Exponentials and logarithms, Mixed Exercise 14

1 a $y=2^{-x}=\left(2^{-1}\right)^{x}=\left(\frac{1}{2}\right)^{x}$

b $y=5 \mathrm{e}^{x}-1$
The graph is a translation $b y$ the vector $\binom{0}{-1}$ and a vertical stretch scale factor 5 of
the graph $y=\mathrm{e}^{x}$.
The graph crosses the y-axis when $x=0$.
$y=5 \times \mathrm{e}^{0}-1$
$y=4$
The graph crosses the y-axis at $(0,4)$.
Asymptote is at $y=-1$.

c $y=\ln x$

2 a $\log _{a}\left(p^{2} q\right)=\log _{a}\left(p^{2}\right)+\log _{a} q$

$$
=2 \log _{a} p+\log _{a} q
$$

2 b $\log _{a}(p q)=\log _{a} p+\log _{a} q$
So

$$
\begin{align*}
& \log _{a} p+\log _{a} q=5 \tag{1}\\
& 2 \log _{a} p+\log _{a} q=9 \tag{2}
\end{align*}
$$

Subtract (1) from (2):
$\log _{a} p=4$
So $\log _{a} q=1$

3 a $p=\log _{q} 16$

$$
\begin{aligned}
& =\log _{q}\left(2^{4}\right) \\
& =4 \log _{q} 2
\end{aligned}
$$

$\log _{q} 2=\frac{p}{4}$
b $\log _{q+1}(8 q)=\log _{q} 8+\log _{q} q$

$$
\begin{aligned}
& =\log _{q}\left(2^{3}\right)+\log _{q} q \\
& =3 \log _{q} 2+\log _{q} q \\
& =3 \times \frac{p}{4}+1 \\
& =\frac{3 p}{4}+1
\end{aligned}
$$

4 a $4^{x}=23$
$\log _{4} 23=x$
$x=2.26$
b $\quad 7^{(2 x+1)}=1000$
$\log _{7} 1000=2 x+1$

$$
\begin{aligned}
2 x & =\log _{7} 1000-1 \\
x & =\frac{1}{2} \log _{7} 1000-\frac{1}{2} \\
& =1.27
\end{aligned}
$$

c $10^{x}=6^{x+2}$
$\log \left(10^{x}\right)=\log \left(6^{x+2}\right)$
$x \log 10=(x+2) \log 6$
$x \log 10-x \log 6=2 \log 6$
$x(\log 10-\log 6)=2 \log 6$
$x=\frac{2 \log 6}{\log 10-\log 6}$
$=7.02$

5 a $\quad 4^{x}-2^{x+1}-15=0$

$$
2^{2 x}-2 \times 2^{x}-15=0
$$

$\left(2^{x}\right)^{2}-2 \times 2^{x}-15=0$
Let $u=2^{x}$
$u^{2}-2 u-15=0$
b $(u+3)(u-5)=0$
So $u=-3$ or $u=5$
If $u=-3,2^{x}=-3$. No solution.
If $u=5,2^{x}=5$
$\log 2^{x}=\log 5$
$x \log 2=\log 5$
$x=\frac{\log 5}{\log 2}$

$$
=2.32(2 \mathrm{~d} . \mathrm{p} .)
$$

$6 \quad \log _{2}(x+10)-\log _{2}(x-5)=4$

$$
\log _{2}\left(\frac{x+10}{x-5}\right)=4
$$

$$
\frac{x+10}{x-5}=2^{4}
$$

$$
16 x-80=x+10
$$

$$
15 x=90
$$

$$
x=6
$$

7 a $y=\mathrm{e}^{-x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\mathrm{e}^{-x}$
b $y=\mathrm{e}^{11 x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=11 \mathrm{e}^{11 x}$
c $y=6 \mathrm{e}^{5 x}$
$\frac{d y}{d x}=5 \times 6 \mathrm{e}^{5 x}=30 \mathrm{e}^{5 x}$

8 a $\ln (2 x-5)=8 \quad($ inverse of $\ln)$

$$
\begin{aligned}
2 x-5 & =\mathrm{e}^{8} \quad(+5) \\
2 x & =\mathrm{e}^{8}+5 \quad(\div 2) \\
x & =\frac{\mathrm{e}^{8}+5}{2}
\end{aligned}
$$

