16" Symposium on Navigation of the Canadian Navigation Society

Toronto, Canada, 26-27 April 2005

Extended Kalman filter implementation for low-cost
INS/GPS Integration in a Fast Prototyping Environment

Richard Giroux, Ph.D. !
Former graduate student 2
Ecole de technologie supérieure
giroux_richard@videotron.ca

Richard Gourdeau, Ph.D.
Professor
Ecole Polytechnique de Montréal
richard.gourdeau@polymtl.ca

René Jr. Landry, Ph.D.
Professor
Ecole de technologie supérieure
rlandry@ele.etsmtl.ca

Abstract

In previous communications, the authors have highlighted the advantages of using a fast-prototyping approach to
the development of low-cost INS integration algorithm. More specifically, they have addressed two fundamental
aspects of inertial navigation integration algorithm design: the validation of a Simulink simulator, and the per-
formance evaluation of the integration algorithms provided within Simulink for inertial data integration. This
paper addresses the next step in the development sequence of INS/GPS integration algorithm development: the
inclusion of an extended Kalman filter in the Simulink fast-prototyping environment and real-time experimental
assessment of the entire fusion algorithm. As a general conclusion, the rapid-prototyping approach chosen in the
implementation has permitted the design of the algorithms and data acquisition scheme in an efficient manner

and in a short development time period.

1 Introduction

The design of low-cost inertial navigation system
(INS) fused with GPS generates great interest since
many years now. Many approaches have been investi-
gated in order to mitigate the poor performance of low
cost sensors, but few people have addressed the issue
of the design process itself.

Simulation of aided-INS systems is mandatory prior
to real implementation in order to validate the de-
sign. Furthermore, numerical analysis of algorithms
behavior is necessary since the highly non-linear equa-
tions governing the system prohibit extensive analyt-
ical analysis. If we exclude proprietary simulators,
commercial simulation package tools available until now
to achieve this goal are Matlab script files
(www.gpsoftnav.com). However, modular and easy

1 The research work associated to this publication has been
performed during the Ph.D. studies of the principal author. Part
of this research has also been done at the Australian Centre for
Field Robotics (ACFR), The University of Sydney, Australia.

2 Since October 2004, the main author is a research fellow
at the Canadian Space Agency John H. Chapman Space Centre,
St-Hubert, Canada.

graphical design allowed by Simulink incited us to cre-
ate a simulator in this user-friendly environment. Also,
it permits rapid real-time testing, which is of great in-
terest for the physical implementation of low-cost sys-
tem. To our knowledge, only one simulator that uses
Simulink for INS/GPS algorithm design has been al-
ready presented [1]. However, no detail on the algo-
rithm processing performance is given.

It has been already shown that Simulink is an in-
teresting tool for the integration of the equations of
motion [2]. However, the implementation of an ex-
tended Kalman filter (EKF) for INS/GPS fusion in
a graphical coding environment is not a trivial task.
This follow-up paper highlights the design and real-
time implementation phases of the fusion algorithm.

The first section reviews several solutions to the
problem of INS/GPS fusion. Then, the architecture
of the Simulink-based fusion algorithm is presented.
The flow of information between functions of the EKF
is also described. An important aspect of this paper
relates to the real-time computation effort required to
process the EKF algorithm, and to some extent the
entire INS/GPS fusion algorithms. Following that,
practical implementation is shown and experimental

results are given which show the advantages of the
fast-prototyping approach. The last part of the paper
is dedicated to some discussions and conclusions.

2 Review of INS/GPS fusion
schemes

It is well-known that the solution of the equations
of motion (direct integration) is not accurate over time
because the error in the solution grows due to the fol-
lowing [3]:

- Sensor errors;

- Inaccurate initial value of the solution;

- Inexact gravity acceleration model;

- Finite computation capabilities of numerical com-
puters.

Modern-day computer tends to mitigate the latest is-
sue and permits the use of high-order integration meth-
ods, as it has been highlighted previously [2]. Also, the
error in the initial value of the solution can be min-
imized given an appropriate initializing time for the
system. On the other hand, the gravity model can be
fine tuned to represent in a more accurate manner the
actual gravity field [4]. This is of importance for highly
accurate INS systems which use inertial-grade sensors
and no external sensors (or very few external measure-
ments). However, at the other end of the spectrum,
low-cost INS system performance is mainly driven by
the sensor errors which make the equation of motion
solution drifting very rapidly. Hence, a fusion scheme
with external sensors is mandatory to ensure proper
performance.

