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Agenda:

1. Expressivity and Complexity 
2. Failures of Gradient Descent (Learning Parity + Linear-Periodic Functions)
3. inductive bias



Perceptron

Expressivity: Recall that this is not going to work



Expressivity: Recall that this is going to work



Expressivity: XOR circuit complexity

not and

or



Expressivity: Half Adder

https://en.wikipedia.org/wiki/Adder_(electronics)#/media/File:Halfadder.gif



Expressivity: XOR is like N-bit Parity

N-bits Label: 1 

N-bits Label: 1 

N-bits Label: 0 

0 10 10 0 0 01



Expressivity: N-Bit Parity can be solved with iterated XORs



Circuit Complexity and Boolean Algebra

Alternative And / Or / Not Construction



Historical Interlude: Mathematical Model of a Neuron

Warren Mcculloch 
1943

Walter Pitts 
1943



Historical Interlude: Boolean Function Complexity

Most Boolean Functions 
Require Exponential Circuit Complexity

Claude Shannon 
1949



Historical Interlude: Parity and Neural Networks

Perceptrons
Marvin Minsky & Seymour Papert

1969



Historical Interlude: Boolean Circuit Size

Any Constant-depth Circuit Computing Parity
Requires Exponential Size

John Håstad 
1987



Shallow Networks and Boolean Functions

Understanding Machine Learning: From Theory to Algorithms
Shai Ben-David and Shai Shalev-Shwartz, 2017



Relation of Space and Time Complexity for Boolean Functions

Understanding Machine Learning: From Theory to Algorithms
Shai Ben-David and Shai Shalev-Shwartz, 2017



Expressivity: Parameter Blowup

- Shallow Network: exponential params
- Deep Network: linear params (        with relu and fc output)
- RNN: constant params

Sawtooths

Representation Benefits of Deep Feedforward Networks
Mattus Telgarsky, 2015



Ok! So RNNs are very expressive! Are we done?



Failures of Gradient-Based Deep Learning

https://arxiv.org/pdf/1703.07950.pdf 

Shai Shalev-Shwartz, Ohad Shamir, Shaked Shammah. 2017

https://arxiv.org/pdf/1703.07950.pdf
https://arxiv.org/pdf/1703.07950.pdf
https://arxiv.org/search/cs?searchtype=author&query=Shalev-Shwartz%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Shamir%2C+O
https://arxiv.org/search/cs?searchtype=author&query=Shammah%2C+S


Expressivity is not always enough, 
Learnability and inductive bias matter!



We’ll prove this for Parity and Linear Periodic Functions



N.B. The following results are true independent of network architecture



Problem Setting: (Recall Statistical Learning Theory)



Problem Setting: (Recall ERM)



Problem Setting: (Recall ERM)



What does it mean for the gradient to contain useful information about h?

Problem Setting: Gradients



What does it mean for the gradient to contain useful information about h?

Problem Setting: Gradients



Theorem 1



Assumption 1: Target functions are orthonormal



Assumption 2: Bounded gradient



Assumption 3: Square loss or classification loss



Proof Idea



Proof Setup for Theorem 1



Proof Setup for Theorem 1: (Squared Loss)



Proof of Theorem 1: (Squared Loss)



Proof of Theorem 1



Proof of Theorem 1



Proof of Theorem 1



Proof of Theorem 1



Proof of Theorem 1



Proof of Theorem 1



Proved gradient variance decreases linearly as hypothesis space increases



Now let’s look at n-bit parity again



Formalizing the N-Bit Parity Problem

Hypothesis space:

Problem Setup: find y indicating number of positive bits is even on some subset of x



Applying Theorem 1 to the N-Bit Parity Problem



Applying Theorem 1 to the N-Bit Parity Problem



Applying Theorem 1 to the N-Bit Parity Problem

I.e., it satisfies this condition from the theorem:



So for parity, gradient becomes exponentially small in d



Results on Parity Learning



Difficulty of Learning Linear-Periodic Functions

Distribution-Specific Hardness of Learning Neural Networks
Ohad Shamir. 2016



Difficulty of Learning Linear-Periodic Functions

Distribution-Specific Hardness of Learning Neural Networks
Ohad Shamir. 2016

No Local Minima
No Saddle Points
Extremely flat unless very close to optimum
Difficult for any local search (including gradient descent)



Difficulty of Learning Linear-Periodic Functions

Distribution-Specific Hardness of Learning Neural Networks
Ohad Shamir. 2016



Difficulty of Learning Linear-Periodic Functions

Distribution-Specific Hardness of Learning Neural Networks
Ohad Shamir. 2016

Reasonable learning methods will fail unless number of iterations is exponentially large in r and d!



So what can you do about it?

