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1. Volatility Products
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Historical Volatility Products

• Historical variance: 1
n

∑n
i=1 ln( Si

Si−1
)2

• OTC products:

– Volatility swap

– Variance swap

– Corridor variance swap

– Options on volatility/variance

– Volatility swap again

• Listed Products:

– Futures on realized variance
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Implied Volatility Products

• Definition

– Implied volatility: input in Black-Scholes formula to recover market price:

– Old VIX: proxy for ATM implied vol

– New VIX: proxy for variance swap rate

• OTC products

– Swaps and options

• Listed products

– VIX Futures contract

– Volax

Global Derivatives 2005, Paris May 25, 2005 Bruno Dupire

4



1. Volatility Products: V IX Futures Pricing
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Vanilla Options

Simple product, but complex mix of underlying and volatility :

Call option has:

• Sensitivity to S: ∆

• Sensitivity to σ : Vega

These sensitivities vary through time and spot, and vol:
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Volatility Games

To play pure volatility games (eg bet that S&P vol goes up, no view on the S&P itself)

• Need of constant sensitivity to vol

• Achieved by combining several strikes;

• Ideally achieved by a log profile: (variance swaps)

Global Derivatives 2005, Paris May 25, 2005 Bruno Dupire

7



Log Profile

• Under BS: dS = σSdW , E[lnST
S0

] = −σ2

2 T

• For all S,

ln
S

S0
=

S − S0

S0
−

∫ S0

0

(K − S)+

K2
dK −

∫ ∞

S0

(S − K)+

K2
dK

• The log profile is decomposed as:

1

S0
Futures −

∫ S0

0

PK,T

K2
dK −

∫ ∞

S0

CK,T

K2
dK

• In practice, finite number of strikes ⇒ CBOE definition:

V IX2
t ≡ 2

T

∑ Ki+1 − Ki−1

2K2
i

erTX(Ki, T ) − 1

T
(
F

K0
− 1)2

where X is a Put if Ki < F , a Call otherwise
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Option prices for one maturity
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Perfect Replication of V IX2
T1

V IX2
T1

= − 2
δT

pricet(ln
ST1+δT

ST1
)

= pricet[
2

δT
ln

ST1
ST0

− 2ln
ST1+δT

ST0
]

= pricet[PF ]

We can buy today a PF which gives V IX2
T1

at T1 : buy T2 options and sell T1 options.
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Theoretical Pricing of V IX Futures FV IX before launch

• F V IX
t : price at t of receiving

√

PFT1 = V IXT1 = F V IX
T1

at T1

FtV IX = E[
√

PFT ] ≤
√

Et[PFT ] =
√

PFt = Upper Bound (UB)

• The difference between both sides depends on the variance of PF (vol vol), which is

difficult to estimate.
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Pricing of FV IX after launch

Much less transaction costs on F than on PF (by a factor of at least 20)

−→ Replicate PF by F

instead of F by PF!

PFT1 = (F V IX
T1

)2 = (F V IX
t )2 + 2

∫ T1

t

(F V IX
s − F V IX

t )dF V IX
s + QV FV IX

t,T1

PFt = Et[(F
V IX
t1

)2] = Et[F
V IX
T1

]2 + Var t[F
V IX
T1

]

=⇒ F V IX
t = Et[F

V IX
T1

] =
√

PFt − Var t[F V IX
T1

](≤
√

PFt = UB)
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Bias estimation

F V IX
t =

√

UB2 − Var t[F V IX
T1

]

• Var [FT1] can be estimated by combining the historical volatilities of F and Spot VIX.

• Seemingly circular analysis: F is estimated through its own volatility!

Example : 192 =
√

2002 − 562
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VIX Fair Value Page
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Behind The Scene
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V IX Summary

• VIX Futures is a FWD volatility between future dates T1 and T2.

• Depends on volatilities over T1 and T2.

• Can be locked in by trading options maturities T1 and T2.

• 2 problems :

– Need to use all strikes (log profile)

– Locks in σ2, not σ −→ need for convexity adjustment and dynamic hedging.

