

Extending	Jenkins

Table	of	Contents

Extending	Jenkins

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Preparatory	Steps

Getting	started	with	Jenkins

Extending	the	basic	setup

Jenkins	evolution

Continuous	Integration	with	Jenkins

Summary

2.	Automating	the	Jenkins	UI

Use	case	scenario	1	–	a	large	number	of	jobs

Use	case	scenario	2	–	multiple	hosts

Use	case	scenario	3	–	helping	your	users	through	UI	automation

Use	case	scenario	4	–	UI	tweaks

Summary

3.	Jenkins	and	the	IDE

Eclipse	and	Mylyn

Installing	Mylyn

Mylyn	and	Jenkins	configurations

IntelliJ	IDEA	and	Jenkins	build	connectors

NetBeans

Summary

4.	The	API	and	the	CLI

Creating	an	Information	Radiator	with	the	Jenkins	XML	API

Getting	the	information	from	Jenkins

Automating	the	job

Radiating	the	information

Jenkins	as	a	web	server	–	the	userContent	directory

The	Jenkins	CLI

How	to	set	it	up

How	to	use	it

Triggering	remote	jobs	via	the	CLI

Updating	Jenkins	configuration

Summary

5.	Extension	Points

A	brief	history	of	Jenkins	plugins

Interfaces

Abstract	classes

Abstraction	and	interfaces

Singletons

Declaring	an	extension	in	Jenkins

Summary

6.	Developing	Your	Own	Jenkins	Plugin

An	introduction	to	Maven

Installing	Maven

Summary

7.	Extending	Jenkins	Plugins

Where	to	start?

Looking	at	the	list	of	existing	plugins

A	new	build	type	required

Loading	and	building	our	starting	point

The	Builder	class	and	Stapler

Jelly	and	Jenkins

Help

Properties	files	and	Messages

The	POM	file

Plugin	progress

Summary

8.	Testing	and	Debugging	Jenkins	Plugins

Running	tests	with	Maven

Debugging	Jenkins

Server	debugging	–	a	quick	recap

Debugging	with	IntelliJ

Debugging	with	Eclipse

mvnDebug

The	Jenkins	Logger	Console

Summary

9.	Putting	Things	Together

The	Jenkins	script	console	and	Groovy

Groovy	and	Gradle	as	alternatives

Jenkins	and	Docker

Docker	in	Jenkins

Jenkins	in	Docker

Jenkins	and	Android

Jenkins	and	iOS

Keeping	your	Jenkins	version	and	plugins	up	to	date

Summary

Index

Extending	Jenkins

Extending	Jenkins
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1171215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-424-3

www.packtpub.com

http://www.packtpub.com

Credits
Author

Donald	Simpson

Reviewer

Tony	Sweets

Commissioning	Editor

Amarabha	Banerjee

Acquisition	Editor

Indrajit	Das

Content	Development	Editor

Riddhi	Tuljapurkar

Technical	Editor

Menza	Mathew

Copy	Editor

Kausambhi	Majumdar

Project	Coordinator

Sanchita	Mandal

Proofreader

Safis	Editing

Indexer

Tejal	Daruwale	Soni

Graphics

Abhinash	Sahu

Production	Coordinator

Melwyn	Dsa

Cover	Work

Melwyn	Dsa

About	the	Author
Donald	Simpson	is	an	information	technology	consultant	based	in	Scotland,	UK.

He	specializes	in	helping	organizations	improve	the	quality	and	reduce	the	cost	of
software	development	through	the	adoption	of	process	automation	and	Agile
methodologies.

Starting	out	as	a	Java	developer,	Donald’s	interest	in	application	servers,	networking,	and
automation	led	him	to	a	career	as	a	build	engineer.	He	remains	highly	technical	and	hands-
on	and	enjoys	learning	about	new	technologies	and	finding	ways	to	automate	and	improve
manual	processes.

He	can	be	reached	at	www.donaldsimpson.co.uk.

I	would	like	to	thank	my	wife,	Clair,	and	my	children,	Freya	and	Lyla,	for	their	support
and	encouragement	throughout	my	career	and	the	writing	of	this	book.

http://www.donaldsimpson.co.uk

About	the	Reviewer
Tony	Sweets	has	over	20	years	of	experience	in	software	development,	with	most	of	it	in
Java	and	Java-based	technologies.	Known	as	the	“Tools”	guy	before	there	was	any
concept	of	DevOps,	he	also	has	a	passion	for	setting	up	and	managing	hardware	and
networks.	Introduced	to	Agile	development	very	early	on,	he	has	set	up	and	maintained
his	company’s	continuous	integration	system	that	ranges	from	Cruise	Control	to	Hudson,
and	now	Jenkins.	He	is	currently	a	software	architect	in	the	payments	field	and	has	been
working	in	financial	services	for	over	17	years.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Jenkins	provides	many	interfaces	and	extension	points	to	enable	users	to	customize	and
extend	its	functionality.	In	this	book,	we	will	explore	these	interfaces	in	depth	and	provide
practical	real-world	examples	that	will	take	your	usage	of	Jenkins	to	the	next	level.

In	this	book,	you	will	learn	how	to	develop	and	test	your	own	Jenkins	plugin,	find	out	how
to	set	up	fully	automated	build	pipelines	and	development	processes,	discover	how	to
interact	with	the	API	and	CLI,	and	how	to	enhance	the	user	interface.

What	this	book	covers
Chapter	1,	Preparatory	Steps,	will	cover	the	initial	setup	steps—getting	your	development
environment	set	up,	an	overview	of	Jenkins	and	some	options	to	install	and	run	it	as	well
as	extend	the	basic	setup.	We	will	also	review	the	principles	of	Continuous	Integration,
which	are	explored	in	greater	detail	later.

Chapter	2,	Automating	the	Jenkins	UI,	will	discuss	how	several	common	issues	and
bottlenecks	may	be	alleviated	through	the	automation	and	adaptation	of	the	Jenkins
frontend.	Here,	we	will	look	at	four	fairly	typical	use	cases,	identify	the	root	cause	of	the
issues,	and	propose	some	possible	improvements	that	can	be	made	through	the	alteration
and	automation	of	the	GUI.

Chapter	3,	Jenkins	and	the	IDE,	builds	on	the	Continuous	Integration	principals	that	we
looked	at	earlier	and	provides	an	introduction	to	the	Mylyn	project.

It	then	details	how	to	set	up	a	process	that	enables	developers	to	interact	with	Jenkins
directly	from	within	their	IDE.	A	selection	of	examples	covers	Eclipse,	NetBeans,	and
IntelliJ.

Chapter	4,	The	API	and	the	CLI,	illustrates	how	we	can	automate	and	extend	Jenkins
through	its	API	and	CLI.	In	this	chapter,	we	will	illustrate	how	to	use	these	interfaces	by
working	through	the	high-level	“building	blocks”	of	an	example	“Information	Radiator”
project.

This	chapter	will	explain	how	to	create	a	dynamic	application	that	consumes	information
from	Jenkins	via	its	exposed	interfaces.

We	will	also	review	other	ways	in	which	you	could	extend	Jenkins	via	the	CLI—by
kicking	off	jobs	and	making	other	changes	to	Jenkins	automatically	and	remotely.

Chapter	5,	Extension	Points,	introduces	many	important	concepts	that	provide	a
foundation	for	the	Jenkins	Extension	points	topics	in	the	subsequent	chapters.	We	will	run
through	Java	interfaces,	Design	by	Contract,	abstract	classes,	and	Singletons.	We	will	then
take	a	look	at	how	these	patterns	are	used	in	the	real	world	when	we	define	our	own
Extension	Point	in	Jenkins.

Chapter	6,	Developing	Your	Own	Jenkins	Plugin,	will	combine	the	skills,	concepts,	and
tools	from	the	preceding	chapters	to	build	our	first	Jenkins	plugin.

We	will	take	a	look	at	Maven	and	learn	how	to	set	it	up	and	use	it	for	Jenkins	plugin
development.	We	will	then	create	our	first	Jenkins	plugin,	learn	how	to	install	it	locally,
and	then	learn	how	to	quickly	make,	build,	and	deploy	subsequent	changes	using	Maven.

Chapter	7,	Extending	Jenkins	Plugins,	makes	use	of	a	simple	plugin	with	the	“Hello
world”	functionality	we	created	in	the	previous	chapter	to	keep	the	focus	on	getting	to
grips	with	the	processes	and	tools.	This	chapter	takes	a	look	at	the	best	way	to	get	started
with	adding	your	own	implementations.	You	will	learn	how	to	reuse	existing	code	and
functionality	and	understand	how	and	where	to	find	them.

After	taking	a	look	at	some	existing	plugins	and	using	those	as	examples,	we	will	then
take	a	detailed	look	at	some	of	the	additional	resources	and	technologies	you	could	take
advantage	of	in	your	own	projects.

Chapter	8,	Testing	and	Debugging	Jenkins	Plugins,	explains	how	to	test	and	debug	your
own	code	and	how	to	apply	the	same	approach	to	existing	plugins	for	troubleshooting.

It	covers	running	tests	with	Maven,	examines	some	existing	tests	from	a	popular	plugin,
and	uses	these	to	demonstrate	how	you	can	adapt	these	approaches	to	suit	your	own
projects.

We	will	also	take	a	look	at	debugging	live	code	through	the	IDE	and	show	how	to
integrate	these	useful	functions	into	popular	development	IDEs.	The	final	section	of	this
chapter	will	introduce	the	inbuilt	Jenkins	Logger	Console.

Chapter	9,	Putting	Things	Together,	takes	a	look	at	how	Jenkins	can	be	extended	to	work
with	other	technologies	and	languages.	We	will	start	off	with	a	look	at	the	Jenkins
Scripting	console	and	see	how	useful	it	can	be	when	combined	with	some	Groovy
scripting	by	providing	some	examples.	We	will	then	discuss	developing	applications	using
Groovy,	Grails,	and	Gradle	as	possible	alternatives	to	Maven	and	Java.	The	final	part	of
this	chapter	covers	Jenkins	and	Docker	and	then	discusses	how	to	set	up	build	and
deployment	pipelines	for	iOS	and	Android	development.

What	you	need	for	this	book
The	reader	is	assumed	to	have	some	working	knowledge	of	Jenkins	and	programming	in
general,	an	interest	in	learning	the	different	options	to	take	things	to	the	next	level,	and	an
inclination	to	understand	how	to	customize	and	extend	Jenkins	to	suit	their	requirements
and	needs.