1. Reformulate the problem (ask a different question)
2. Decompose the problem and add supervision
3. Optimize an alternative objective (or sometimes random guessing!)
4. Change the geometry through inductive bias



Inductive Biases for Deep Learning of Higher-Level Cognition

Anirudh Goyal, Yoshua Bengio. Arxiv 2021

https://arxiv.org/pdf/2011.15091.pdf


Inductive Biases: Helping to Encode 1-d Piecewise Linear Function

Failures of Gradient-Based Deep Learning (Section 4)

Num Pieces: k=3 
Num Points: n=100



Convolutional converges in 

Learning Piecewise Linear Functions

linear converges in 

Conv w/ conditioning converges in

3 layer relu autoencoder 



Thank you for your time!
And remember, by careful trying to learn Parity and Linear Periodic Functions



Computability: Automata and Formal Languages

Chomsky Hierarchy Automata Hierarchy



Computability: Automata and Formal Languages

Chomsky Hierarchy

abc

anbn

anbncn

Automata Hierarchy



Computability: Automata and Formal Languages

Chomsky Hierarchy

abc

anbn

anbncn Regular Language (N+1 rules) CFG (2 rules)

Take anbn , if in practice n <= N

ɛ|(ab)|(aabb)|(aaabbb)|... S ➡ a S b
S ➡ ɛ



Computability: Church-Turing Thesis

Alan Turing
1912 - 1954

Alonzo Church
1903 - 1995

A hypothesis about the nature of computable 
functions stating that  a function on the natural 
numbers can be calculated by an effective 
method if and only if it is computable by a 
Turing machine.



Computability: Effective Method

● Consists of a finite number of exact, finite instructions.
● When it is applied to a problem from its class:

○ It always finishes after a finite number of steps
○ It always produces a correct answer

● In principle, it can be done by a human without any aids except writing materials.
● Its instructions need only to be followed rigorously to succeed.



Which neural networks are computationally universal (i.e. Turing Complete)?



Q: Which neural networks are computationally universal (i.e. Turing Complete)?
A: Not feed forward networks



Computability: Dyck-n 



Transformers: Attention is all you need 2017

https://arxiv.org/pdf/1706.03762.pdf


Transformers: Encoder Layer

Taken from the Illustrated Transformer (http://jalammar.github.io/illustrated-transformer/) 

http://jalammar.github.io/illustrated-transformer/


How Can Self-Attention Networks Recognize Dyck-n Languages?

Javid Ebrahimi, Dhruv Gelda, Wei Zhang. EMNLP 2020

https://www.aclweb.org/anthology/2020.findings-emnlp.384.pdf


Theoretical Limitations of Self-Attention in Neural Sequence Models

Michael Hahn. Arxiv 2020

proves limitations on the achievable cross-entropy in modeling distributions over the formal languages

Argument relies on smoothness of the operations used in transformers to show that any 
transformer, as inputs get longer, will not be able to model Parity or Dyck-2.

https://arxiv.org/pdf/1906.06755.pdf


Theoretical Limitations of Self-Attention in Neural Sequence Models

Michael Hahn. Arxiv 2020

https://arxiv.org/pdf/1906.06755.pdf


Universal Transformers: Architecture

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Łukasz Kaiser. ICLR 2019

https://arxiv.org/pdf/1807.03819.pdf


Universal Transformers: Results

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Łukasz Kaiser. ICLR 2019

https://arxiv.org/pdf/1807.03819.pdf


Universal Transformers: Results

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Łukasz Kaiser. ICLR 2019

https://arxiv.org/pdf/1807.03819.pdf


Universal Transformers: Expressivity

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Łukasz Kaiser. ICLR 2019

https://arxiv.org/pdf/1807.03819.pdf


Universality of Weight-tied Deep Networks



Universal Transformers: Theorem

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Łukasz Kaiser. ICLR 2019

https://arxiv.org/pdf/1807.03819.pdf


Deep Equilibrium Models (DEQ): Weight-Tied Layers

Normal Net

Weight-Tied
Input-Injected
Network

http://implicit-layers-tutorial.org/deep_equilibrium_models/


DEQ Models: Fixed Point Iteration



DEQ Models: Fixed Point Iteration

Possibilities:
1. Divergence
2. Oscillation (periodically or chaotically)
3. Convergence (to a fixed point)



Deep Equilibrium Models: How to model this thing?



Deep Equilibrium Models: Implicit Layers



Deep Equilibrium Models: Expressivity

Any deep network (of any depth, with any connectivity), can be represented as a single layer DEQ model

Proof: Consider a traditional composition of two functions   , we can transform 
this into a single layer DEQ by simply concatenating all the intermediate terms of this 
function into a long vector:

At the equilibrium point of this function, z*, we have:



Deep Equilibrium Models: Expressivity

Any deep network (of any depth, with any connectivity), can be represented as a single layer DEQ model

Analysis: This logic applies to any computation graph, concatenating all intermediate products 
of a computation graph into the vector z, and having the function f be the function 
that applies the “next” computation in the graph to each of these elements.

This is much more inefficient than just computing the original network, and not the 
construction used in practice. 