There are different approaches to perform the fu-
sion of external information with the solution of the
equations of motion [5]. The most practical algorithm
is the Kalman filter implemented in an extended form
to accommodate the non-linear behavior of the equa-
tions of motion. The filter itself can be implemented
using different strategies: direct, indirect feedforward
and indirect feedback implementations [6]; and they
will be described in the following sections. But first,
the definition of some mathematical expressions used
throughout the paper is required.

To simplify the mathematical description of the
equations at stake, a navigation variables set N is
defined by Equation 1 and comprises the usual INS
parameters. The equations of motion are then stated
by Equation 2, where the variation of the navigation
parameters is a function of the parameters themselves,
and the inputs of accelerations and rotation rates. The
expansion of these common equations can be found in
[7, 8], whereas the specific notation and details on the
reference frames are explained in [2, 9]. By using the

direct representation of the variables, there are 22 com-
ponents to numerically integrate to obtain the naviga-
tion solution. However, there are ways to reduce the
number of variables to 12.

/\/ = { NCB7[E’17N]N7E CN,h} S R22 (1)
N = F(N.[dpls, ['Gs]s) (2)

where

[f@glp = Accelerometer;

[fdplp = Rate gyros;

NCg = Direction cosine matrix;

[Fon]ny = Velocity (East-North-Up);

ECy = Position matrix (lat-long);

h = Altitude.

For the indirect implementation of the Kalman fil-
ter, an error model has to be derived. Again, a set of
error variables is defined by Equation 3, and its dy-
namics given by Equation 4. The error model used is
the standard -error model, found in many books and
papers [10, 11, 12, 13].

N = {[Poun]n.[Fornln.dn } €RY(3)
6N = F(N]) oN (1)
where
[Eé}N]N = Velocity error;
[férN]N = Position error;

YN Attitude error.

Finally, the extended Kalman filter applied to an
arbitrary set X of variables to be estimated is pre-
sented as follows [6, 14]:

Q?k\k =)?k|k—1 + Ky (5)
Vi — H(')?Mk—l) (6)

y ()?kfukflau k) (7)

Ve =

Xio—1 =
where

The estimate of the variables at time
instant k, a posteriori the external mea-
surement (knowledge of the external
signal at time k);

The estimate of the variables at time in-
stant k, a priori the external measure-
ment (knowledge of the external signal
at time k& — 1 only);

Matrix weight of correction of the a
priori estimated external measurements
(Kalman gain);

The external measurements;

The function mapping the set of vari-
ables to the external measurements;
The innovation, representing the er-
ror between the external measurements
and the estimation of the external mea-
surement based on the a priori estima-

tion of the variables)A);C = H(fk‘k,l);
State transition matrix (discreet ver-
sion of F(-) in Equation 2);

The inputs to the system.

Vi =
H(-) =

Pp(-) =

U, =

2.1 Direct integration

In the direct integration approach, the set of vari-
ables linked to the equations of motion is considered
as the estimated variable in the extended Kalman fil-
ter. Therefore, Equation 2 represents the process to
be estimated by the Kalman filter and the arbitrary
set of variables in Equations 5 to 7 is replaced by the
set of navigation variables:

X - N

Also, the external measurement relation is given by
Equation 8, where the set of measurement variables is
given directly by the set of external measurements.

yir = Hdir<Nk\k):Mk (8)

In the case of GPS measurement, the set of external
measurements is given as follows:

M, = {PkGPS’VkGPS} c RS ()

Figure 1 depicts the signals flow. The extended Kalman
filter operates in the “navigation filter” block resulting
in the estimate of the set of navigation variables. The
inputs are the accelerometers and the rate gyros, and
the GPS is the external measurement signal.

Inertial [IQB]B
P
sensors I N
['aslp Navigation
) —
filter
External
measurements M

Figure 1: Direct integration approach

This configuration is not used very often due to its
computation burden. Also, the Kalman filter operates

more efficiently with state variables around zero, and
that implementation is called indirect integration.