$8 \quad \mathbf{b} \quad \mathrm{e}^{4 x}=5 \quad$ (inverse of e)

$$
\begin{aligned}
& 4 x=\ln 5 \quad(\div 4) \\
& x=\frac{\ln 5}{4}
\end{aligned}
$$

c $\quad 24-\mathrm{e}^{-2 x}=10 \quad\left(+\mathrm{e}^{-2 x}\right)$
$24=10+\mathrm{e}^{-2 x} \quad(-10)$
$14=\mathrm{e}^{-2 x} \quad$ (inverse of e$)$
$\ln (14)=-2 x \quad(\div-2)$
$-\frac{1}{2} \ln (14)=x$
$x=-\frac{1}{2} \ln (14)$
d $\ln (x)+\ln (x-3)=0$
$\ln (x(x-3))=0$
$x(x-3)=\mathrm{e}^{0}$
$x(x-3)=1$
$x^{2}-3 x-1=0$
$x=\frac{3 \pm \sqrt{9+4}}{2}$
$=\frac{3 \pm \sqrt{13}}{2}$
$=\frac{3+\sqrt{13}}{2}$
(x cannot be negative because of initial equation)
e $\quad \mathrm{e}^{x}+\mathrm{e}^{-x}=2$
$\mathrm{e}^{x}+\frac{1}{\mathrm{e}^{x}}=2 \quad\left(\times \mathrm{e}^{x}\right)$
$\left(\mathrm{e}^{x}\right)^{2}+1=2 \mathrm{e}^{x}$
$\left(e^{x}\right)^{2}-2 e^{x}+1=0$
$\left(\mathrm{e}^{x}-1\right)^{2}=0$
$\mathrm{e}^{x}=1$
$x=\ln 1=0$
f $\ln 2+\ln x=4$
$\ln 2 x=4$
$2 x=e^{4}$
$x=\frac{\mathrm{e}^{4}}{2}$
$9 P=100+850 \mathrm{e}^{-\frac{t}{2}}$
a New price is when $t=0$
Substitute $t=0$ into $P=100+850 \mathrm{e}^{-\frac{t}{2}}$ to give:

$$
\begin{aligned}
P & =100+850 \mathrm{e}^{-\frac{0}{2}} \quad\left(\mathrm{e}^{0}=1\right) \\
& =100+850=950
\end{aligned}
$$

The new price is $£ 950$
b After 3 years $t=3$.
Substitute $t=3$ into $P=100+850 \mathrm{e}^{-\frac{t}{2}}$ to give:
$P=100+850 \mathrm{e}^{-\frac{3}{2}}=289.66$
Price after 3 years is $£ 290$ (to nearest $£$)
c It is worth less than $£ 200$ when $P<200$
Substitute $P=200$ into $P=100+850 \mathrm{e}^{-\frac{t}{2}}$ to give:

$$
\begin{aligned}
200 & =100+850 \mathrm{e}^{-\frac{t}{2}} \\
100 & =850 \mathrm{e}^{-\frac{t}{2}} \\
\frac{100}{850} & =\mathrm{e}^{-\frac{t}{2}} \\
\ln \left(\frac{100}{850}\right) & =-\frac{t}{2} \\
t & =-2 \ln \left(\frac{100}{850}\right) \\
t & =4.28
\end{aligned}
$$

It is worth less than $£ 200$ after 4.28 years.
d As $t \rightarrow \infty, \mathrm{e}^{-\frac{t}{2}} \rightarrow 0$
Hence, $P \rightarrow 100+850 \times 0=100$
The computer will be worth $£ 100$ eventually.
e

9 f A good model. The computer will always be worth something.

10 a

Q has y-coordinate $\mathrm{e}^{\frac{1}{2} \ln 16}=\mathrm{e}^{\ln 16 \frac{1}{2}}=16^{\frac{1}{2}}=4$
P has y-coordinate $\mathrm{e}^{\frac{1}{2} \ln 4}=\mathrm{e}^{\ln 4 \frac{1}{2}}=4^{\frac{1}{2}}=2$
Gradient of the line $P Q=\frac{\text { change in } y}{\text { change in } x}$

$$
\begin{aligned}
& =\frac{4-2}{\ln 16-\ln 4} \\
& =\frac{2}{\ln \left(\frac{16}{4}\right)} \\
& =\frac{2}{\ln 4}
\end{aligned}
$$