Who	this	book	is	for
This	book	is	aimed	primarily	at	developers	and	administrators	who	are	interested	in	taking
their	interaction	and	usage	of	Jenkins	to	the	next	level—extending	it	to	fit	their	needs,
interacting	with	Jenkins	via	its	interfaces,	and	developing	their	own	custom	unit-tested
plugins.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

<html>

		<head>

				<meta	http-equiv="refresh"	content="5">

				<style	type="text/css">

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

<html>

		<head>

				<meta	http-equiv="refresh"	content="5">

				<style	type="text/css">

Any	command-line	input	or	output	is	written	as	follows:

java	-jar	jenkins-cli.jar	-s	http://minty:8080/	get-job	VeryBasicJob

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Note	that	the
http://jenkins-ci.org/	home	page	also	hosts	Native	Installers	for	many	popular	operating
systems	under	the	Native	packages	column.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

http://jenkins-ci.org/

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Preparatory	Steps
In	this	first	chapter,	we	will	start	off	by	looking	at	Jenkins	from	several	different
perspectives;	how	to	obtain	and	run	it,	some	of	the	ways	and	the	reasons	people	use	it,	and
what	it	provides	to	them.	In	doing	so,	we	will	take	a	look	at	some	standard	use	cases	and
examine	how	a	Jenkins	installation	will	often	evolve	over	a	period	of	time—typically
starting	off	with	only	the	basic	installation	and	core	features,	then	progressively	becoming
more	customized	and	advanced	with	different	types	of	extensions.	We	will	start	off	with
“ready-made”	plugins,	and	then	progress	towards	extending	these	before	looking	at	how	to
develop	your	own	plugins.

We	will	then	summarize	the	high-level	aims	of	this	book,	and	give	the	details	of	what	you
should	hopefully	gain	from	them.

We	will	provide	an	overview	of	the	various	tools	and	the	environment	setup	that	you	will
need	in	order	to	run	the	practical	examples	covered	in	the	subsequent	chapters,	and	we
will	review	the	best	practices	of	Continuous	Integration	(CI)	by	identifying	some	of	the
ways	that	Jenkins	can	be	used	to	achieve	them.

Throughout	this	book,	it	is	assumed	that	you	already	have	some	working	knowledge	of
Jenkins,	so	we	will	not	spend	much	time	covering	the	basics,	such	as	installing	and
starting	Jenkins,	or	detailing	the	usage	of	standard	features	and	core	functions.

If	you	would	like	more	details	on	these	topics,	there	are	numerous	helpful	tutorials	and
examples	available	online;	the	Use	Jenkins	section	of	the	Jenkins	homepage,
https://jenkins-ci.org,	is	often	a	good	starting	point	for	help	with	general	setup	and	usage
questions.

https://jenkins-ci.org

Getting	started	with	Jenkins
As	a	Java	application,	Jenkins	can	be	installed	and	run	in	different	ways	depending	on
your	requirements,	personal	preferences,	and	the	environment	that	you	are	running	it	in.

The	simplest	and	easiest	approach	to	quickly	get	Jenkins	up	and	running	is	by	setting	up
Java,	downloading	the	latest	Jenkins	WAR	file	from	the	Jenkins	homepage	(www.jenkins-
ci.org),	and	then	simply	starting	it	from	the	command	line	like	this:

java	–jar	jenkins.war

The	following	figure	demonstrates	the	use	of	this	approach	by	running	just	two	simple
commands:

1.	 wget	http://mirrors.jenkins-ci.org/war/latest/jenkins.war:

This	command	downloads	the	latest	version	of	Jenkins	from	the	main	site.

wget	is	a	Linux	utility	that	fetches	files	from	the	Web—if	you	are	on	a	platform	that
does	not	have	wget,	you	can	simply	save	the	link	(the	jenkins.war	file)	via	your
browser	to	a	working	directory	instead.

The	URL	is	obtained	by	copying	the	Latest	&	Greatest	link	from	the	homepage	at
https://jenkins-ci.org/.	Note	that	there	is	also	an	option	to	download	and	use	the
Long-Term	Support	release	instead	of	the	current,	latest,	and	greatest,	as	explained
here:	https://wiki.jenkins-ci.org/display/JENKINS/LTS+Release+Line.

This	is	preferable	for	more	conservative	installations,	where	stability	is	more
important	than	having	latest	features.

2.	 java	–jar	jenkins.war:

This	second	command	tells	Java	to	run	the	WAR	file	that	we	just	downloaded	as	an
application,	which	produces	the	resulting	output	that	you	can	see	in	the	following
screenshot—Jenkins	unpacking	from	the	WAR	file,	checking	and	initializing	the
various	subsystems,	and	starting	up	a	process	on	port	8080:

http://www.jenkins-ci.org
https://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/LTS+Release+Line

Downloading	and	starting	Jenkins

This	simple	process	is	usually	all	that	is	required	to	both	download	the	latest	version	of
Jenkins	and	get	it	up	and	running.	You	should	now	be	able	to	access	the	web	interface	at

http://localhost:8080	through	your	browser	and	begin	setting	up	jobs	to	make	Jenkins
work	for	you:

The	Jenkins	start	page

Extending	the	basic	setup
When	you	exit	from	the	command	prompt	or	shell	that	started	the	process	that	we	looked
at	previously,	the	Jenkins	instance	will	stop	with	the	exit,	so	for	anything	beyond	a	very
quick	ad	hoc	test,	some	form	of	initialization	or	process	management	script	is	highly
recommended.	Such	a	script	can	also	be	easily	tailored	to	perform	a	few	“nice	to	have”
functions	for	you,	for	example,	things	such	as	these:

Starting	up	at	system	boot	time
Catering	to	stop|start|restart|status	requests
Redirecting	console	output	to	a	log	file	so	that	you	can	monitor	it	for	issues
Running	as	a	background/daemon	process
Running	on	a	nonstandard	port	by	setting	the	--httpPort=	parameter,	in	cases	where
port	8080	is	already	used	by	another	application
Binding	to	a	specific	network	interface,	rather	than	the	default	0.0.0.0	value	using
the	--httpListenAddress=	option

This	Ubuntu-based	example	script	from	the	home	page	demonstrates	many	of	the
previously	mentioned	features	of	Jenkins	that	is	running	under	Tomcat.	The	script	can	be
found	at	https://wiki.jenkins-ci.org/display/JENKINS/JenkinsLinuxStartupScript	and	is	as
follows:

#!/bin/sh

#

#	Startup	script	for	the	Jenkins	Continuous	Integration	server

#	(via	Jakarta	Tomcat	Java	Servlets	and	JSP	server)

#

#	chkconfig:	-	85	15

#	description:	Jakarta	Tomcat	Java	Servlets	and	JSP	server

#	processname:	jenkins

#	pidfile:	/home/jenkins/jenkins-tomcat.pid

#	Set	Tomcat	environment.

JENKINS_USER=jenkins

LOCKFILE=/var/lock/jenkins

export	PATH=/usr/local/bin:$PATH

export	HOME=/home/jenkins

export	JAVA_HOME=/usr/lib/jvm/java-6-sun

export	JENKINS_BASEDIR=/home/jenkins

export	TOMCAT_HOME=$JENKINS_BASEDIR/apache-tomcat-6.0.18

export	CATALINA_PID=$JENKINS_BASEDIR/jenkins-tomcat.pid

export	CATALINA_OPTS="-DJENKINS_HOME=$JENKINS_BASEDIR/jenkins-home	-Xmx512m	

-Djava.awt.headless=true"

#	Source	function	library.

.	/etc/rc.d/init.d/functions

[-f	$TOMCAT_HOME/bin/catalina.sh]	||	exit	0

export	PATH=$PATH:/usr/bin:/usr/local/bin

https://wiki.jenkins-ci.org/display/JENKINS/JenkinsLinuxStartupScript

#	See	how	we	were	called.

case	"$1"	in

		start)

								#	Start	daemon.

								echo	-n	"Starting	Tomcat:	"

								su	-p	-s	/bin/sh	$JENKINS_USER	-c	"$TOMCAT_HOME/bin/catalina.sh	

start"

								RETVAL=$?

								echo

								[$RETVAL	=	0]	&&	touch	$LOCKFILE

								;;

		stop)

								#	Stop	daemons.

								echo	-n	"Shutting	down	Tomcat:	"

								su	-p	-s	/bin/sh	$JENKINS_USER	-c	"$TOMCAT_HOME/bin/catalina.sh	

stop"

								RETVAL=$?

								echo

								[$RETVAL	=	0]	&&	rm	-f	$LOCKFILE

								;;

		restart)

								$0	stop

								$0	start

								;;

		condrestart)

							[-e	$LOCKFILE]	&&	$0	restart

							;;

		status)

								status	-p	$CATALINA_PID	-l	$(basename	$LOCKFILE)	jenkins

								;;

		*)

								echo	"Usage:	$0	{start|stop|restart|status}"

								exit	1

esac

exit	0

Note	that	the	http://jenkins-ci.org/	home	page	also	hosts	Native	Installers	for	many
popular	operating	systems	under	the	Native	packages	column.	These	pages	provide
download	links	and	installation	instructions	for	each	OS.

You	may	want	to	look	at	running	Jenkins	in	a	J2EE	container	too,	which	can	often	lead	to
a	more	seamless	fit	with	your	existing	software	stack	and	architecture.	This	may	mean	that
you	will	inherit	additional	benefits,	such	as	the	container’s	logging,	authentication,
authorization,	or	resilience.	Jenkins	can	be	run	with	many	popular	J2EE	compatible
containers,	including	the	following:

WebSphere
WebLogic
Tomcat
JBoss
Jetty
Jonas

There	are	more	init	script	examples	and	detailed	installation	instructions	readily

http://jenkins-ci.org/

available	on	the	Web,	which	should	cover	any	combination	of	operating	system	and
container	setup.	The	point	of	this	is	that	you	should	be	able	to	set	up	Jenkins	to	suit	your
environment	and	preferences.

For	the	purposes	of	this	book,	we	will	assume	that	Jenkins	is	being	run	directly	from	the
command	line	on	the	local	host.	If	you	are	using	a	J2EE	container	to	host	the	application
or	running	the	application	on	a	remote	host,	the	only	difference	you	will	notice	is	that	you
may	need	to	perform	additional	admin	and	deployment	steps.

Jenkins	evolution
Typically,	most	users	or	organizations	will	start	off	on	their	Jenkins	journey	by	setting	up	a
basic,	standard	Jenkins	installation	to	manage	a	few	simple	development	tasks.	The	most
common	use	is	to	build	your	source	code,	either	periodically	or	whenever	it	changes	in
your	central	repository	(Git,	Subversion,	and	so	on).

Using	Jenkins	to	automate	this	type	of	simple	and	repetitive	task	often	provides	a	lot	of
useful	benefits	very	quickly	and	easily.	Straight	out	of	the	box,	so	to	speak,	you	get	a
bundle	of	helpful	features,	such	as	task	scheduling	and	job	triggering,	building	and	testing
report	pages,	sending	out	email	notifications	and	alerts	when	there	are	new	issues,	and
providing	rapid	and	live	feedback	of	how	healthy	(or	not!)	your	code	base	currently	is.	If
you	don’t	already	have	a	tool	in	place	to	provide	these	things,	then	setting	up	a	standard
Jenkins	instance	will	provide	these	initial	basic	features,	which	on	their	own	may	well
transform	your	development	process.