2.2 Indirect integration

In the indirect integration approach, the set of vari-
ables linked to the error in the equations of motion is
considered as the estimated variable in the extended
Kalman filter. Hence, Equation 4 represents the pro-
cess to be estimated by the Kalman filter and the ar-
bitrary set of variables in Equations 5 to 7 is replaced
by the set of error variables:

X — N

Also, the external measurement relation is given by
Equation 10, where the set of measurement variables
is the difference between the set of navigation variables
and the set of external measurements.

yind = Hind<5Nk|k) :Hext(/\/’k) ~ M, (10)

As for the direct integration, the set of external mea-
surement can be given as follows in the case of GPS
measurement:

My = {PEPSVEPS) e RS (11)

However, the set of navigation variables as to be mapped
to correspond to the same physical meaning as the ex-
ternal measurements, and can be represented by:

Hext(Nk) _ {P,fNS, kINS}ERG (12)

2.2.1 Feedforward mode

In the feedforward mode of the indirect integra-
tion approach, the estimated navigation error from the
Kalman filter is subtracted to the navigation solution,
resulting in a corrected navigation solution:

N = N-N (13)
Figure 2 shows a block diagram of this configuration.
The “Equations of motion solution” block numerically
integrates Equation 2 to give an open loop solution.
The extended Kalman filter operates in the “naviga-
tion filter” block resulting in the estimate of the set of
error variables. The inputs are the accelerometers, and
the GPS data and the open loop navigation solution
are considered as external measurements.

This configuration operates well if the error vari-
ables are kept small. But given the low-cost nature of
the sensors, the estimated (and true) error in the navi-
gation solution get out of bound rapidly. The feedback
mode of the indirect integration answers this problem-
atic.

I~
@ .
Inertial [@5lp Equation of N
> motion
sensors (
1= solution
['aslp
\/
Navigation
External - filter
measurements M 2>

Figure 2: Indirect integration in feedforward mode

2.2.2 Feedback mode

In the feedback mode of the indirect integration,
the corrected set of navigation variables replaces the
previous value of the set of navigation variables. The
set of error variables is then reset to zero for the next
round of estimation.

N—6N — N (14)

Figure 3 illustrates the approach. As for the feed-
forward approach, the “Equations of motion integra-
tion” block numerically integrates Equation 2 but is
corrected by the estimated navigation error at each
timestep. The extended Kalman filter still operates
in the “navigation filter” block resulting in the esti-
mate of the set of error variables. The inputs are
the accelerometers, and the GPS data and the cor-
rected navigation solution are considered as external
measurements.

I~
Inertial [(@BlB Equations of]\7
sensors > motion P

I integration
['aslB
A
N
| Navigation | _
External o filter -
measurements M o

Figure 3: Indirect integration in feedback mode

This configuration is the most robust one and is
necessary when operating with low-cost sensors. This
approach has been implemented in a Simulink envi-
ronment and is the subject of the next section.

3 Description of the Simulink
fusion algorithm architecture

The Simulink environment is a graphical-interface
utility that provides powerful tools to design and pro-
totype real-time algorithms. The hierarchical struc-
ture of the algorithm is presented at Figure 4. The
top-level functions, depicted at Figure 5, are the equa-
tions of motion solution, the navigation filter and the
online calibration of the sensors. The former has been
presented in a previous paper [2] and the later will be
part of future publications. Herein, the focus is on
the navigation filter implementation and experimental
results.

Navigation Algorithm
Figure 5

|

Equation of motion solution Navigation filter On»I|r.1e sensor
See ref. [2] Figure 6 calibration
. 9 (not shown)

Error control Kalman filter

(not shown) Figure 7
State vector Covariance matrix Correction of System
propagation propagation estimated variables parameters
(not shown) Figure 9 Figure 8 (not shown)

Figure 4: Hierarchical structure of the algorithm

Sensor
calibration Integration of equations
D in of motion
Sensors out Sensors
+ GPS
—» Correction INS output »(1
Corr NL Navigation
r ~ Solution
Navigation filter
INS output NL_INS corr j—

