Exponentials and logarithms, Mixed Exercise 14

1 a $y = 2^{-x} = (2^{-1})^x = (\frac{1}{2})^x$

b $y = 5e^{x} - 1$ The graph is a translation by the vector $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ and a vertical stretch scale factor 5 of the graph $y = e^{x}$. The graph crosses the y-axis when x = 0. $y = 5 \times e^{0} - 1$ y = 4The graph crosses the y-axis at (0, 4)

The graph crosses the *y*-axis at (0, 4). Asymptote is at y = -1.

c $y = \ln x$

2 **a** $\log_a(p^2q) = \log_a(p^2) + \log_a q$ = $2\log_a p + \log_a q$

2 **b**
$$\log_a (pq) = \log_a p + \log_a q$$

So
 $\log_a p + \log_a q = 5$ (1)
 $2\log_a p + \log_a q = 9$ (2)
Subtract (1) from (2):
 $\log_a p = 4$
So $\log_a q = 1$

3 a
$$p = \log_q 16$$

 $= \log_q (2^4)$
 $= 4 \log_q 2$
 $\log_q 2 = \frac{p}{4}$

b
$$\log_{q+1}(8q) = \log_q 8 + \log_q q$$

 $= \log_q (2^3) + \log_q q$
 $= 3\log_q 2 + \log_q q$
 $= 3 \times \frac{p}{4} + 1$
 $= \frac{3p}{4} + 1$

4 a
$$4^{x} = 23$$

 $\log_{4} 23 = x$
 $x = 2.26$

- **b** $7^{(2x+1)} = 1000$ $\log_7 1000 = 2x + 1$ $2x = \log_7 1000 - 1$ $x = \frac{1}{2}\log_7 1000 - \frac{1}{2}$ = 1.27
- c $10^{x} = 6^{x+2}$ $\log (10^{x}) = \log (6^{x+2})$ $x \log 10 = (x+2) \log 6$ $x \log 10 - x \log 6 = 2 \log 6$ $x (\log 10 - \log 6) = 2 \log 6$ $x = \frac{2 \log 6}{\log 10 - \log 6}$ = 7.02

Pure Mathematics Year 1/AS

5 a $4^{x} - 2^{x+1} - 15 = 0$ $2^{2x} - 2 \times 2^{x} - 15 = 0$ $(2^{x})^{2} - 2 \times 2^{x} - 15 = 0$ Let $u = 2^{x}$ $u^{2} - 2u - 15 = 0$

b
$$(u+3)(u-5) = 0$$

So $u = -3$ or $u = 5$
If $u = -3$, $2^x = -3$. No solution.
If $u = 5$, $2^x = 5$
 $\log 2^x = \log 5$
 $x \log 2 = \log 5$
 $x = \frac{\log 5}{\log 2}$
 $= 2.32(2 \text{ d.p.})$

6
$$\log_2(x+10) - \log_2(x-5) = 4$$

 $\log_2\left(\frac{x+10}{x-5}\right) = 4$
 $\frac{x+10}{x-5} = 2^4$
 $16x-80 = x+10$
 $15x = 90$
 $x = 6$

7 a
$$y = e^{-x}$$

$$\frac{dy}{dx} = -e^{-x}$$

b
$$y = e^{11x}$$

 $\frac{dy}{dx} = 11e^{11x}$

c
$$y = 6e^{5x}$$

$$\frac{dy}{dx} = 5 \times 6e^{5x} = 30e^{5x}$$

8 a $\ln(2x-5) = 8$ (inverse of ln) $2x-5 = e^8$ (+5) $2x = e^8 + 5$ (÷2) $x = \frac{e^8 + 5}{2}$

8 **b**
$$e^{4x} = 5$$
 (inverse of e)
 $4x = \ln 5$ (÷4)
 $x = \frac{\ln 5}{4}$
c $24 - e^{-2x} = 10$ (+ e^{-2x})
 $24 = 10 + e^{-2x}$ (-10)
 $14 = e^{-2x}$ (inverse of e)
ln (14) = -2x (÷ -2)
 $-\frac{1}{2}\ln(14) = x$
 $x = -\frac{1}{2}\ln(14)$
d ln (x) + ln (x-3) = 0
ln (x(x-3)) = 0
 $x(x-3) = e^{0}$
 $x(x-3) = 1$
 $x^{2} - 3x - 1 = 0$
 $x = \frac{3 \pm \sqrt{9 + 4}}{2}$
 $= \frac{3 \pm \sqrt{13}}{2}$
(x cannot be negative because of initial equation)

e
$$e^{x} + e^{-x} = 2$$

 $e^{x} + \frac{1}{e^{x}} = 2$ (× e^{x})
 $(e^{x})^{2} + 1 = 2e^{x}$
 $(e^{x})^{2} - 2e^{x} + 1 = 0$
 $(e^{x} - 1)^{2} = 0$
 $e^{x} = 1$
 $x = \ln 1 = 0$
f $\ln 2 + \ln x = 4$
 $\ln 2x = 4$
 $2x = e^{4}$
 $x = \frac{e^{4}}{2}$