The	next	logical	step	after	this	is	to	gradually	add	a	little	more	intelligence	and	complexity
to	the	setup—does	the	code	compile	ok?	How	many	unit	tests	have	been	passed	now,	how
long	does	the	application	take	to	compile?	Oh,	and	could	we	show	on	a	web	page	who	has
changed	which	parts	of	the	code	base?	Is	our	application	running	faster	or	better	than	it
was	previously,	and	is	it	stable?	Even	before	we	begin	to	add	any	type	of	extension	or
customization,	the	core	Jenkins	installation	provides	a	plethora	of	options	here—you	can
choose	to	build	your	application	on	any	platform	that	runs	Java	(which	means	pretty	much
anywhere	these	days),	and	you	can	also	do	this	in	whatever	way	that	suits	you	and	your
current	setup	the	best,	including	using	the	standard	and	popular	build	tools	such	as	Ant	or
Maven,	and/or	re-using	your	existing	Ant	or	Maven	build	scripts,	or	your	Linux	Shell	or
Windows	DOS	scripts.

You	can	also	easily	set	up	a	cross-platform	environment	by	deploying	Jenkins	Slave
Nodes,	which	will	allow	you	to	run	different	jobs	on	different	hosts.	This	can	be	useful	in
the	environments	that	use	a	combination	of	operating	systems;	for	example,	your
application	runs	on	Linux,	and	you	want	to	run	your	browser-based	tests	using	Internet
Explorer	on	a	Windows	host.

This	ability	to	act	as	an	easily	configurable	“wrapper”	for	your	existing	process,	combined
with	the	flexible	nature	of	Jenkins,	makes	it	very	easy	to	adapt	your	particular	setup	to	suit
your	requirements	with	minimal	change	or	interruption.	This	makes	Jenkins	far	easier	to
implement	than	having	to	change	your	existing	build	and	deployment	processes	and
practices	just	to	accommodate	the	requirements	of	a	new	tool.

After	this	stage,	the	benefits	of	setting	up	a	Continuous	Integration	environment	often
become	quite	obvious:	if	we	can	automatically	build	our	code	and	package	our	application
so	easily,	wouldn’t	it	be	great	if	we	could	go	on	to	deploy	it	too?	And	then,	if	we	did	that,
we	could	automatically	test	how	our	new	application	performs	on	a	replica	of	the	target
platform!

On	reaching	this	point,	Jenkins	will	be	a	pivotal	tool	in	your	Continuous	Integration

process,	and	the	more	you	can	extend	it	to	suit	your	growing	and	specific	requirements,
the	more	benefit	you	will	receive	from	it.

This	leads	us	to	extending	Jenkins,	which	is	what	we	will	be	looking	at	in	the	rest	of	the
book.

The	simplest	way	to	extend	Jenkins	is	through	its	fantastic	and	ever-expanding	wealth	of
plugins.	It	is	always	recommended	and	informative	to	browse	through	them;	existing
plugins	are	frequently	being	improved	upon	and	updated	with	new	features,	and	new
plugins	are	being	added	to	the	list	all	the	time.	We	are	going	to	do	more	than	just	review	a
few	popular	plugins	here	though—by	the	end	of	this	book,	you	should	have	the	ability	to
take	your	usage	of	Jenkins	to	the	next	level	to	create	your	own	custom	plugins	and
extensions	and	work	with	the	many	features	and	interfaces	that	Jenkins	provides	us	with
for	extension	and	interaction.

We	will	be	taking	a	detailed	look	at	the	following:

The	different	ways	in	which	we	can	use	the	existing	features
Interacting	with	Jenkins	through	its	various	interfaces	and	APIs
How	to	interact	with	Jenkins	from	within	your	IDE
Ways	to	build	upon	the	existing	functionality	to	suit	your	needs
Developing,	testing,	and	building	your	own	custom	Jenkins	extension

Here	are	the	main	tools	that	we	will	be	using	to	help	us	extend	Jenkins,	along	with	some
information	on	setting	them	up,	and	the	sources	for	further	help	and	information	if
required:

Java	Development	Kit	(JDK):	You	will	need	a	version	of	this	at	the	same	bit	level
as	your	Java	IDE,	that	is,	both	will	need	to	be	32	bit	or	64	bit,	depending	on	your
architecture	and	preference.	You	can	choose	from	IBM,	Oracle,	or	OpenJDK	6.0	or
later.	Each	vendor	supplies	installation	instructions	for	all	major	platforms.
Java	IDE:	We	will	mainly	be	using	Eclipse,	but	will	cater	to	NetBeans	and	IntelliJ
too,	where	possible.

The	most	recent	versions	of	each	of	these	IDEs	are	available	at	their	respective
websites:

https://www.eclipse.org/downloads/
https://netbeans.org/downloads/
https://www.jetbrains.com/idea/download/

Mylyn:	This	is	used	to	communicate	with	Jenkins	from	our	IDE.	If	Mylyn	is	not
already	included	in	your	IDE,	you	can	download	it	from	the	Eclipse	site	here:
http://www.eclipse.org/mylyn/downloads/.	We	will	cover	this	in	detail	in	Chapter	3,
Jenkins	and	the	IDE.
Maven:	We	will	be	using	Maven	3	to	build	the	Jenkins	source	code	and	our	own
custom	plugin.	Maven	is	a	Java	tool,	so	it	will	need	to	know	about	the	JDK	of	your
system.
Jenkins	Source:	This	will	be	downloaded	by	Maven.

https://www.eclipse.org/downloads/
https://netbeans.org/downloads/
https://www.jetbrains.com/idea/download/
http://www.eclipse.org/mylyn/downloads/

Git:	On	most	Linux	platforms,	the	equivalent	of	sudo	apt-get	install	git	should
suffice.	On	Mac,	there	are	several	options,	including	the	git-osx	installer	on
Sourceforge.	For	Microsoft	Windows,	there	is	an	executable	installer	available	at
http://msysgit.github.io/.

We	will	go	in	to	more	specifics	on	the	installation	and	usage	of	each	of	these	components
as	we	use	them	in	the	later	chapters.

http://msysgit.github.io/

Continuous	Integration	with	Jenkins
Before	we	conclude	this	chapter,	here	is	a	list	of	the	key	practices	of	Continuous
Integration	(as	defined	by	Martin	Fowler	in	2006)	with	the	examples	of	the	ways	in	which
Jenkins	can	be	used	to	help	you	achieve	them:

Maintain	a	Single	Source	Repository:	Jenkins	can	interact	with	all	modern	source
code	and	version	control	repositories—some	abilities	are	built-in,	others	can	be
added	as	extensions.
Automate	the	Build:	As	described	earlier	in	the	use	cases,	this	is	one	of	the	core
aims	of	Jenkins	and	often	the	main	driver	to	start	using	Jenkins.
Make	Your	Build	Self-Testing:	This	is	usually	the	second	step	in	setting	up	a	CI
environment	with	Jenkins—once	you	automate	the	building	of	the	code,	automating
the	tests	as	well	is	a	natural	progression.
Everyone	Commits	To	the	Mainline	Every	Day:	We	can’t	really	force	developers
to	do	this,	unfortunately.	However,	we	can	quite	easily	highlight	and	report	who	is
doing—or	not	doing—what,	which	should	eventually	help	them	learn	to	follow	this
best	practice.
Every	Commit	Should	Build	the	Mainline	on	an	Integration	Machine:	Builds	can
be	triggered	by	developer	commits,	and	Jenkins	Slave	Nodes	can	be	used	to	build	and
provide	accurate	replica	environments	to	build	upon.
Fix	Broken	Builds	Immediately:	This	is	another	developer	best	practice	that	needs
to	be	adopted—when	Jenkins	shows	red,	the	top	focus	should	be	on	fixing	the	issue
until	it	shows	green.	No	one	should	commit	new	changes	while	the	build	is	broken,
and	Jenkins	can	be	configured	to	communicate	the	current	status	in	the	most	effective
way.
Keep	the	Build	Fast:	By	offloading	and	spreading	work	to	distributed	Slave	Nodes
and	by	breaking	down	builds	to	identify	and	focus	on	the	areas	that	have	changed,
Jenkins	can	be	tuned	to	provide	a	rapid	response	to	changes—a	good	target	would	be
to	check	in	a	change	and	obtain	a	clear	indication	of	the	result	or	impact	under	10
minutes.
Test	in	a	Clone	of	the	Production	Environment:	After	compiling	the	new	change,
downstream	Jenkins	jobs	can	be	created	that	will	prepare	the	environment	and	take	it
to	the	required	level—applying	database	changes,	starting	up	dependent	processes,
and	deploying	other	prerequisites.	Using	virtual	machines	or	containers	in
conjunction	with	Jenkins	to	automatically	start	up	environments	in	a	known-good
state	can	be	very	useful	here.
Make	it	Easy	for	Anyone	to	Get	the	Latest	Executable:	Jenkins	can	be	set	up	to
act	as	a	web	server	hosting	the	latest	version	at	a	known	location	so	that	everyone
(and	other	processes/consumers)	can	easily	fetch	it,	or	it	can	also	be	used	to	send	out
details	and	links	to	interested	parties	whenever	a	new	version	has	been	uploaded	to
Nexus,	Artifactory,	and	so	on.
Everyone	can	see	what’s	happening:	There	are	many	ways	in	which	Jenkins
communications	can	be	extended—email	alerts,	desktop	notifications,	Information

Radiators,	RSS	feeds,	Instant	Messaging,	and	many	more—from	lava	lamps	and
traffic	lights	to	the	ubiquitous	toy	rocket	launchers!
Automate	Deployment:	This	is	usually	a	logical	progression	of	the	Build	->	Test
->	Deploy	automation	sequence,	and	Jenkins	can	help	in	many	ways;	with	Slave
Nodes	running	on	the	deployment	host,	or	jobs	set	up	to	connect	to	the	target	and
update	it	with	the	most	recently	built	artifact.

The	benefits	that	can	be	realized	once	you	have	achieved	the	preceding	best	practices	are
often	many	and	significant—your	team	will	release	software	of	higher	quality	and	will	do
this	more	quickly	and	for	less	cost	than	before.	However,	setting	up	an	automated	build,
test,	and	deployment	pipeline	will	never	be	enough	in	itself;	the	tests,	environment,	and
culture	must	be	of	sufficient	quality	too,	and	having	the	developers,	managers,	and
business	owners	“buy	in”	to	the	processes	and	practices	often	makes	all	the	difference.

Summary
In	this	preparatory	chapter,	we	have	taken	a	look	at	the	basics	of	Jenkins;	how	it	is	used
from	both	functional	and	practical	points	of	view.	We	have	run	through	a	high-level
overview	of	the	toolset	that	we	will	be	using	to	extend	Jenkins	in	the	following	chapters
and	reviewed	the	best	practices	for	Continuous	Integration	along	with	the	ways	in	which
Jenkins	can	be	used	to	help	your	team	achieve	them.