Global Derivatives 2005, Paris May 25, 2005 Bruno Dupire

16



2. Linking Various Volatility Products
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Volatility as an Asset Class: A Rich Playfield

• Options on S (C(S))

• OTC Variance/Vol Swaps (VarS/VolS)

– (Square of) historical vol up to maturity

• Futures on Realised Variance (RV)

– Square of historical vol over a future quarter

• Futures on Implied (VIX)

• Options on Variance/Vol Swaps (C(Var S))
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Plentiful of Links
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RV / VarS

• The pay-off of an OTC Variance Swap can be replicated by a string of Realized

Variance Futures:

• From 12/02/04 to maturity 09/17/05, bid-ask in vol: 15.03/15.33

• Spread=.30% in vol, much tighter than the typical 1% from the OTC market
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RV / V IX

• Assume that RV and VIX, with prices RV and F are defined on the same future period

[T1 ,T2]

• If at T0 , RV0 < F 2
0 then buy 1 RV Futures and sell 2 F0 VIX Futures

• At T1,

PL1 = RV1 − RV0 − 2F0(F1 − F0)

> RV1 − F 2
0 − 2F0(F1 − F0)

= RV1 − F 2
1 + (F1 − F0)

2

• If RV1 < F 2
1 sell the PF of options for F 2

1 and Delta hedge in S until maturity to

replicate RV.

• In practice, maturities differ: conduct the same approach with a string of VIX Futures
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3. Volatility Modeling
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Volatility Modeling

• Neuberger (90): Quadratic variation can be replicated by delta hedging Log profiles

• Dupire (92): Forward variance synthesized from European options. Risk neutral

dynamics of volatility to fit the implied vol term structure. Arbitrage pricing of

claims on Spot and on vol

• Heston (93): Parametric stochastic volatility model with quasi closed form solution

• Dupire (96), Derman-Kani (97): non parametric stochastic volatility model with

perfect fit to the market (HJM approach)
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Volatility Modeling 2

• Matytsin (99): Parametric stochastic volatility model with jumps to price vol deriv-

atives

• Carr-Lee (03), Friz-Gatheral (04): price and hedge of vol derivatives under assumption

of uncorrelated spot and vol increments

• Duanmu (04): price and hedge of vol derivatives under assumption of volatility of

variance swap

• Dupire (04): Universal arbitrage bounds for vol derivatives under the sole assumption

of continuity
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Variance swap based approach (Dupire (92), Duanmu (04))

• V = QV (0, T ) is replicable with a delta hedged log profile (parabola profile for

absolute quadratic variation)

– Delta hedge removes first order risk

– Second order risk is unhedged. It gives the quadratic variation

• V is tradable and is the underlying of the vol derivative, which can be hedged with

a position in V

• Hedge in V is dynamic and requires assumptions on

Vt = E[V ] = QV0,t + Et[QVt,T ]
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Stochastic Volatility Models

• Typically model the volatility of volatility (volvol). Popular example: Heston (93)

dSt

St

=
√

νtdWt

dνt = κ(ν∞ − νt)dt + α
√

νtdZt

• Theoretically: gives unique price of vol derivatives (1st equation can be discarded),

but does not provide a natural unique hedge

• Problem: even for a market calibrated model, disconnection between volvol and real

cost of hedge.
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Link Skew / Volvol

• A pronounced skew imposes a high spot/vol correlation and hence a high volvol if

the vol is high

• As will be seen later, non flat smiles impose a lower bound on the variability of the

quadratic variation

• High spot/vol correlation means that options on S are related to options on vol: do

not discard 1st equation anymore

From now on, we assume 0 interest rates, no dividends and V is the

quadratic variation of the price process (not of its log anymore)
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Carr-Lee approach

• Assumes

– Continuous price

– Uncorrelated increments of spot and of vol

• Conditionally to a path of vol, X(T ) is normally distributed, = X0+
√

V g (g: normal

sample)

• Then it is possible to recover from the risk neutral density of X(T ) the risk neutral

density of V

• Example: E[(XT − X0)
2n] = E[V ng2n] = µ2nE[V n]
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4. Lower Bound
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Densities of X and V

• How can we link the densities of the spot and of the quadratic variation V ? What

information do the prices of vanillas give us on the price of vol derivatives?

• Variance swap based approach: no direct link

• Stochastic vol approach: the calibration to the market gives parameters that deter-

mines the dynamics of V

• Carr-Lee approach: uncorrelated increments of spot and vol gives perfect reading of

density of X from density of V

Global Derivatives 2005, Paris May 25, 2005 Bruno Dupire

30



Spot Conditioning

• Claims can be on the forward quadratic variation

• Extreme case: f (νT ) where νT is the instantaneous variance at T

• If f is convex,

E[f (νT )] = E[E[f (νT |XT = K)]] ≥ E[f (E[νT |XT = K])] = E[f (νloc(K,T ))]

Which is a quantity observable from current option prices
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X(T ) not normal ⇒ V not constant

• Main point: departure from normality for X(T ) enforces departure from constancy

for V , or smile non flat ⇒ variability of V

• Carr-Lee: conditionally to a path of vol, X(T ) is gaussian

• Actually, in general, if X is a continuous local martingale

– QV (T ) = constant ⇒ X(T ) is gaussian

– Not: conditional to QV (T ) = constant, X(T ) is gaussian

– Not: X(T ) is gaussian ⇒ QV (T ) = constant
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The Main Argument

• If you sell a convex claim on X and delta hedge it, the risk is mostly on excessive

realized quadratic variation

• Hedge: buy a Call on V !