Using $y=m x+c$, the equation of the line $P Q$ is:
$y=\frac{2}{\ln 4} x+c$
$(\ln 4,2)$ lies on the line so
$y=\frac{2}{\ln 4} x+c$
$2=2+c$
$c=0$
Equation of $P Q$ is $y=\frac{2 x}{\ln 4}$
b The line passes through the origin as $c=0$.
c Length from $(\ln 4,2)$ to $(\ln 16,4)$ is

$$
\begin{aligned}
& \sqrt{(\ln 16-\ln 4)^{2}+(4-2)^{2}} \\
= & \sqrt{\left(\ln \frac{16}{4}\right)^{2}+2^{2}} \\
= & \sqrt{(\ln 4)^{2}+4}=2.43
\end{aligned}
$$

11 a $\quad T=55 \mathrm{e}^{-\frac{t}{8}}+20$
t is the time in minutes and time cannot be negative as you can't go back in time.
b The starting temperature of the cup of tea is when $t=0$

$$
T=55 \mathrm{e}^{-\frac{0}{8}}+20=75^{\circ} \mathrm{C}
$$

c When $T=50^{\circ} \mathrm{C}$

$$
55 \mathrm{e}^{-\frac{t}{8}}+20=50
$$

$$
55 \mathrm{e}^{-\frac{t}{8}}=30
$$

$\mathrm{e}^{-\frac{t}{8}}=\frac{30}{55}$
$\ln \left(\mathrm{e}^{-\frac{t}{8}}\right)=\ln \left(\frac{30}{55}\right)$
$-\frac{t}{8}=\ln \left(\frac{30}{55}\right)$
$t=-8 \ln \left(\frac{30}{55}\right)$
$=4.849$...
≈ 5 minutes
d The exponential term will always be positive, so the overall temperature will be greater than $20^{\circ} \mathrm{C}$.

12 a As $S=a V^{b}$
$\log S=\log \left(a V^{b}\right)$
$\log S=\log a+\log \left(V^{b}\right)$
$\log S=\log a+b \log V$
b

$\log S$	1.26	1.70	2.05	2.35	2.50
$\log V$	0.86	1.53	2.05	2.49	2.72

c

$\mathbf{1 2 ~ d} b$ is the gradient $=\frac{2.72-0.86}{2.5-1.26}$

$$
=\frac{1.86}{1.24}=1.5
$$

Intercept $=\log a$
$\log a=-1.05$
$10^{-1.05}=a$
$a=0.0891 \ldots$
$a \approx 0.09$
13 a $k t$ must be negative as the model is for decay, not growth. As t (for time) is always positive, k must be negative.
b

c $R=140 \mathrm{e}^{k t}$
When $R=70$ and $t=30$

$$
\begin{aligned}
& 70=140 \mathrm{e}^{30 k} \\
& \frac{1}{2}=\mathrm{e}^{30 k} \\
& \ln \frac{1}{2}=\ln \left(\mathrm{e}^{30 k}\right) \\
&=30 k \\
& k=\frac{1}{30} \ln \frac{1}{2} \\
&= \frac{1}{30} \ln \left(2^{-1}\right) \\
&=-\frac{1}{30} \ln 2
\end{aligned}
$$

So $c=-\frac{1}{30}$
14a $\quad V=\mathrm{e}^{0.4 x}-1$
When $x=5$
$V=\mathrm{e}^{0.4 \times 5}-1$
$=e^{2}-1$
$=7.389 \ldots-1$
$=6.389 \ldots$
≈ 6.4 million views
b $V=\mathrm{e}^{0.4 x}-1$
$\frac{\mathrm{d} V}{\mathrm{~d} x}=0.4 \mathrm{e}^{0.4 x}$

14 c When $x=100$

$$
\begin{aligned}
\frac{\mathrm{d} V}{\mathrm{~d} x} & =0.4 \mathrm{e}^{0.4 \times 100} \\
& =0.4 \mathrm{e}^{40} \\
& =9.415 \ldots \times 10^{16} \text { million }
\end{aligned}
$$

So 9.4×10^{22} new views per day
d This number is greater than the population of the world, so the model is not valid after 100 days.