In	the	next	chapter,	we	will	take	a	look	at	the	ways	in	which	we	can	extend	the	Jenkins
user	interface	to	make	it	more	productive	and	intelligent,	and	how	we	can	extend	the	user
experience	to	make	life	easier	and	more	productive	for	end	users,	as	well	as	for	Jenkins
admins,	build	scripts,	and	processes.

Chapter	2.	Automating	the	Jenkins	UI
In	this	chapter,	we	will	be	looking	at	a	selection	of	different	approaches	that	can	be	used	to
alter	and	enhance	the	Jenkins	user	interface	(UI).

As	with	Jenkins	as	a	whole,	the	Jenkins	UI	is	highly	customizable	and	has	been	clearly
designed	from	the	outset	to	be	adaptable	and	extendable	so	that	you	can	tailor	and	adapt	it
to	fit	your	particular	requirements	and	environment.

There	are	different	ways	in	which	you	can	customize	the	UI,	ranging	from	purely	look	and
feel	cosmetic	alterations	to	user	input	refinements,	and	then	towards	the	automatic	creation
of	Jenkins	jobs	and	setting	up	a	dynamic	Slave	Node	provisioning	system.

The	focus	and	the	most	suitable	approach	is	usually	driven	by	the	way	in	which	Jenkins
will	be	used;	focusing	on	the	areas	that	matter	the	most	in	a	particular	situation	is	usually
where	the	most	benefit	is	to	be	gained.

We	will	examine	four	of	the	most	common	use	case	scenarios	in	this	chapter	and	the
different	ways	in	which	the	automation	and	development	of	the	Jenkins	UI	could	be
helpful	for	each	case.

Use	case	scenario	1	–	a	large	number	of
jobs
A	single	Jenkins	instance	can	contain	many	jobs.	The	practical	limit	varies	widely	and
depends	on	multiple	factors,	such	as	the	following:

Hardware	resources	such	as	RAM,	CPU,	disk,	and	network	performance
Slave	nodes—how	many	there	are,	how	they	are	set	up,	and	their	performance
How	well	the	jobs	are	distributed	across	the	Master	and	Slave	nodes
Settings	of	individual	jobs;	their	size,	function,	history,	and	retention

It’s	not	unusual	for	a	Jenkins	instance	to	have	over	1,000	jobs,	or	around	100	Slave	nodes
attached	to	a	Master	node.

Managing	the	performance	load	that	this	causes	is	a	big	task	in	itself,	and	Jenkins	also
needs	to	manage	the	presentation	and	housekeeping	of	these	jobs—your	users	will	not
want	to	look	through	more	than	1,000	jobs	just	to	search	for	the	one	they	need,	and	we
also	need	to	make	sure	that	old	jobs	are	cleaned	up	or	archived	and	that	new	ones	can	be
created	both	easily	and	accurately.

If	you	can	reduce	the	number	of	jobs	you	require,	then	administration	and	resource
overheads	will	be	reduced	as	a	result,	and	performance,	usability,	and	reliability	will	also
be	increased,	and	the	user	experience	will	be	improved.

Some	planning	and	a	little	automation	of	the	UI	can	often	help	us	achieve	this—let’s	take
a	look	at	a	few	scenarios	and	the	possible	solutions.

If	the	most	pressing	issue	or	bottleneck	is	that	there	are	too	many	jobs,	it	would	be	helpful
to	first	understand	where	the	need	for	all	these	jobs	originates,	and	then	see	what	we	can
do	about	alleviating	that.

Frequently,	development	teams	work	in	Sprints	and/or	Releases.	This	usually	means
having	a	mainline	development	stream	and	one	or	more	branch	streams.	Often	this
convention	will	be	followed	in	Jenkins	as	well—we	may	want	to	set	up	Jenkins	jobs	to
build	and	then	deploy	Sprint	3	or	Release	49	code	to	integration	environments,	while
deploying	our	mainline	changes	to	CI	and	development	environments.	At	the	same	time,
there	may	be	a	logical	or	business	requirement	to	support	a	production	version	of
everything,	just	in	case	something	goes	wrong.

This	could	mean	setting	up	jobs	that	are	named	accordingly,	such	as	Sprint	3,	and	having
this	value	hardcoded	in	the	configuration	with	a	pseudocode,	something	along	the	lines	of
fetch	the	Sprint	3	war	file	and	deploy	it	to	the	Sprint	3	server….

These	jobs	will	have	a	finite	(and	probably	pretty	short)	life	and	will	then	need	cleaning
up	or	updating	with	new	values	for	the	next	Sprint	or	Release.	This	type	of	regular	and
manual	maintenance	becomes	a	headache	very	quickly,	which	further	increases	the
possibility	of	human	error	leading	to	the	wrong	thing	being	deployed	to	the	wrong	place.

One	simple	solution	for	this	common	scenario	is	to	make	use	of	Jenkins	Environment

Variables.	If	you	navigate	to	Manage	Jenkins	|	Configure	System	|	Global	Properties,
you	can	create	and	define	your	own	key-value	pairs,	which	are	immediately	available	to
every	job	on	any	node:

The	preceding	screenshot	shows	a	few	simplistic	examples	of	the	kinds	of	key-value	pairs
that	you	may	want	to	set	up—they	can	be	whatever	you	like	or	need	though.

Using	this	approach	means	that,	rather	than	creating	rafts	of	new	jobs	per	Release	or
Sprint	and	catering	to	multiple	concurrent	Releases	that	will	become	obsolete	shortly,	you
could	just	define	two	or	three	permanent	sets	of	jobs	that	will	pick	up	the	key-value	pairs
from	the	location	and	use	these	to	drive	what	they	do—our	job	configuration	pseudocode
then	changes.	Initially,	this	in	the	form	of	the	following:

fetch	the	Sprint	3	war	file	and	deploy	it	to	the	Sprint	3	server…

This	changes	to	something	more	generic	along	the	lines	of	this:

fetch	the	${SPRINT}	war	file	and	deploy	it	to	the	${SPRINT}	server…

This	simple	alteration	to	the	approach	can,	in	some	circumstances,	allow	you	to	greatly

reduce	the	number	of	Jenkins	jobs	by	simply	(and	centrally)	updating	these	Environment
Variables	to	the	new	properties	at	the	required	point	of	your	development	life	cycle—for
example,	at	the	end	of	a	Release,	Sprint,	or	Iteration	cycle.

This	one	central	configuration	change	will	immediately	update	all	of	the	jobs	so	that	they
can	use	these	new	values,	and	this	approach	could	be	extended	to	include	information
about	many	other	aspects	of	build,	test,	and	deployment	processes,	the	branch	location	to
checkout	and	build	from,	or	the	environment	or	host	that	the	built	artifacts	should	be
deployed	to,	and	so	on.	The	following	screenshot	shows	the	Console	Output	page	where
the	change	is	reflected:

If	you	need	to	create	new	jobs	per	Iteration,	there	are	also	ways	in	which	you	can
automate	the	UI	to	simplify	this	process—we	can	use	Jenkins	to	manage	Jenkins.

If	you	take	a	look	at	your	Jenkins	home	directory	on	the	filesystem	(as	defined	by	the
JENKINS_HOME	variable),	you	will	see	the	structure	used	to	store	the	settings	for	each
Jenkins	job:	each	job	is	represented	by	a	folder	bearing	the	name	of	the	job	it	represents,
with	each	folder	containing	an	XML	file	called	config.xml.	Each	config.xml	file
contains	the	settings	and	information	for	that	job.

There	are	normally	several	other	files	and	folders	too,	such	as	a	file	to	track	the	number	of
the	next	build	(nextBuildNumber)	and	folders	that	are	used	to	track	and	store	history	and
artifacts	created	by	previous	builds.

The	bare	bones	of	a	Jenkins	job	are,	at	its	most	basic	form,	as	simple	as	this:

A	folder	named	after	the	job—for	example,	VeryBasicJob
Inside	this	folder,	a	file	called	config.xml
Inside	this	file,	some	XML	along	the	lines	of	the	following:

<?xml	version='1.0'	encoding='UTF-8'?>

<project>

		<actions/>

		<description>A	bare-bones	Jenkins	job</description>

		<keepDependencies>false</keepDependencies>

		<properties/>

		<scm	class="hudson.scm.NullSCM"/>

		<canRoam>true</canRoam>

		<disabled>false</disabled>

		

<blockBuildWhenDownstreamBuilding>false</blockBuildWhenDownstreamBuildi

ng>

		

<blockBuildWhenUpstreamBuilding>false</blockBuildWhenUpstreamBuilding>

		<triggers/>

		<concurrentBuild>false</concurrentBuild>

		<builders>

				<hudson.tasks.Shell>

						<command>echo	"A	very	simple	shell-based	job"</command>

				</hudson.tasks.Shell>

		</builders>

		<publishers/>

		<buildWrappers/>

</project>

As	you	can	see,	this	minimal	job	contains	some	very	simple	XML	tags	and	data	that	detail
the	<description>	and	<command>	tags,	and	various	other	settings	used	by	Jenkins.

The	Jenkins	UI	will	interpret	this	folder	and	the	XML	file	and	display	the	Config	page
like	this:

When	the	source	configuration	and	the	frontend	UI	are	seen	side-by-side	just	as	you	can
see	in	the	preceding	screenshot,	it	becomes	obvious	that	changing	the	XML	file	should
change	the	job	displayed	by	the	UI	and	vice-versa.

So	if	we	could	automatically	create	these	XML	files	and	load	them	in	to	Jenkins	somehow,
we	should	then	also	be	able	to	automate	and	do	version	control	of	all	of	our	Jenkins	jobs
and	allow	end	users	to	apply	whatever	customization	they	require	at	runtime,	removing
the	need	for	manual	intervention.

Fetching	folder	structures	and	XML	files	from	Version	Control,	updating	these	XML	files
with	user-selected	values,	and	loading	the	resultant	configuration	into	our	Jenkins	instance
are	just	the	sort	of	tasks	for	which	Jenkins	is	the	ideal	tool—we	can	set	up	Jenkins	to	set
up	Jenkins!

In	short,	this	process	can	be	achieved	by	first	templating	your	XML	files—replace	all
references	to	the	variable	factors	(such	as	references	to	Release,	Sprint,	Hostnames,	and
so	on)	with	something	easily	identifiable.	Then,	create	the	Jenkins	jobs	that	enable	a	user
to	specify	what	they	would	like	to	use	in	place	of	these	placeholder	values.

The	next	step	is	to	perform	some	string	replacement	(using	your	preferred	tool—Perl,

Sed,	Awk,	and	so	on)	to	substitute	the	placeholder	values	with	the	user-selected	ones,	and
then	you	just	need	to	load	the	new	configuration	into	Jenkins	at	runtime.