- **9** $P = 100 + 850 e^{-\frac{t}{2}}$
 - **a** New price is when t = 0Substitute t = 0 into $P = 100 + 850e^{-\frac{t}{2}}$ to

give: $P = 100 + 850e^{-\frac{0}{2}}$ ($e^0 = 1$) = 100 + 850 = 950The new price is £950

b After 3 years t = 3.

Substitute t = 3 into $P = 100 + 850e^{-\frac{t}{2}}$ to give:

$$P = 100 + 850e^{\frac{1}{2}} = 289.66$$

Price after 3 years is £290 (to nearest £)

c It is worth less than £200 when P < 200

Substitute P = 200 into $P = 100 + 850e^{-\frac{t}{2}}$ to give:

$$200 = 100 + 850e^{-\frac{t}{2}}$$
$$100 = 850e^{-\frac{t}{2}}$$
$$\frac{100}{850} = e^{-\frac{t}{2}}$$
$$\ln\left(\frac{100}{850}\right) = -\frac{t}{2}$$
$$t = -2 \ln\left(\frac{100}{850}\right)$$
$$t = 4.28$$

It is worth less than £200 after 4.28 years.

d As $t \to \infty$, $e^{\frac{t}{2}} \to 0$ Hence, $P \to 100 + 850 \times 0 = 100$ The computer will be worth £100 eventually.

e

9 f A good model. The computer will always be worth something.

- $y = \frac{2}{\ln 4}x + c$ (ln 4, 2) lies on the line so $y = \frac{2}{\ln 4}x + c$ 2 = 2 + cc = 0Equation of PQ is $y = \frac{2x}{\ln 4}$
- **b** The line passes through the origin as c = 0.

c Length from (ln 4, 2) to (ln 16, 4) is

$$\sqrt{(\ln 16 - \ln 4)^2 + (4 - 2)^2}$$

 $= \sqrt{(\ln \frac{16}{4})^2 + 2^2}$
 $= \sqrt{(\ln 4)^2 + 4} = 2.43$

- 11 a $T = 55e^{\frac{t}{8}} + 20$ t is the time in minutes and time cannot be negative as you can't go back in time.
 - **b** The starting temperature of the cup of tea is when t = 0

$$T = 55 \,\mathrm{e}^{-\frac{6}{8}} + 20 = 75^{\circ}\mathrm{C}$$

- c When $T = 50^{\circ}$ C $55 e^{-\frac{t}{8}} + 20 = 50$ $55 e^{-\frac{t}{8}} = 30$ $e^{-\frac{t}{8}} = \frac{30}{55}$ $\ln\left(e^{-\frac{t}{8}}\right) = \ln\left(\frac{30}{55}\right)$ $-\frac{t}{8} = \ln\left(\frac{30}{55}\right)$ $t = -8\ln\left(\frac{30}{55}\right)$ = 4.849... $\approx 5 \text{ minutes}$
- **d** The exponential term will always be positive, so the overall temperature will be greater than 20°C.
- 12 a As $S = aV^b$ $\log S = \log (aV^b)$ $\log S = \log a + \log (V^b)$ $\log S = \log a + b \log V$
 - b

С

12 d b is the gradient = $\frac{2.72 - 0.86}{2.5 - 1.26}$ = $\frac{1.86}{1.24} = 1.5$ Intercept = log a log a = -1.05 $10^{-1.05} = a$ a = 0.0891...

