Exponential Distribution Using Excel

In this tutorial, we are going to use Excel to calculate problems using the exponential distribution.

We will solve a problem with data that is distributed exponentially with a mean of 0.2 , and we want to know the probability that X will be less than 10 or lies between 5 and 10 .

The first thing we're going to do is set up a table for mean, 1 divided by the mean, probability of X is less than or equal to 10 , and the probability of X lies between 5 and 10.

Here we have set up a Microsoft Excel file showing a table were we input the mean, which in this case is equal to 0.2 and 1 over the mean ($1 / \mathrm{Mean}$), which we will put a formula in for later; then we will have a place to put our formulas for the probability that X is less than or equal to 10 and the probability that X lies between 5 and 10.

$84 \sim$			
	A	B	C
1	Exponential Distribution		
2			
3	Mean $=\lambda$	0.2	
4	$1 /$ Mean $=1 / \lambda$		
5			
6	$P(X \leq 10)$		
7	$P(5 \leq X \leq 10)$		
8			

The next thing you want to do is set up a table area with formulas for $1 /$ Mean, the probability that $X \leq 10$, and the probability that X lies between 5 and $10(5 \leq X \leq 10)$.

Now on our spreadsheet in cell B4, we will enter formula $=1 / \mathrm{B} 3$ and click the checkmark icon next to the f_{x} button or hit Enter on the keyboard; that will give us 1 divided by the mean, which gives us 5 in this case.

$84 \quad \cdot\left(-\quad f_{x}=1 / 83\right.$			
	A	B	C
1	Exponential Distribution		
2			
3	Mean $=\lambda$	0.2	
4	$1 /$ Mean $=1 / \lambda$	5	
5			
6	$P(X \leq 10)$		
7	$P(5 \leq X \leq 10)$		
8			

For the probability that $\mathrm{X} \leq 10$ we are going to use the EXPON.DIST. To do so, select cell B6 and click the function button (f_{x}).

${ }^{86}$ - -			
	A	B	C
1	Exponential Distribution 2. Click the function		
2		button, f_{x}.	
3	Mean $=\lambda$	0.2	
4	$1 /$ Mean $=1 / \lambda$	5	
5			
6	$\mathrm{P}(\mathrm{X} \leq 10)$		
7	$P(5 \leq X \leq 10)$	1	
8	1. Select cell B6.		

An Insert Function box will display. Select Statistical from the dropdown menu next to "Or select a category:", and then scroll down under "Select a function" to locate and select EXPON.DIST as shown here.

Now click OK. The Function Arguments window will appear as shown on the next page.

ExPON.DIST $\quad \bullet\left(-x \checkmark f_{x} \mid=\right.$ ExPON.DIST()						
1	A	B	C	D	E	F
1	Exponential Distribution					
2						
3	Mean $=\lambda$		0.2			
4	$1 /$ Mean $=1 / \lambda$		5			
5			Function Arguments			(8) ${ }^{-3}$
6	$P(X \leq 10)$	=EXPON				
7	$P(5 \leq X \leq 10)$					
8						
9			Returs the exponentiad distriution.	x is the value of the finction, a nomegegive eumber.		
10						
11			Formuar esult =			
12			Hepon tis finction			Cancel
13						

Now we will enter our values for X , Lambda, and Cumulative as shown below. Our X will be 10, Lambda is going to be cell B3, and we are going to choose Cumulative is equal to true.

Click OK, and that will give us a probability of about .865. If you see \#\#\#\#\#\#\#\# in cell B6, just simply widen the B column to see the result.

B6 \quad ($f_{x}=$ EXPON.OIST(10,B3,TRUE)			
	A	B	C
1	Exponential Distribution		
2			
3	Mean $=\lambda$	0.2	
4	$1 /$ Mean $=1 / \lambda$	5	
5			
6	$P(X \leq 10)$	0.8646647168	
7	$P(5 \leq X \leq 10)$		
8			

Now to calculate the probability that X lies between 5 and $10(5 \leq X \leq 10)$, we are going to have to subtract one exponential distribution from another. We will once again use the EXPON.DIST function.

We are going to do it for 10, Lambda is going to be cell B3, Cumulative is true, and then were going to subtract EXPON.DIST for 5 , Lambda is cell B3, Cumulative is true.

To do this, simply type =EXPON.DIST(10, B3, TRUE) - EXPON.DIST(5, B3, TRUE) into cell B7 and hit the Enter key or click the checkmark icon. That will give us the probability of X lying between 5 and 10: 0.2325441579 .

Click here to download the completed spreadsheet so you can compare it to yours.
In summary, the first thing we did was set up the table for entering mean, probability that $X \leq 10$, and the probability that X lies between 5 and $10(5 \leq X \leq 10)$. Then we set up the table area with formulas for $1 /$ Mean, the probability that $X \leq 10$, and the probability that $5 \leq X \leq 10$. Once we entered those, we were able to view the results in the table.

This concludes the tutorial on using Excel to calculate problems using the exponential distribution.