• Classical delta hedge (at a constant implied vol) gives a final P&L that depends on

the Gammas encountered

• Perform instead a “business time” delta hedge: the payoff is replicated as long as the

quadratic variation is not exhausted
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Delta Hedging

• Extend f (x) to f (x, ν) as the Bachelier (normal BS) price of f for start price x and

variance ν:

f (x, ν) ≡ E
x,ν[f (X)] ≡ 1

√

(2πν)

∫

f (y)e−
(y−x)2

2ν dy

with f (x, 0) = f (x)

• Then, fν(x, ν) = 1
2fxx(x, ν)

• We explore various delta hedging strategies
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Calendar Time Delta Hedging

• Delta hedging with constant vol: P&L depends on the path of the volatility and on

the path of the spot price.

df(Xt, σ(T − t)) = fxdXt − σ2fνdt +
1

2
fxxdQV0,t

= fxdXt +
1

2
fxx(dQV0,t − σ2dt)

• Calendar time delta hedge: replication cost of

f (X0, σ
2T ) +

1

2

∫ T

0

fxx(dQV0,u − σ2du)

• In particular, for σ = 0, replication cost of f (Xt)

f (X0) +
1

2

∫ T

0

fxxdQV0,u
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Business Time Delta Hedging

• Delta hedging according to the quadratic variation: P&L that depends only on

quadratic variation and spot price

df(Xt, L − QV0,t) = fxdXt − fνdQV0,t +
1

2
fxxdQV0,t = fxdXt

• Hence, for QV0,T ≤ L

f (Xt, L − QV0,t) = f (X0, L) +

∫ t

0

fx(Xu, L − QV0,u)dXt

And the replicating cost of f (Xt, L − QV0,t) is f (X0, L)

f (X0, L) finances exactly the replication of f until τ : QV0,τ = L

Global Derivatives 2005, Paris May 25, 2005 Bruno Dupire

36



Daily P&L Variation
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Tracking Error Comparison
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Hedge with Variance Call

• Start from f (X0, L) and delta hedge f in “business time”

• If V < L, you have been able to conduct the replication until T and your wealth is

f (XT , L − V ) ≥ f (XT )

• If V > L, you “run out of quadratic variation” at τ < T . If you then replicate f

with 0 vol until T , extra cost:

1

2

∫ T

τ

f ′′(XT )dQVt ≤
Mf

2

∫ T

τ

dQVt =
Mf

2
(V − L)

where Mf ≡ sup f ′′(x)

• After appropriate delta hedge, f (X0, L) + M
2 CallVL dominates f (XT ) which has a

market price f (X0, L
f)
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Lower Bound for Variance Call

• CV
L : price of a variance call of strike L. For all f ,

CV
L ≥ 2

Mf

(f (X0, L
f) − f (X0, L))

• We maximize the RHS for, say, Mf ≤ 2

• We decompose f as

f (x) = f (X0) + (x − X0)f
′(X0) +

∫

f ′′(K)V anillaK(x)dK

Where V anillaK(x) ≡ K − x if K ≤ X0 and x − K otherwise.

Then, CV
L ≥

∫

f ′′(K)(V anK(LK) − V anK(L))dK

where CV
L is the price of V anillaK(x) for variance V and LK is the market implied

variance for strike K
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Lower Bound Strategy

• Maximum when f ′′ = 2 on A ≡ K : LK ≥ L, 0 elsewhere

• then, f (x) = 2
∫

A
V anillaK(x)dK (truncated parabola) and CV

L ≥ 2
∫

A
(V anK(LK)−

V anK(L))dK
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Arbitrage Summary

• If a Variance Call of strike L and maturity T is below its lower bound:

• 1) at t=0,

– Buy the variance call

– Sell all options with implied vol ≤
√

L
T

• 2) between 0 and T ,

– Delta hedge the options in business time

– If τ < T , then carry on the hedge with 0 vol

• 3) at T, sure again
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5. Conclusion
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Conclusion

• Skew denotes a correlation between price and vol, which links options on prices and

on vol

• Business time delta hedge links P&L to quadratic variation

• We obtain a lower bound which can be seen as the real intrinsic value of the option

• Uncertainty on V comes from a spot correlated component (IV) and an uncorrelated

one (TV)

• It is important to use a model calibrated to the whole smile, to get IV right and to

hedge it properly to lock it in
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