15 a $M=\frac{2}{3} \log _{10}(S)-10.7$
When $S=2.24 \times 10^{22}$

$$
\begin{aligned}
M & =\frac{2}{3} \log _{10}\left(2.24 \times 10^{22}\right)-10.7 \\
& =\frac{2}{3}\left(\log _{10} 2.24+\log 10^{22}\right)-10.7 \\
& =\frac{2}{3}(0.3502 \ldots+22)-10.7 \\
& =4.2
\end{aligned}
$$

b i When $M=6$

$$
\begin{aligned}
& 6=\frac{2}{3} \log _{10}(S)-10.7 \\
& 16.7=\frac{2}{3} \log _{10}(S) \\
& 25.05=\log _{10}(S) \\
& 10^{25.05}=S \\
& S=1.12 \times 10^{25} \text { dyne cm }
\end{aligned}
$$

ii When $M=7$

$$
\begin{aligned}
& 7=\frac{2}{3} \log _{10}(S)-10.7 \\
& 17.7=\frac{2}{3} \log _{10}(S) \\
& 26.55=\log _{10}(S) \\
& 10^{26.55}=S \\
& S=3.55 \times 10^{26} \text { dyne cm }
\end{aligned}
$$

c $\frac{3.55 \times 10^{26}}{1.12 \times 10^{25}}=31.6 \ldots$

$$
\approx 32 \text { times }
$$

16 a The student goes wrong in line 2, where the subtraction should be a division (as in line 2 below).

16 b The full working should have looked like this:

$$
\begin{gathered}
\log _{2} x-\frac{1}{2} \log _{2}(x+1)=1 \\
\log _{2} x-\log _{2}\left((x+1)^{\frac{1}{2}}\right)=1 \\
\log _{2} x-\log _{2}(\sqrt{x+1})=1 \\
\log _{2} \frac{x}{\sqrt{x+1}}=1 \\
\frac{x}{\sqrt{x+1}}=2^{1} \\
x=2 \sqrt{x+1} \quad \text { (square) } \\
x^{2}=4 x+4 \\
x^{2}-4 x-4=0 \quad(\text { use quadratic formula) } \\
x=2+2 \sqrt{2} \\
(x \neq 2-2 \sqrt{2} \text { because log cannot take } \\
\text { negative input values) }
\end{gathered}
$$

Challenge

a $y=9^{x}=\left(3^{2}\right)^{x}=3^{2 x}$
So $\log _{3} y=2 x$
b As $y=9^{x}$
$\log _{9} y=\log _{9}\left(9^{x}\right)$
$\log _{9} y=x \log _{9} 9$
$\log _{9} y=1$, so $\log _{9} y=x$
$2 x=2 \log _{9} y$ and from $\mathbf{a}, 2 x=\log _{3} y$
So $\log _{3} y=2 \log _{9} y$

$$
\log _{3} y=\log _{9} y^{2}
$$

c Using $\log _{3} y=\log _{9} y^{2}$

$$
\begin{aligned}
\log _{3}(2-3 x) & =\log _{9}(2-3 x)^{2} \\
& =\log _{9}\left(4-12 x+9 x^{2}\right)
\end{aligned}
$$

So $\log _{9}\left(4-12 x+9 x^{2}\right)=\log _{9}\left(6 x^{2}-19 x+2\right)$
Therefore $4-12 x+9 x^{2}=6 x^{2}-19 x+2$

$$
\begin{aligned}
3 x^{2}+7 x+2 & =0 \\
(3 x+1)(x+2) & =0 \\
x=-\frac{1}{3} \text { or } x & =-2
\end{aligned}
$$

$17 \quad 9^{x}-11\left(3^{x}\right)+18=0$
$\left(3^{x}\right)^{2}-11\left(3^{x}\right)+18=0$
Let $u=3^{x}$

$$
\begin{aligned}
& u^{2}-11 u+18=0 \\
& (u-9)(u-2)=0
\end{aligned}
$$

$$
u=2 \text { or } u=9
$$

$$
\text { When } u=9
$$

$$
\begin{aligned}
3^{x} & =9 \\
\ln \left(3^{x}\right) & =\ln 9 \\
x & =\frac{\ln 9}{\ln 3}=2
\end{aligned}
$$

When $u=2$

$$
\begin{aligned}
3^{x} & =2 \\
\ln \left(3^{x}\right) & =\ln 2 \\
x & =\frac{\ln 2}{\ln 3}=0.631(3 \text { s.f. })
\end{aligned}
$$

$$
\text { So } x=2 \text { or } x=0.631 \text { (3 s.f.) }
$$