 $a \approx 0.09$

13 a *kt* must be negative as the model is for decay, not growth. As *t* (for time) is always positive, *k* must be negative.

c $R = 140e^{kt}$ When R = 70 and t = 30 $70 = 140e^{30k}$ $\frac{1}{2} = e^{30k}$ $\ln \frac{1}{2} = \ln (e^{30k})$ = 30k $k = \frac{1}{30} \ln \frac{1}{2}$ $= \frac{1}{30} \ln (2^{-1})$ $= -\frac{1}{30} \ln 2$ So $c = -\frac{1}{30}$

14 a
$$V = e^{0.4x} - 1$$

When $x = 5$
 $V = e^{0.4\times5} - 1$
 $= e^2 - 1$
 $= 7.389... - 1$
 $= 6.389...$
 ≈ 6.4 million views

b $V = e^{0.4x} - 1$ $\frac{dV}{dx} = 0.4e^{0.4x}$

- 14 c When x = 100 $\frac{dV}{dx} = 0.4e^{0.4 \times 100}$ $= 0.4e^{40}$ $= 9.415... \times 10^{16}$ million So 9.4 × 10²² new views per day
 - **d** This number is greater than the population of the world, so the model is not valid after 100 days.

15 **a**
$$M = \frac{2}{3} \log_{10}(S) - 10.7$$

When $S = 2.24 \times 10^{22}$
 $M = \frac{2}{3} \log_{10}(2.24 \times 10^{22}) - 10.7$
 $= \frac{2}{3} (\log_{10} 2.24 + \log 10^{22}) - 10.7$
 $= \frac{2}{3} (0.3502...+22) - 10.7$
 $= 4.2$

b i When M = 6 $6 = \frac{2}{3} \log_{10}(S) - 10.7$ $16.7 = \frac{2}{3} \log_{10}(S)$ $25.05 = \log_{10}(S)$ $10^{25.05} = S$ $S = 1.12 \times 10^{25}$ dyne cm

ii When
$$M = 7$$

 $7 = \frac{2}{3} \log_{10}(S) - 10.7$
 $17.7 = \frac{2}{3} \log_{10}(S)$
 $26.55 = \log_{10}(S)$
 $10^{26.55} = S$
 $S = 3.55 \times 10^{26}$ dyne cm

c
$$\frac{3.55 \times 10^{26}}{1.12 \times 10^{25}} = 31.6...$$

 $\approx 32 \text{ times}$

16 a The student goes wrong in line 2, where the subtraction should be a division (as in line 2 below).

16 b The full working should have looked like this:

$$\log_{2} x - \frac{1}{2}\log_{2}(x+1) = 1$$

$$\log_{2} x - \log_{2}\left((x+1)^{\frac{1}{2}}\right) = 1$$

$$\log_{2} x - \log_{2}(\sqrt{x+1}) = 1$$

$$\log_{2} \frac{x}{\sqrt{x+1}} = 1$$

$$\frac{x}{\sqrt{x+1}} = 2^{1}$$

$$x = 2\sqrt{x+1} \quad \text{(square)}$$

$$x^{2} = 4x + 4$$

$$x^{2} - 4x - 4 = 0 \quad \text{(use quadratic formula)}$$

$$x = 2 + 2\sqrt{2}$$

$$(x \neq 2 - 2\sqrt{2} \text{ because log cannot take}$$

negative input values)

Challenge

a
$$y = 9^x = (3^2)^x = 3^{2x}$$

So $\log_3 y = 2x$

b As $y = 9^{x}$ $\log_{9} y = \log_{9}(9^{x})$ $\log_{9} y = x \log_{9} 9$ $\log_{9} y = 1$, so $\log_{9} y = x$ $2x = 2 \log_{9} y$ and from **a**, $2x = \log_{3} y$ So $\log_{3} y = 2 \log_{9} y$ $\log_{3} y = \log_{9} y^{2}$

c Using
$$\log_3 y = \log_9 y^2$$

 $\log_3(2-3x) = \log_9(2-3x)^2$
 $= \log_9(4-12x+9x^2)$
So $\log_9(4-12x+9x^2) = \log_9(6x^2-19x+2)$
Therefore $4 - 12x + 9x^2 = 6x^2 - 19x + 2$
 $3x^2 + 7x + 2 = 0$
 $(3x + 1)(x + 2) = 0$
 $x = -\frac{1}{3}$ or $x = -2$

17 $9^{x} - 11(3^{x}) + 18 = 0$ $(3^{x})^{2} - 11(3^{x}) + 18 = 0$ Let $u = 3^{x}$ $u^{2} - 11u + 18 = 0$ (u - 9)(u - 2) = 0 u = 2 or u = 9When u = 9 $3^{x} = 9$ $\ln(3^{x}) = \ln 9$ $x = \frac{\ln 9}{\ln 3} = 2$ When u = 2 $3^{x} = 2$ $\ln(3^{x}) = \ln 2$ $x = \frac{\ln 2}{\ln 3} = 0.631 (3 \text{ s.f.})$

So x = 2 or x = 0.631 (3 s.f.)