To	demonstrate	one	possible	approach	to	this,	here	is	a	basic	functional	shell	script	that
does	the	job	with	comments	explaining	what’s	going	on	at	each	step.	This	uses	the
Jenkins-cli.jar	file,	which	you	can	download	and	find	out	more	about	by	going	to	your
Jenkins	instance	and	adding	/cli	to	the	URL,	for	example:
http://myjenkins.instance:8080/cli.

Here	you	will	also	find	detailed	help	and	information	on	the	many	features	and	abilities
that	Jenkins	offers.

#	set	up	the	variables	required	for	this	to	work:

export	JAVA="/usr/bin/java"

#	Location	&	port	of	your	Jenkins	server

export	HOST=http://myjenkinshost:8080

#	location	of	the	Jenkins	CLI	jar	file

export	CLI_JAR="/tool/	jenkins-cli.jar"

#	a	simple	counter	to	track	the	number	of	jobs	created

export	COUNTER=0

#	the	location	of	the	customized	config.xml	files	to	load

export	WORKDIR="/home/jenkins_user/jobstoload"

#	a	simple	for	loop	to	iterate	through	each	job:

for	JobName	in	`ls	$WORKDIR`

do	echo	"About	to	create	job	number	${COUNTER}	with	name	${JobName}"

${JAVA}	-jar	${CLI_JAR}	-s	${HOST}	create-job	${JobName}	<	

$WORKDIR/${JobName}/config.xml

		echo	"${JobName}	created."

		let	COUNTER++

		echo	"	"

done

This	simple	example,	when	set	up	in	a	Jenkins	job,	could	be	adapted	to	allow	your	users	to
create	(or	clean	up)	new	Jenkins	jobs	quickly,	easily,	and	reliably	by	pulling	templates
from	version	control	and	allowing	the	user	to	select	from	a	predefined	and	valid	set	of
options.

Use	case	scenario	2	–	multiple	hosts
The	Jenkins	UI	can	also	be	tailored	to	help	in	managing	installations	that	require	a	large
numbers	of	Slave	hosts.	This	may	be	required	to	improve	the	performance	of	builds	or	test
runs	by	distributing	the	load	to	other	systems,	or	wherever	Jenkins	is	used	to	perform
functions	spanning	a	multiple-host	Operating	System—something	that	Jenkins	can	do
very	easily	through	the	built-in	JNLP	functionality.

Often,	testing	requirements	dictate	that	a	wide	variety	of	different	nodes	running	varying
combinations	of	OSes	and	software	are	essential—this	is	common	when	you	have	an
application	that	needs	testing	on	different	versions	of	Internet	Explorer;	each	version
requires	a	different	Windows	host,	as	each	host	can	only	support	one	version	of	the
browser	at	a	time.

Managing	multiple	and	varying	Slave	Nodes	can	be	problematic;	however,	the	Jenkins	UI
provides	several	features	that	can	help	to	simplify	and	automate	this	aspect.

One	of	the	simplest	approaches	to	manage	instances	with	many	Slave	nodes	is	to	use	a
Slave	labeling	scheme	and	a	naming	convention	that	describes	the	abilities	or	functions
that	the	individual	node	perform.

To	do	this,	you	first	need	to	label	your	Slave	nodes—this	can	be	done	as	and	when	they
are	created,	or	you	can	go	back	to	existing	Slave	Nodes	and	label	them	as	desired—note
the	multiple	labels	specified	in	the	following	Slave	definition	page:

As	you	can	see,	this	simple	Slave	has	been	given	multiple	labels	of	tomcat,	java6,	and
integration.

We	can	now	create	or	amend	a	job	and	select	the	Restrict	where	this	project	can	be	run
option,	as	shown	in	the	following	screenshot:

If	we	enter	a	label	that	matches	one	or	more	existing	labels	(integration	in	this	instance),
then	this	job	will	be	run	on	a	node	matching	this	label.	In	cases	where	there	are	multiple
matches,	the	job	will	be	run	on	just	one	of	the	nodes.

This	simple	yet	extremely	powerful	UI	feature	enables	you	to	distribute	the	load	across
multiple	nodes.	The	nodes	may	perform	different	functions,	or	they	could	be	set	up	with
different	abilities—the	labels	can	be	whatever	that	helps	you	to	decide	what	is	best	for
your	situation.

You	could	decide	to	distinguish	between	the	physical	characteristics	of	your	nodes,	such
as	those	with	a	large	free	disk	space,	more	memory	or	fast	processors,	or	ones	that	have
local	databases	or	code	deployments	at	the	desired	level,	or	with	application	servers	or
other	supporting	tools	on	them.	This	way	you	can	not	only	distribute	the	load,	but	also
maximize	performance	and	reduce	turnaround	time	by	putting	the	right	jobs	on	the	hosts
that	are	best	suited	for	them,	and	by	pooling	your	resources	to	fine-tune	the	response	time
of	the	various	build	tasks—getting	the	urgent	tasks	turned	around	as	quickly	as	possible
and	leaving	the	less	urgent	jobs	queued	on	a	pool	of	dedicated	servers.

This	approach	can	be	taken	further	using	the	Swarm	plugin:	https://wiki.jenkins-
ci.org/display/JENKINS/Swarm+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Swarm+Plugin

This	plugin	provides	an	added	functionality	that	enables	you	to	automatically	provision
and	connect	new	Slave	Nodes	via	a	UDP	broadcast	that	discovers	and	connects	new	nodes
to	the	existing	Master	node,	thereby	creating	an	ad	hoc	cluster	that	you	can	tailor	to	meet
demands.

You	can	use	this	to	set	things	up	so	that	when	the	build	queue	reaches	a	predefined
threshold,	new	nodes	will	be	dynamically	provisioned	and	added	to	the	pool	of	available
nodes.	You	need	to	install	the	feature	on	the	Master	node	and	use	the	command-line	client
on	the	new	Slave	nodes.

Swarm	nodes	can	also	be	assigned	multiple	labels	at	creation	time	through	the	-labels
argument	in	the	CLI.	These	values	can	additionally	be	set	by	the	script	that	creates	them;
for	example,	the	script	could	check	for	the	existence	of	a	local	Oracle	installation	or	a	high
percentage	of	free	disk	space	and	then	use	these	results	to	decide	which	labels	to	apply	to
itself—database,	performance,	java6,	tomcat,	and	so	on	accordingly.

Another	very	powerful	tool	for	dynamic	host	provisioning	and	management	is	Docker,
and,	not	surprisingly,	there	is	a	Jenkins	plugin	available	for	this	too:

https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

Docker	allows	you	to	quickly	and	easily	create	and	manage	Docker	Images	that	run	in
Docker	Containers.	These	are	quite	similar	in	practice	to	virtual	machines,	but	are
smaller	and	of	lighter	weight,	and	therefore	far	quicker	and	easier	to	provision	than
traditional	VMs.

Docker	Images	can	also	be	version	controlled	via	a	Docker	Registry,	which	works	like	a
Git	or	Subversion	repository	for	virtual	machines;	you	can	pull	an	existing	Image	from	the
Docker	Index	and	update	it	to	suit	your	requirements	(as	you	would	for	a	virtual	machine
—performing	tasks	such	as	deploying	Tomcat,	installing	and	configuring	Apache,
uploading	some	scripts,	adding	a	version	of	Java,	or	installing	Jenkins).	Once	you	have
customized	your	image,	you	can	optionally	push/publish	it	back	to	the	index	in	exactly	the
same	state	that	you	created	but	under	a	new	name,	thus	creating	a	template	Slave	that	you
can	provision	both	rapidly	and	reliably	to	any	platform	that	runs	Docker.	You	can	even	run
Docker	on	virtual	machines—the	possibilities	that	this	approach	provides	are	very
interesting,	and	we	will	look	at	this	in	a	little	more	detail	in	Chapter	9	Putting	Things
Together.

https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

Use	case	scenario	3	–	helping	your	users
through	UI	automation
Customizing	and	automating	the	Jenkins	user	interface	can	help	and	empower	users	of
your	Jenkins	instance	to	help	themselves.

By	ensuring	that	it	is	possible	only	for	your	users	to	input	valid	data,	we	can	greatly
reduce	the	risk	of	invalid	input	and	the	resulting	issues,	which	should	improve	the	user
experience	too.

The	most	common	way	to	do	this	is	to	validate	the	user	input	at	runtime.	For	example,	if
your	job	prompts	the	user	to	enter	a	day	of	the	week	or	a	build	number,	you	may	assign
this	to	a	variable	called	something	like	$WEEKDAY	or	$MY_BUILD_NUM	respectively.

We	can	then	set	up	our	job	to	ensure	that	the	supplied	user	data	is	valid—if	the	value	of
$WEEKDAY	is	not	a	valid	day	of	the	week,	or	the	user	has	supplied	the	build	number	as
Build	Two	instead	of	an	integer	value	that	we	may	have	been	hoping	for,	we	can	cause	the
build	to	fail	with	an	error	message	explaining	what	the	user	has	done	wrong	and	how	to
correct	it,	rather	than	allowing	our	job	to	carry	on	regardless	and	letting	it	attempt	to
perform	a	function	or	create	something	that	we	know	to	be	invalid.

It	is	also	good	practice	and	generally	helpful	for	all	concerned	if	you	can	let	your	users
know	what	you	expect—this	is	easily	done	by	setting	the	description	next	to	the	input	box
like	this:

At	runtime,	this	configuration	will	provide	the	user	with	a	description	of	what	we	would
like	them	to	enter,	and	by	setting	a	default	value	of	0,	we	can	give	them	another	hint.

This	Jenkins	job	could	then	check	that	the	value	of	$MY_BUILD_NUM	is	(as	we’d	hoped	and
requested)	a	numerical	value	greater	than	zero	and	less	than	101,	and	then	we	can	be
reasonably	happy	that	things	are	ok	to	continue.

It	is	often	much	safer	to	take	the	next	logical	step	and	restrict	the	options	that	are	left	open

to	the	users.	This	further	reduces	the	risks	and	also	makes	the	experience	nicer	for	the
users—they	may	only	run	certain	jobs	occasionally,	and	expecting	them	to	remember	what
you	want	may	be	a	bit	much	to	ask	at	times.	This	can	be	achieved	by	presenting	them	with
a	list	of	valid	options	and	ensuring	that	they	pick	one	of	them:

The	preceding	information	will	be	presented	to	the	user	at	runtime	like	this:

This	approach	should	hopefully	be	much	more	robust—so	long	as	we	remember	to	check
that	the	value	of	${WEEKDAY}	is	not	equal	to	Please	Select…	before	we	attempt	to	use
it!

This	approach	can	be	extended	further	by	pulling	in	data	from	other	sources	and
dynamically	building	up	the	options	that	are	available	to	the	user	at	runtime.

