int f''(K)Vanilla_K(x)dK$$

Where $Vanilla_K(x) \equiv K - x$ if $K \leq X_0$ and x - K otherwise. Then, $C_L^V \geq \int f''(K)(Van_K(L^K) - Van_K(L))dK$ where C_L^V is the price of $Vanilla_K(x)$ for variance V and L^K is the market implied variance for strike K

Global Derivatives 2005, Paris

Lower Bound Strategy

- Maximum when f'' = 2 on $A \equiv K : L^K \ge L$, 0 elsewhere
- then, $f(x) = 2 \int_A Vanilla_K(x) dK$ (truncated parabola) and $C_L^V \ge 2 \int_A (Van_K(L^K) Van_K(L)) dK$

Global Derivatives 2005, Paris

Arbitrage Summary

- \bullet If a Variance Call of strike L and maturity T is below its lower bound:
- \bullet 1) at t=0,
 - $-\operatorname{Buy}$ the variance call
 - Sell all options with implied vol $\leq \sqrt{\frac{L}{T}}$
- \bullet 2) between 0 and T,
 - $-\operatorname{Delta}$ hedge the options in business time
 - $\mbox{ If } \tau < T \mbox{, then carry on the hedge with 0 vol}$
- \bullet 3) at T, sure again

5. Conclusion

Conclusion

- Skew denotes a correlation between price and vol, which links options on prices and on vol
- Business time delta hedge links P&L to quadratic variation
- We obtain a lower bound which can be seen as the real intrinsic value of the option
- \bullet Uncertainty on V comes from a spot correlated component (IV) and an uncorrelated one (TV)
- It is important to use a model calibrated to the whole smile, to get IV right and to hedge it properly to lock it in