—»{Sensors + GPS NL_sensors corrff—

Figure 5: Top-level functions

The navigation filter is composed of two main parts:
the extended Kalman filter and the error control.
Figure 6 shows the signal flow of this blockset. The
“error control” block manages the relation between
the “extended Kalman filter” and the “integration of

Tech_corr_nl

L J

Error control

—{INS output Corr. hav soln

NL_INS
input events () — Error state in Error state out| corr
start |
Corr nl start vent_corr_nl event_corr_nl Corr. sensors
feedback feedback I NL_sensors
corr
Constant
Logic - Error control
GPS rate
Tech datal Extended Kalman filter
input events () | Error state in
. event_corr_kalman
gps_available vent_corr_est| event_corr
I Error state out
Sensors
Logic - Kalman filtre control Sensors +
GPS [INS cutput
<GPS_available> | INS output
i
Figure 6: Navigation filter functions
State vector propagation
| Correction state Van?elﬁa_x_hat_mk_out D
delta_X_ E
: hat_klk ror
{T)——»|delta_X_hat_k|k_in — state out
Error
state in »ldef_syst delta_X_hat_k|k-1§—
Correction of estimates
pldelta_X_ hat_k|k-1
[&D; Sensors Correction covariance matrix
Sensors
[w»levent_corr
event_corr
€D — #{INS output
INS e
output b|def_syst Correction state variabl
»P_k|k-1
Covariance matrix propagation
| Sensors
Def_syst » def_syst
#{INS ocutput P_k[k-1
System Correction covariance matrix
parameters

Figure 7: Extended Kalman filter functions

equations of motion” block (and the “sensor calibra-
tion” block when this functionality is used). If the
indirect integration in feedforward mode is used, the
“error control” block has no effect and no correction is
sent to the “integration of equations of motion” block.
However, the feedback mode implies the correction of
the solution of the equations of motion and the re-
set of the estimated error variables. That is the main
function of the “error control” block. It is driven by
a state-machine which sends events that trigger the
correction and the reset of the values.

=1

event_corr
P_Klk-1

P_k|k-1
Sensors Covariance correction|
Sensors i v «

Y_k >
INS output -

Correction
covariance
Error (T)—>p{delta_X_hat_k|k-1 matrix
measurement | delta_X_
computation | hat_klk-1

E—»
INS output

State correction|

def_syst

Correction

def_syst -
state variable

v
Inversion \ -1
event_corr

Il
| (nb_err_state x nb_err_state)

When external signals:
Computation of
corrections to estimates

O_(nb_err_state x 1)

When no external signals:
Covariance = Nul matrix
State = Nul vector

Figure 8: Correction of estimates functions

<Phi>

def_syst i i P_klk
ef_sys <Phi*P_Kk*PhirT| o ol |

P_kk-1

K_k * H*P_k|k~1

Correction or NUL
covariance
matrix

P_klk-1

Figure 9: Propagation and correction of covariance
matrix estimate

The extended Kalman filter block of Figure 6 is
also driven by a state-machine. The propagation of
the estimates (state variables and covariance matrix) is
done at each time step, whereas the event “correction”
is driven by the reception of an external measurement.
Figures 7, 8 and 9 detail the extended Kalman filter
operation and the explanation of the two modes (with
or without external measurements) follows.

When there is no external measurement, the ex-

tended Kalman filter operates in the propagation mode.

The “event correction” signal provided to the block
“Correction of estimates” of Figure 7 is negative. Fig-
ure 8 shows an inside look of this block, and a negative
“event correction” drives a nul output for the correc-
tion of the state variables and the covariance matrix.
This correction (nul for the propagation phase) is then
sent to the “State vector propagation” and “Covari-
ance matrix propagation” blocks of Figure 7. An inside
look at the block “Covariance matrix propagation” is
shown at Figure 9. Since the correction is nul, only the
propagation of the covariance matrix is performed.