Another	useful	and	more	powerful	example	is	the	ability	to	populate	a	selection	list	with
the	values	derived	from	current	Subversion	Tags.

This	can	be	done	through	the	List	Subversion	Tags	(and	more)	option	for	parameterized
builds.	This	allows	you	to	present	the	user	with	a	current	list	of	available	tags	to	select
from—as	an	example,	these	tags	could	be	created	by	other	Jenkins	jobs	and	may	contain	a
list	of	candidate	builds	that	the	user	can	select	from,	to	have	a	build	deployed	to	an

environment.

Suppose	you	have	a	Subversion	repository	with	the	following	structure:
https://subversionrepo/mainproject/tags/Build_12.56

https://subversionrepo/mainproject/tags/Build_14.78

https://subversionrepo/mainproject/tags/Build_18.20

In	this	case,	the	user	will	be	presented	with	a	drop-down	menu	offering	a	choice	of	one	of
these	three	builds.

The	option	that	the	user	selects	is	assigned	at	runtime	to	the	variable	that	you	created,	say
$BUILD_TO_DEPLOY,	and	your	job	can	then	use	this	selection	to	check	out	the	requested
build	and	deploy	it	using	the	SVN	URL	combined	with	the	user’s	preferred	option:
https://subversionrepo/mainproject/tags/${BUILD_TO_DEPLOY}

This	functionality	is	provided	as	a	part	of	the	Subversion	plugin,	which	is	now	a	part	of
the	core	Jenkins	build.

There	are	many	other	plugins	and	features	that	you	can	use	to	structure	and	improve	your
UI	experience—the	built-in	Jenkins	Views	functionality	allows	you	to	create	a	dynamic
list	of	jobs	matching	your	criteria.	This	can	be	expressed	as	a	simple	regular	expression	so
that	all	the	matching	jobs	will	be	presented	in	one	view.	This	works	especially	well	when
combined	with	a	sensible	naming	convention	for	jobs.

Other	approaches	that	may	improve	the	user	experience	include	setting	up	pipelines	that
manage	job	execution	and	flow.	By	setting	up	processes	that	the	user	can	initiate	easily,
which	will	then	carry	on	to	work	through	a	sequence	of	other	jobs,	the	user	only	needs	to
trigger	the	first	of	several	actions,	like	knocking	over	a	line	of	dominoes,	rather	than
trigger	each	build	after	checking	that	the	previous	build	has	completed	and	checking	its
stated	output.

This	can	be	achieved	by	simply	using	the	built-in	Build	other	projects	option	under	Post-
Build	Actions	for	each	job	to	create	a	simple	sequence.	Using	the	various	trigger	options,
we	can	fine-tune	things	slightly	so	that	certain	jobs	will	stop	the	process	if	they	have	an
issue,	or	can	be	set	to	carry	on	regardless,	if	appropriate.

If	you	would	like	to	add	more	options,	there	are	plenty	of	plugins	readily	available	to	help
you.	The	Build	Pipeline	plugin	offers	some	useful	features,	and	the	Join	plugin	can	be
incredibly	useful.	If	you	would	like	to	run	multiple	jobs	concurrently,	then	wait	for	them
to	complete	before	continuing	and	triggering	the	next	job—as	ever,	there’s	a	Jenkins
plugin	for	most	occasions!

Use	case	scenario	4	–	UI	tweaks
Sometimes	Jenkins	is	set	up	and	then	left	running	in	the	background	doing	its	thing;	it’s
rarely	checked	upon	or	looked	at	unless	things	go	wrong,	and	users	are	happy	that	things
get	done.

On	other	occasions,	the	Jenkins	UI	is	used	heavily	by	many	people	at	the	same	time,	all	of
whom	will	inevitably	have	their	own	requirements	and	priorities,	and	then	the	look	and
feel	of	Jenkins	becomes	a	high	priority.

There	are	many	ways	in	which	you	can	give	the	users	what	they	want,	including	setting	up
numerous	views,	each	providing	a	different	user	or	group	with	a	view	of	the	(Jenkins)
world	that	suits	them.

Using	the	simple	.*job.*	regular	expression	ensures	that	all	jobs	(both	present	and	future)
that	contain	the	string	"job"	in	their	title	will	be	displayed	on	this	view.	Again,	this	really
relies	on	a	decent	naming	convention	being	followed,	but	if	this	is	done,	it	can	reduce	the
maintenance	requirements	of	this	aspect	to	nothing—when	a	new	matching	job	is	created,
it’s	automatically	added	to	the	view.

Plugins	that	provide	further	enhancements	in	this	area	include	the	Personal	View	plugin;
as	its	name	suggests,	it	enables	users	to	create	and	manage	their	own	view	of	the	world,
view	Job	Filters,	and	allows	further	tweaking.	The	Chosen	Views	Tab	bar	is	helpful	if
you	end	up	having	too	many	Views	and	want	to	easily	manage	all	of	them	on	one	screen!

Summary
In	this	chapter,	we	looked	at	the	ways	in	which	the	user	interface	can	be	altered	to	suit
your	requirements.	We	looked	at	a	few	common	issues	and	reviewed	some	possible
approaches	that	could	be	used	to	alleviate	them.

As	you	have	seen,	the	Jenkins	user	interface	is	extremely	powerful,	and	much	of	this
power	comes	from	its	flexibility	and	extensibility.

Adapting	the	Jenkins	user	interface	to	address	whatever	use	case	applies	to	your
environment	can	make	a	massive	difference	to	the	success	of	your	Jenkins	installation.	At
the	same	time,	it	also	makes	the	user	experience	much	more	positive	and	can	guide	your
users	to	interact	with	Jenkins	in	a	mutually	beneficial	way.	When	it’s	easy	for	people	to
find	what	they	want	and	hard	for	them	to	make	mistakes	(for	example,	due	to	runtime
validation,	dynamically	populated	forms,	and	automatically-created	suites	of	jobs),	you
should	have	happier	users	and	a	more	robust	and	efficient	Jenkins	too.

The	in-built	functionality	of	Jenkins	can	often	provide	enough	flexibility	to	address
whatever	your	most	pressing	Jenkins	UI	issues	are;	however,	the	wealth	of	available
plugins	allows	you	to	quite	easily	take	things	much	further	should	you	wish	to.

In	chapters	6	and	7,	we	will	revisit	this	topic	in	more	detail	when	we	look	at	extending	the
Jenkins	user	interface	ourselves.	We	will	see	how	you	can	develop	and	add	your	own
customized	GUI	items	directly	to	the	Jenkins	user	interface,	allowing	you	to	extend	things
even	further	using	Jelly,	your	own	plugins,	and	the	provided	Jenkins	extension	points.

Chapter	3.	Jenkins	and	the	IDE
In	Chapter	1,	Preparatory	Steps,	we	took	a	high-level	look	at	the	basic	principles	and
goals	of	Continuous	Integration.	We	then	walked	through	some	fairly	typical	Jenkins	use
case	scenarios	to	illustrate	some	of	the	ways	in	which	extending	Jenkins	can	help	us	to
achieve	these	goals.

In	this	chapter,	we	will	take	a	more	detailed	look	at	how	to	extend	Jenkins	and	achieve	the
principles	and	goals	of	Continuous	Integration.	The	focus	of	this	chapter	is	to	discover	the
ways	in	which	we	can	help	make	things	easier	for	software	developers.	The	support	and
buy	in	of	both	the	management	and	development	teams	is	vital	for	the	success	of	any	good
build	process,	and	developers	are	obviously	a	fundamental	part	of	any	software
development	team.

We	will	take	a	look	at	some	of	the	approaches	that	you	can	use	to	extend	and	adapt
Jenkins	to	suit	the	specific	needs	and	requirements	of	your	developers,	and	we	will
demonstrate	how	adapting	the	way	in	which	Jenkins	information	is	presented	to	these
developers	can	be	customized	to	fit	in	naturally	with	the	way	they	work.	The	intention
here	is	to	empower	people	with	the	tools	that	they	find	both	beneficial	and	easy	to	use	and
to	thereby	encourage	people	to	do	the	right	thing,	rather	than	try	to	make	them	do	what	we
dictate	using	metrics,	threats,	nagging	e-mails,	and	pointing	the	finger	of	blame	every	time
a	build	fails—this	is	a	sure	way	to	end	up	with	a	lot	of	disgruntled	developers	who	just
want	to	keep	their	heads	down!

Understanding	motivations	is	the	key	to	understanding	behaviors,	and,	quite	reasonably,
developers	are	usually	highly	focused	on	developing	code	changes.	They	are	usually	not
too	interested	in	performing	additional	tasks,	such	as	monitoring	a	build	dashboard	for
updates	or	scrolling	through	a	day’s	worth	of	e-mails	to	check	whether	someone	else	has
recently	broken	the	build	before	they	commit	their	change.	They	are	naturally	focused	on
their	role,	their	priorities,	writing	code	and	tests,	and	delivering	them	so	that	they	can
move	on	to	pick	up	the	next	task.	Anything	that	detracts	or	distracts	from	this	goal	may	be
seen	as	counterproductive.	So,	if	we	can	extend	Jenkins	to	simultaneously	make	things
easier	for	developers	to	focus	on	the	quality	of	their	code	and	encourage	them	to	do	the
right	thing	from	a	Continuous	Integration	point	of	view,	everyone	should	be	happier…
well,	that’s	the	aim	anyway.

The	approach	that	I	usually	use	to	achieve	this	is	best	described	by	this	quote:

	 “Make	the	wrong	thing	hard	and	the	right	thing	easy.” 	

	 —Ray	Hunt

It’s	a	simple	but	effective	mantra	that	I	have	found	to	really	work	in	this	kind	of	situation.
Ray	Hunt	was	the	father	of	the	natural	horsemanship	movement,	and	he	used	this
philosophy	with	great	success	while	training	horses.	And,	between	you	and	me,	I	have	had
some	success	when	applying	it	to	developers	too!

The	focus	of	this	chapter,	therefore,	is	to	explore	the	ways	in	which	we	can	extend	Jenkins

to	provide	our	hardworking	developers	with	the	information	they	need	to	have	in	hand	in	a
way	that	is	natural	and	convenient	for	them	to	absorb,	and	makes	it	easy	for	them	to	do	the
right	thing.	If	we	can	present	our	information	directly	in	the	IDE	where	they	are	already
spending	a	majority	of	their	time,	hopefully	we	can	achieve	this.

Getting	back	to	our	Continuous	Integration	aims,	from	a	developer-centric	point	of	view,
we	are	trying	to	encourage	three	main	behaviors	here:

1.	 Commit	frequently:	We	can	help	here	by	making	this	easy	to	do	using	a	suitable
version	control	system	that	allows	quick	check-ins	from	within	the	IDE	that	the
developers	are	using	and	by	not	distracting	them	from	it	to	check	on	build	tasks	and
statuses.