On the other hand, if there is an external signal
available, the “event correction” signal is positive and
the extended Kalman filter superposes the correction
phase to the prediction phase. In fact, this event trig-
gers the computation of a correction in the block “Cor-
rection of estimates” of Figure 7, and detailed at Fig-
ure 8. In this detailed figure, the difference between
the external signal (here a GPS signal) and the INS
solution is first computed, and the result is used in
the “Computation of corrections to estimates” block.
These corrections are sent to the “State vector prop-
agation” and “Covariance matrix propagation” blocks
of Figure 7. Again, a look at the functionalities of the
block “Covariance matrix propagation” illustrated at
Figure 9 shows that the correction is applied to the
propagation of the estimated covariance matrix. A
similar process is performed for the correction of the
estimated state variables. Also, it should be noted
that a “system parameters” function updates the time
varying parameters of the system model as depicted in
Figure 7.

4 Real-time computation assess-
ment

In order to physically implement the algorithm on a
real-time platform, it is important to assess the level of
computation effort required to run the different func-
tions of the algorithm. The embedded computer is
a PC104 type with a Pentium Mobile processor of
266MHz and 128Mb of RAM. The Real-Time Work-
shop toolbox of Simulink is used to generate C-code
from the Simulink blockset-code, and then an exe-
cutable format of the code is transferred to the embed-
ded computer with the xPCTarget application. The
computation time information (amount of time required
to process all algorithm computations during a cycle)
is obtained through the use of xPCTarget real-time
run data log.

Following the companion paper previously published
[2], Figure 10 shows the real-time computation effort
of different integration methods. Although not at is-
sue in this paper, it is important to show that the
preliminary assessment for the choice of an integra-

tion method made with simulation computation time
still holds with real-time computation effort. Indeed,
the Runge-Kutta of 4'" order (ODE4) is of comparable
burden with respect to the Savage algorithm. Then,
the RK4 integration algorithm is still used in all the
simulation and real-time implementations. For more
information on the pros and cons, the reader is invited
to consult the previously published paper [2].

For the Kalman filter algorithm computation time
(Figure 11), three phases have been studied: the lin-
earisation of non-linear function, the prediction phase
and the combined prediction/correction phase. No
specialized form of Kalman filter algorithm was coded,
meaning full matrix multiplications were performed.
The linearisation and prediction phase are performed
at each cycle. However, the prediction/correction mode
is only activated when an external measurement is
available. The number of state variables has a major
influence on the computation time, as we know that
the number of multiplications in the prediction phase
of the Kalman filter is proportional to the cube of the
number of state variables (Mult o< n®). The trend can
be seen on Figure 11. Part on the navigation filter,
the error control has also been investigated but was
found to be negligible compared to the Kalman filter
computation burden (mean computation time of 80 us
per cycle).

Although the previous graphs provide insight infor-
mation about the complexity of the different functions,
it is the total computation time that is relevant to de-
termine the sample rate of the inertial sensors (Figure
12). Two common hypothesis have been compared:
the full set of equations of motion and the flat-earth
assumptions, reducing the complexity of the equations
to integrate and the error control. As it can be seen,
there are no significant differences between both ap-
proaches, mainly caused by the Kalman filter imple-
mentation which is the same for both schemes. Then,
with a maximum total computation time of 4300 us,
a sampling rate of 200 Hz is achievable for acquiring
the sensor data and processing the algorithm.

5 Experimental results

The experiments have been conducted using a high-
speed vehicle. The IMU, PC104 and the GPS receiver
were fixed in the back trunk of the vehicle as illus-
trated in Figure 13. The Tetrad IMU unit is made
up of four accelerometers and four gyros, each set of
measuring devices arranged in a tetrahedral configura-
tion. Acquisition and processing of data received from
the IMU is carried out by the PC104 computer stack
as seen in Figure 13. An ADC card is used to sam-
ple the IMU and temperature sensor measurements at
200 Hz. IMU data can be graphically displayed in
real-time using an external monitor connected via the

video card or can be transferred to a host computer
for real-time or post processing via the Ethernet net-
work card. Communication between the PC104 and
the GPS receiver is made through a serial connection.
A more detailed description of the experimental setup
can be found in [15].

N N

[—

[=2 -1
I

150 ~

100 -

One cycle
computation time [us]

En

Savage ODE1 ODE2 ODE3 ODE4 ODES5S
Integration methods

(24
(=] (=1
|

[Mean time m Max time |

Figure 10: Computation time of different integration
methods

4500
4000
3500
3000 —
2500 —
2000 —

1500 —
1000 —

oo — ol —
0 -

9 states

[us]

|

One cycle
computation time

15 states
Error model

‘I Linearisation ® Prediction O Predicton/Correction |

Figure 11: Computation time of Kalman filter

5000
4500
4000 — [N
3500
3000
2500
2000
1500
1000

500

One cycle
computation time [us]

4

(=]

Standard Flat earth
Hypothesis - Equations of motion

‘D Mean time ® Max time |

Figure 12: Total computation time for one cycle

Figure 13: Experimental setup

5.1 Data acquisition

The xPCTarget environment allows the direct ac-
quisition of data. For the IMU, a driver for the acqui-
sition card already exists in the xPCTarget library so
simple configuration of the blockset permits the acqui-
sition of raw data from the IMU (Figures 14 and 15).

1 Gyro1
Gyro 2
2 y »
3 Gyro3 |
MM32 g ¥4
Diamond Acc 1
Analog Input 5 ce > IMU_data
6 Acc2 |
7 Acc3 |
8 Accd
MM-32

Figure 14: Blockset of IMU data acquisition

For the GPS signals, the use of a RS232 link is
necessary and the configuration of the serial message
has to be in accordance with the receiver specifications
[16]. The decoded message (NMEA - National Marine
Electronics Association) from the GPS receiver and
used in the Simulink environment is composed of the
following data:

- Number of satellites in the field of view;
- Universal time;

Latitude, longitude, altitude;

Azimut;
- Longitudinal velocity;

- Vertical velocity;

Block Parameters: MM-32 X
— addiamondmm32 [maszk] [link]

bhd-32
Diamand Systems
Analog |nput

— Parameters
First channel (1..n):

Murber of channels [1..n):
IE

Range vector: |+.5\,-' ;I
Input coupling: [difterential [16 channels) |
Sample time:

|0.0025

Baze address [i.e. Oxd000):

|00

o]

Cancel | Help | Apply

Figure 15: Dialog box of IMU data acquisition

- Dilution of precision (3D-position, horizontal, ver-
tical and time).

Figure 16 shows the blockset itself whereas Figure
17 illustrates the dialog box.

1 DGPS ?

2 Nb. 8V N

3 UTC o

4 Lat .

5 Leng N

RS-232 ° He:ding "

Mainboard 7 >

Receive 8 Horiz speed _ GPS_data

Vert speed _

10 PDOP >

" HDCOP

12 VDOP N

13 TDCP »

Figure 16: Blockset of GPS data acquisition

Figures 18 and 19 show the orthogonal projection
on the body axes of the redundant inertial sensor mea-
surements for a trajectory of 6.5 minutes. The angular
rate measurements have been compensated for based
on the bias read directly from the sensors at rest. The
acceleration measurements are not compensated. It
can be seen that the noise in the sensors increases sig-
nificantly when the vehicle starts moving (at 50 sec-
onds), due to vibration.

Block Parameters: R5232 E|

rz232rec maszk) [link]

RS-232
Mainboard
Receive

Parameters

o ST - |

Meszage shuct name:
|Ri$232_Receive(l)

S ample tirme:
|0.0025

QK | Cancel | Help | |

Figure 17: Dialog box of GPS (RS232) data acquisition

X acc [m/sz]

Figure 18: Orthogonal projection of accelerometer

data

Pitch rate [deg/s] Roll rate [deg/s]

Yaw rate [deg/s]

Figure 19: Orthogonal projection of rate gyro data

Y acc [m/sz]

2
, Zacc [m/s]
=
o
L

TETRAD acceleration: orthogonal projection
T T T

&

0 ;———%VAAWVVMMM/\}-— b
-5 i ; i ; i i i
0 50 100 150 200 250 300 350 400
5
0 1
5 i i i i i i i
0 50 100 150 200 250 300 350 400

-5 T T T T T T T

15 1 1 1 1 1 1 1
0

50 100 150 200 250 300 350 400

Time [s]

TETRAD rate gyro: orthogonal projection
10 T T T T T
0 4
10 i i i i i i i
0 50 100 150 200 250 300 350 400
10
0 4
10 b
20 I I I I I I I
0 50 100 150 200 250 300 350 400
50 T T T T T T T
0 MWMMWMW |
50 I I I I I I I
0 50 100 150 200 250 300 350 400

Time [s]

5.2 Post-processing

Figure 20 illustrates the 6.5 minutes navigation so-
lution of the INS/GPS fused system compared to the
GPS solution (represented by cercles). The innova-
tion sequence (Figure 21) of the position error in the
navigation filter is mostly white noise, implying a well
tuned filter. The results have shown that the INS/GPS
integration algorithm with redundant low-cost mea-
surement works appropriately when GPS fixes are con-
tinuous.