2.	 If	the	build	is	broken,	fix	it	as	a	top	priority:	Making	the	current	state	very	obvious
will	help	to	achieve	this.

3.	 Check	the	result	of	your	actions:	This	will	greatly	improve	its	functionality.

Rapid	feedback	and	making	it	easy	to	see	(and	hard	to	miss	it!)	will	help	here	too.	If	we
can	present	all	this	information	nicely	and	clearly	from	within	the	IDE	that	developers	are
already	using,	we	should	see	some	big	improvements	with	little	effort.

While	the	technologically	focused	solutions	that	we	are	about	to	run	through	should	be
helpful	from	our	point	of	view,	we	can’t	expect	them	to	be	a	miracle	cure	on	their	own.	As
mentioned	previously,	it	takes	a	team	working	together	to	make	these	things	work,	so
establishing	and	monitoring	a	set	of	developer	best	practices,	publishing	standards	and
guidelines,	and	providing	user	education	and	information,	all	play	an	important	part	in
setting	up	an	efficient	and	professional	development	team	and	productive	build	process
IDEs,	and	Jenkins	Build	Connectors.

There	are	different	development	IDEs,	and	the	selection	depends	on	a	number	of	factors,
such	as	programming	language	(Java,	C++,	.Net,	and	so	on),	environment	(Linux,
Windows,	Mac,	and	so	on),	and	corporate	and	personal	preferences	(open	or	closed
source).	We	will	take	a	look	at	a	few	of	the	most	popular	IDEs	and	the	solutions	for	them;
however,	there	are	many	others	as	well	that	are	available	to	suit	different	requirements.

Eclipse	and	Mylyn
The	first	and	probably	by	far	the	most	popular	of	all	the	development	IDEs	that	we	will
look	at	is	the	Eclipse	platform—this	is	extremely	popular	for	a	number	of	different
projects	including	Java,	C/C++,	and	PHP,	and	it	has	a	vast	user	base	and	a	wealth	of
mature	and	easily	available	plugins.

To	achieve	our	goal	of	presenting	Jenkins	information	to	developers,	Mylyn	is	currently
the	most	popular	extension	that	we	can	use	in	conjunction	with	Eclipse.

There	is	more	information	on	Mylyn	and	the	many	features	it	provides	at	this	link:

http://www.eclipse.org/mylyn/

The	documentation	at	this	link	also	states	that	Mylyn	reduces	information	overload	and
makes	multitasking	easy,	which	sounds	exactly	like	what	we	are	looking	for!

http://www.eclipse.org/mylyn/

Installing	Mylyn
Mylyn	comes	preinstalled	with	the	most	recent	versions	of	Eclipse,	so	you	may	just	need
to	select	it	by	navigating	to	Window	|	Show	View	|	Other,	then	selecting	the	Builds
component	from	the	Mylyn	category	like	this:

Now	you	just	need	to	configure	Mylyn	using	the	following	details:

If	you	use	a	version	of	Eclipse	that	does	not	come	bundled	with	Mylyn,	you	can	download
and	install	it	using	the	standard	Eclipse	installation	process	by	selecting	Help	|	Software
Updates…	then	add	a	new	update	site	with	this	URL:
http://download.eclipse.org/tools/mylyn/update/e3.4	(or	a	later	version,	if	available	and
preferred).

Once	this	has	been	done,	select	the	new	update	site	that	you	just	created	and	add	the
Mylyn	components	you	would	like	to	install.

http://download.eclipse.org/tools/mylyn/update/e3.4%20

Mylyn	and	Jenkins	configurations
Once	installed,	you	will	then	be	able	to	select	Window	from	the	main	toolbar	menu,	and
then	Show	View,	Mylyn,	and	Builds.

This	should	produce	a	window	similar	to	the	following,	from	which	you	can	then	select
the	highlighted	option	to	create	a	new	build	server	definition:

This	produces	a	new	wizard:

After	selecting	the	Hudson	option	and	clicking	on	Next,	you	are	presented	with	a	Server
Properties	dialogue	where	you	can	define	and	configure	the	properties	for	New	Build
Server:

Here	you	can	specify	the	URL	and	the	credentials	required	for	your	Jenkins	server.	A
quick	refresh	should	show	a	successful	connection	to	your	Jenkins	instance	and	also	pull
back	a	list	of	job	definitions	for	you	to	select	from.	Note	that	Mylyn	caters	to	a	host	of
other	connection	and	authorization	features	here,	which	you	can	configure	if	required.

After	a	quick	check	using	the	Validate	button,	click	on	Finish	to	save	and	close	the	server
configuration.

This	should	result	in	a	new	Builds	window	displaying	live	information	on	the	jobs	that
you	have	selected	from	your	Jenkins	server,	something	similar	to	this:

Exploring	the	options	in	this	window	shows	that	you	can	right-click	and	select	a	number
of	functions	to	perform	on	a	selected	job:

You	can	perform	the	following	functions:

View	the	history	for	a	selected	job
Open	the	job	in	a	browser	inside	Eclipse
Run	the	selected	job
View	the	console	output	for	the	last	run
Show	the	JUnit	results	in	the	JUnit	view

All	of	these	can	be	done	directly	from	within	the	Eclipse	IDE,	making	it	very	easy	for
developers	to	keep	an	eye	on	the	things	they	need	to	know	with	very	little	effort	and
minimal	distractions.

IntelliJ	IDEA	and	Jenkins	build
connectors
IntelliJ	IDEA,	developed	by	JetBrains,	is	another	very	popular	Integrated	Development
Environment,	and,	similar	to	Eclipse,	it	also	has	a	large	number	of	add-ons	and	plugins
that	are	available	to	extend	its	use	and	functionality.

In	this	section,	we	will	take	a	quick	look	at	installing	and	configuring	the	Jenkins	Control
Plugin	for	IntelliJ	IDEA,	and	we	will	configure	it	to	provide	a	functionality	similar	to	that
provided	by	Mylyn	under	Eclipse.

Installing	plugins	in	IntelliJ	is	very	easy—open	the	Preferences	menu	item,	then	select
Plugins	on	the	left-hand	side	menu.	The	Jenkins	Control	plugin	is	not	currently	bundled
with	the	IDE,	so	click	on	the	Browse	repositories…	button	as	shown	in	the	following
screenshot:

This	opens	up	a	new	subwindow	where	you	can	enter	Jenkins	in	the	search	dialogue	to
find	the	two	(currently)	available	plugins,	as	follows:

Click	on	the	green	Install	Plugin	button—the	plugin	will	be	downloaded	and	you	will	be
prompted	to	restart	IntelliJ	IDEA—this	completes	the	installation.

After	restarting	the	IDE,	click	on	the	View	menu,	select	Tool	Windows,	and	you	should
see	a	new	Jenkins	option.	Selecting	this	produces	a	new	pane	entitled	Jenkins,	where	you
can	configure	the	connection	to	a	Jenkins	server	by	clicking	on	the	spanner	icon	and
filling	out	the	requisite	details:

My	example	Jenkins	instance	is	very	simplistic—you	will	probably	want	to	use
authentication	on	a	real	Jenkins	instance	and	therefore,	will	need	to	fill	out	the
corresponding	details.	You	may	want	to	tweak	the	timing	and	logging	settings	to	suit
yourself;	however,	the	basic	setup	is	very	simple	and	also	very	similar	to	the	earlier	Mylyn
example.

Once	done,	hit	the	OK	button,	and	you	should	see	a	view	of	your	Jenkins	instance	inside
IntelliJ:

As	with	Mylyn,	you	can	perform	several	useful	functions	using	this	plugin—monitoring
the	status	of	builds,	triggering	new	builds,	and	viewing	the	results	and	history	of	the
selected	jobs.

NetBeans
The	NetBeans	IDE	has	an	inbuilt	functionality	to	monitor	Jenkins	via	the
HudsonInNetBeans	service.

Selecting	the	Services	tab	within	NetBeans	will	reveal	a	Hudson	Builders	item	where	you
can	define	your	Jenkins	instance	and	configure	which	items	you	would	like	to	monitor
based	on	the	View	definitions	available	on	your	Jenkins	server:

Once	you	have	registered	the	server,	you	will	be	notified	of	any	failures	by	a	popup	within
the	IDE.	You	can	read	more	about	the	functionality	and	configuration	of	this	extension
here:	http://wiki.netbeans.org/HudsonInNetBeans#General_setup_and_view.

In	addition,	the	Build	Monitor	plugin	can	also	be	added	to	include	status	bar	notifications
—it	can	be	downloaded	from	the	plugin	home	page	here:
http://plugins.netbeans.org/plugin/814/build-monitor.

Then,	the	plugin	is	installed	from	Tools	|	Plugins	menu	item	by	selecting	the	Downloaded
option	and	navigating	to	the	recently	downloaded	file	with	an	.nbm	extension:

http://wiki.netbeans.org/HudsonInNetBeans#General_setup_and_view
http://plugins.netbeans.org/plugin/814/build-monitor

Now,	simply	select	Install,	agree	to	the	terms,	and	click	on	Install	again—once	complete,
click	on	Finish.	You	should	now	have	a	status	bar	item	that	can	be	configured	to	monitor
the	status	of	one	or	more	of	your	Jenkins	jobs,	thus,	providing	another	useful	and
unobtrusive	mechanism	to	keep	an	eye	on	more	important	builds.

Summary
In	this	chapter,	we	looked	at	the	key	aims	of	Continuous	Integration	and	how	they
specifically	relate	to	developers.	We	have	reviewed	what	we	want	to	achieve	in	this	area
and	how	we	can	do	so,	that	is,	by	enabling	developers	to	easily	do	the	right	thing	and	by
making	their	lives	and	roles	easier.

There	are	many	different	options	available	that	allow	us	to	integrate	Jenkins	and	the
developers’	environment,	and	we	have	detailed	some	popular	examples	of	three	of	the
most	popular	IDEs—there	are	many	other	options	available	for	these	IDEs	and	for	others
too.	If	the	preceding	options	don’t	fit	with	your	environment,	hopefully	the	general	idea
and	approach	will	translate	to	something	that	suits	you.	These	plugins	are	being	developed
and	enhanced	on	a	regular	basis,	so	pick	the	approach	and	the	combination	that	works	best
for	you	and	your	environment.	The	key	aim	is	to	make	life	easy	for	others	and	encourage
them	to	make	your	life	easier	too!

Also,	there	are	many	other	ways	in	which	we	can	communicate	Jenkins	information	to
others	besides	the	IDE;	there	are	system	tray	notifiers,	Information	Radiators,	dashboards,
custom	web	apps,	e-mail	alerts,	instant	message	notifications,	and	even	automated	lava
lamps,	and	foam-rocket	launchers!

In	the	next	chapter,	we	will	take	a	look	at	several	other	ways	in	which	we	can	interact	with
Jenkins—these	are	more	technical	and	less	end	user-focused,	but	are	related	in	a	way	that
may	give	you	some	alternative	ideas	to	develop	your	own	bespoke	solutions.