Navigation solution TETRAD/GPS
25 T T T T T

Northing [m]
| = =
o o o o &
T T T T T

I
=
o

T

—— INS/GPS solution
-155 o GPSfixes

20,
-20 -15 -10 -5 5 10 15

0
Easting [m]

Figure 20: Horizontal solution fusion INS/GPS

Innovation of position error
T T T

E
2 “‘ G, |]
1%}
i
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350 400
0.5
E
E ol] | Il 4
£ \ |
s
05 i i i i i ‘ ‘
0 50 100 150 200 250 300 350 400
1
E
€ o B
2
=
a1 i i i i i ‘ ‘
0 50 100 150 200 250 300 350 400

Time [s]

Figure 21: Innovation of position error

6 Discussion

Fast-prototyping for the design of INS/GPS sys-
tems is not very common and the limited amount of
publications on this subject reflects that fact. The
main challenge of this design choice is the level of con-
fidence on the automatically generated code result-
ing from the interpretation of the high-level graphi-
cal code represented by Simulink. Although applica-
tions where human-at-risk would not be suitable for
this kind of design, there are no reasons why the first
stage of a project should not take advantage of the
fast-prototyping approach.

The development environment used in this project
was Simulink of MathWorks. Simulink’s modularity
and easy graphical design make it convenient for im-
provements and facilitate the transfer of knowledge
to future collaborators [17]. In addition, the Real-
Time Workshop (RTW) suite and the xPC Target en-
vironment (or any other host-target environment com-
patible with RTW) enhanced the simulation stage of
Simulink by allowing rapid real-time testing. This de-
sign scenario (simulation of an algorithm and real-time
testing via rapid-prototyping) has reduced dramati-
cally the time between the validation of the algorithm
and its real-time implementation.

The implementation of the extended Kalman fil-
ter using Simulink was not a trivial task. Indeed, the
strategy used to re-initialize the state variable is one of
many that could have been used, but is considered to
be efficient. Also, the filter has been implemented in its
full form (i.e. the full matrices are multiplied) and the
computation effort grows rapidly with the increase of
the number of state variables. Different implementa-
tions could be used to reduce the computation burden,
but at a first stage the experience of implementing the
extended Kalman filter in a fast-prototyping scheme is
successful.

Also, the acquisition of the GPS signal over a RS232
link in Simulink required some thoughtful work. It has
been decided to use standard serial ASCII message to
decipher the GPS signal. The difficulty was residing
mainly in the compliance with the GPS receiver mes-
sage structure, where some particular character for-
mats were not entirely compatible with the format
available in Matlab. This could have been avoided us-
ing a binary transmission format for the RS232 link.

Nevertheless, it can be stated that the rapid pro-
totyping approach chosen in the implementation has
permitted the design of the algorithms and data ac-
quisition scheme in an efficient manner and in a short
development time period.

10

7 Conclusion

This paper addressed the fast-prototyping imple-
mentation of an extended Kalman filter for INS/GPS
fusion and follows a previously published paper on the
simulation of INS and the integration of the equa-
tion of motions with high-order methods [2]. The
fast-prototyping approach is not popular among re-
searchers in this field because they usually feel they
do not have full control of the process. However, dur-
ing an initial phase of a project, this design philosophy
saves time and efforts.

Given its cycle processing time, the EKF and com-
plete INS/GPS algorithm implemented in this project
are found to be practically feasible for real-time ap-
plication of low-cost navigation systems. Some algo-
rithmic problems have been encountered during the
integration of such programming tools with the func-
tion requirements but they are not comparable to the
effort needed to develop all low-level components of a
data acquisition scheme.

Part of the research team effort is to upgrade the
simulator and add a graphical trajectory generator to
facilitate the creation of desired trajectories. Also, the
simulator should be accessible as an internet appli-
cation where remote users could launch simulations
and/or process their scenarios on a real-time platform
and download the results.

Finally, this simulator and the associated hardware
constitute a powerful tool to do rapid designs and pro-
totyping of low-Cost GPS-aided INS. Given the results
shown and future work in progress, it is believed that
Simulink-based simulators will form the next genera-
tion of INS algorithm validation schemes.

Acknowledgements

The financial support for this work was partly pro-
vided by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), the “Fonds Na-
ture et Technologie du Québec” (NATEQ) and the
“Ecole de technologie supérieure”. Also, the author
would like to acknowledge the Australian Research
Council Centre of Excellence programme and the Aus-
tralian New South Wales State Government, as part of
the research work performed at the Australian Centre
for Field Robotics (ACFR), The University of Sydney,
Australia. Finally, the authors would like to thank Dr.
Salah Sukkarieh, from the ACFR, for his support.

References

[1]

[12]

[13]

C. Eck, J. Chapuis, and H. P. Geering, “Software-
supported design and evaluation of low-cost nav-
igation units,” in Proceedings of th 8th St-
Peterburg International Conference on Integrated
Nauvigation Systems, pp. 163 — 172, 2001.

R. Giroux, B. W. Leach, R. J. Landry, and
R. Gourdeau, “Validation and performance evalu-
ation of a Simulink inertial navigation system sim-
ulator,” Canadian Aeronautics and Space Jour-
nal, vol. 49, no. 4, 2003.

S. Garg, L. Morrow, and R. Mamen, “Strap-
down navigation technology: A litterature sur-
vey,” Journal of Guidance and Control, vol. 1,
no. 3, pp. 161 — 172, 1978.

B. Kriegsman and K. Mahar, “Gravity-model er-
rors in mobile inertial-navigation systems,” Jour-
nal of Guidance, vol. 9, no. 3, pp. 312 — 318, 1986.

B. D. Anderson, “From Wiener to hidden Markov
models,” in IEEE Control Systems, pp. 41 — 51,
1999.

P. S. Maybeck, Stochastic models, estimation, and
control, vol. 1 of Mathematics in Science and En-
gineering. 1994.

P. G. Savage, “Strapdown inertial navigation in-
tegration algorithm design part 1 : Attitude al-
gorithms,” Journal of Guidance, Control and Dy-
namics, vol. 21, no. 1, pp. 19 — 28, 1998.

P. G. Savage, “Strapdown inertial navigation in-
tegration algorithm design part 2 : Velocity and
position algorithms,” Journal of Guidance, Con-
trol and Dynamics, vol. 21, no. 2, pp. 208 — 221,
1998.

R. Giroux, Capteurs bas de gamme et systéme
de mnavigation inertielle: nouveau paradigmes
d’applications. Ph.D. thesis, Ecole de technolo-
gie superieure, 2004.

G. Pitman, Inertial Guidance. New York: Wiley,
1962.

D. Goshen-Meskin and I. Y. Bar-Itzhack, “Uni-
fied approach to inertial navigation system error
modeling,” Journal of Guidance, Control and Dy-
namics, vol. 15, no. 3, pp. 648 — 653, 1992.

A. B. Chatfield, Fundamentals of High Accuray
Inertial Navigation, vol. 174 of Progress in Astro-
nautics and Aeronautics. 1997.

P. G. Savage, Strapdown Analytics, Part 1. Maple
Plain, MN: Strapdown Associates Inc., 2000.

11

[14]

[15]

A. E. J. Bryson and Y.-C. Ho, “Applied optimal
control,” 1975.

R. Giroux, S. Sukkarieh, and M. Bryson, “Imple-
mentation of a skewed-redundant low-cost INS in
a fast-prototyping environment,” in Proceedings
of the Institute of Navigation National Technical
Meeting, 2004.

“G12 GPS OEM board and sensor reference man-
ual,” tech. rep., Magellan Corporation, 2000.

M. Otter and F. E. Cellier, “Software for mod-
eling and simulating control systems,” in Control
System Fundamentals (W. S. Levine, ed.), pp. 419
— 432, CRC Press, 2000.