Chapter	4.	The	API	and	the	CLI
In	the	previous	chapter,	we	looked	at	several	ways	in	which	we	can	interact	with	Jenkins
and	extend	its	use	so	that	developers	can	benefit	directly	from	within	their	development
environments.

The	plugins	and	add-ons	that	we	looked	at	were	obviously,	somehow,	able	to	fetch	“live”
data	from	Jenkins	in	order	to	convey	this	data	directly	to	the	client	environment	(the
developers’	IDE).

In	this	chapter,	we	will	take	a	look	at	how	these	plugins	were	able	to	access	this
information,	and	we	will	explore	the	various	mechanisms	and	interfaces	that	Jenkins
provides	for	programmatic	interactions,	for	example,	the	Jenkins	Application
Programming	Interface	(API).	We	will	also	explore	the	Jenkins	Command-line
Interface	(CLI),	which	offers	a	mechanism	by	which	you	can	remotely	interact	with
Jenkins	programmatically	and/or	interactively.

Both	these	features	are	extremely	powerful	and	are	the	fundamental	utilities	to	extend
Jenkins.

There	are	three	main	functions	for	which	you	would	normally	use	the	Jenkins	API;	these
are	as	follows:

Retrieving	and	consuming	information	from	Jenkins
Triggering	builds	based	on	external	events
Creating,	copying,	and	altering	the	Jenkins	configuration

Creating	an	Information	Radiator	with
the	Jenkins	XML	API
In	order	to	illustrate	how	you	can	use	the	Jenkins	API	to	extract	live	information	from
Jenkins	programmatically,	we’re	going	to	take	a	high-level	look	at	a	practical	example—
creating	an	Information	Radiator	that	fetches	Jenkins	information	and	displays	it	in	an
external	web	page.	We	will	not	be	writing	all	of	the	code	for	this	in	detail;	however,	we
will	analyze	the	basic	building	blocks	in	sufficient	detail	so	that	you	are	able	to	adopt	the
general	approach	and	develop	your	own	customized	solution	in	the	language	of	your
choice.

Information	Radiators	are	simple	but	useful	live	web	pages	that	allow	people	to	easily
monitor	the	status	of	your	most	crucial	Jenkins	jobs	in	real	time.	This	is	quite	similar	to
the	IDE	plugins	we	looked	at	earlier,	but	instead	these	indicators	are	displayed	on
television	screens	in	an	office	to	radiate	the	information

The	convention	for	Information	Radiators	is	to	keep	it	simple—to	have	as	few	jobs	as
possible	and	have	them	display	a	green	indicator	if	everything	is	alright	and	a	red	indicator
if	there	is	an	issue.	Sometimes	it’s	useful	to	show	an	amber	indicator	if	the	build	is	in
progress.	This	simple	system	helps	to	highlight	the	urgent	issues	that	need	to	be	fixed	as	a
top	priority,	and	it	also	serves	to	deter	people	from	checking	in	new	changes	when	they
can	clearly	see	that	the	build	is	not	currently	stable;	adding	further	alterations	to	an	already
broken	system	will	only	compound	the	issue.

In	our	high-level	walkthrough,	we	will	monitor	the	current	state	of	just	one	Jenkins	build.
You	will	be	able	to	reuse	and	extend	the	same	approach	to	monitor	as	many	builds	as	you
want	to,	and	you	will	see	how	you	can	additionally	pull	in	and	report	other	details	from
your	Jenkins	jobs.

Note	that	there	are	many	prebuilt	solutions	that	you	could	use	for	this,	including	a	variety
of	plugins	for	different	needs—we	are	deliberately	taking	a	DIY	approach	here	in	order	to
demonstrate	the	possibilities	and	show	you	how	to	use	the	Jenkins	API.

Getting	the	information	from	Jenkins
The	first	step	is	to	get	our	(programmatic)	hands	on	the	information.	The	simplest	way	to
do	this	is	via	the	XML	API.	This	simply	involves	appending	the	/api/xml	string	to	the
URL	for	the	job	you	would	like	to	monitor,	as	shown	here:
http://yourjenkinsserver:8080/job/YourJob/api/xml.

Note
Note	that	there	is	also	a	JSON	API	available;	if	this	suits	your	needs	better—simply
replace	api/xml	with	api/json	to	receive	the	same	information	in	the	JSON	format.

If	you	do	this	in	a	browser,	you	should	see	XML	somewhat	similar	to	my	VeryBasicJob
job:

The	text	returned	by	the	API	is	simple	and	the	XML	is	quite	self-explanatory;	a	quick	look
through	it	shows	that	it	contains	all	the	information	that	you	would	want	on	the	job	you
just	queried—it	just	needs	to	be	processed	and	interpreted.	There	doesn’t	seem	to	be	much
available	in	the	way	of	documentation	for	these	XML	elements;	however,	if	you	start	off
with	as	simplistic	a	job	as	possible	and	then	make	changes	and	additions	to	that,	you
should	be	able	to	figure	out	what	each	element	does	and	what	the	possible	values	can	be.

An	XML	processor	is	the	best	way	to	handle	this,	and	your	scripting	or	programming
language	of	choice	should	provide	you	with	several	options	to	choose	from.	For	example,
Perl	has	XML::Simple,	Python	has	ElementTree,	there	is	XmlParser	for	Groovy,	and
JAXP	for	Java,	amongst	many	others.	If	you	don’t	have	any	of	these,	you	could	use	grep

and	awk	to	find	the	line	and	the	values	you	want	in	a	shell	script.

So,	we	now	have	a	job	that	we	would	like	to	monitor,	some	way	to	fetch	all	the	current
information	on	this	job,	a	suitable	method	to	handle	the	XML,	and	a	mechanism	to	extract
the	information	we	want.

For	this	example,	all	that	we	really	want	to	know	about	is	the	current	state	of	the	build—
the	values	that	correspond	to	our	red,	amber,	and	green	health	indicators—and	these	are
present	in	the	XML	example	as	the	current	color	attribute	of	the	job.

For	example,	consider	the	following	XML	tag:	<color>blue</color>.	This	shows	that	we
currently	have	a	non-running	and	stable	job,	whereas	<color>blue_anime</color>	refers
to	the	blue	and	animated	health	indicator	icon	for	a	job	that	was	healthy	for	the	last	build
and	is	currently	building.

We	can	simply	show	any	mention	of	anime	as	amber	in	our	Radiator.	Both
<color>red</color>	and	<color>red_anime</color>	are	the	obvious	equivalents	for
failed	and	running	(but	previously	failed)	jobs	respectively.	If	you	take	a	look	at	the	XML
for	a	variety	of	different	job	types	and	states,	you	will	be	able	to	spot	and	interpret	the
naming	conventions	used—just	add	/api/xml	to	a	varied	selection	of	jobs	and	compare
them.

Automating	the	job
The	next	hurdle	for	our	simple	Information	Radiator	is	automating	and	scheduling	the	job,
and,	as	you’d	expect,	we	can	do	this	very	quickly	and	easily	in	Jenkins.

Just	create	a	new	Jenkins	job	that	fetches	the	corresponding	URL	(with	/api/xml	at	the
end)	and	feed	this	to	your	XML	parsing	script	to	extract	the	current	values.

Many	programming	and	scripting	languages	have	a	built-in	XML	or	web	fetching
abilities,	but	if	you	prefer,	you	can	use	curl	or	wget	to	fetch	the	data	and	then	pass	this	to
your	script.

The	Jenkins	job	can	be	scheduled	to	run	at	a	frequency	that	suits	you—you	can	do	this
through	the	inbuilt	cron	function	using	the	standard	cron	notation;	for	example,	you	can
set	your	job	to	run	every	two	minutes,	as	follows:

In	this	entry,	I	have	specified	H/2	*	*	*	*	to	have	this	job	run	every	two	minutes.	The
symbol	H,	is	a	handy	Jenkins	inbuilt	mechanism	that	allows	Jenkins	to	balance	and
manage	job	scheduling.	Rather	than	trigger	all	the	jobs	at	exactly	the	same	time,	Jenkins	is
able	to	distribute	the	load	for	you.	For	more	details,	click	on	the	?	icon	next	to	the
Schedule	input	box,	which	states	the	following:

To	allow	periodically	scheduled	tasks	to	produce	even	load	on	the	system,	the	symbol
H	(for	hash)	should	be	used	wherever	possible.	For	example,	using	0	0	*	*	*	for	a
dozen	daily	jobs	will	cause	a	large	spike	at	midnight.	In	contrast,	using	H	H	*	*	*
would	still	execute	each	job	once	a	day,	but	not	all	at	the	same	time,	better	using
limited	resources.

If	you	are	unfamiliar	with	the	cron	syntax,	take	a	look	at	the	cron	man	page	(type	man
cron	in	a	terminal)	on	any	Linux	box.	There	are	also	several	helpful	cron	generators
online,	such	as	this	one	at	http://crontab-generator.org/,	which	can	be	very	useful.

Note
Please	note	that	it	is	highly	recommended	that	you	test	and	fine-tune	your	job	before
deciding	on	and	setting	a	frequency	for	repeated	builds.	For	example,	if	your	job	takes	3
minutes	to	run	and	you	set	it	up	to	run	every	minute,	things	will	not	go	well!

The	last	remaining	task	for	this	step	is	to	store	the	data	somewhere—I	usually	prefer	a

http://crontab-generator.org/

simple	MySQL	database,	which	I	can	update	at	the	end	of	a	job	simply	by	passing	the
current	runtime	parameters	to	the	MySQL	binary.

Radiating	the	information
The	final	step	is	to	display	the	information	from	the	database	as	a	color	“radiator”—this
simply	involves	producing	a	web	page	that	queries	the	data	and	translates	this	information
to	the	appropriate	color—red,	amber,	or	green.	This	can	be	done	in	many	languages,
including	PHP,	JSP,	and	ASP	if	you	like,	but	the	simplest	approach	may	be	to	have	your
Jenkins	job	write	out	the	raw	HTML	to	a	file	for	you,	perhaps	something	like	this:

<html>

		<head>

				<meta	http-equiv="refresh"	content="5">

				<style	type="text/css">

						.myclass{

								width:270px;

								height:150px;

								position:absolute;

								left:50%;

								top:50%;

								margin:-75px	0	0	-135px;

						}

				</style>

		</head>

		<body	style="background:#088A08">

				<div	class="myclass">Status	of	my	VerySimpleJob</div>

		</body>

</html>

With	the	job	updating	the	value	for	the	background	color	as	suitable.	Note	that	there’s	a
Meta	refresh	tag	in	the	preceding	code	to	reload	the	page	every	5	seconds—you	will	need
to	implement	something	like	this,	otherwise	you	will	be	looking	at	the	same	information
for	a	long	time!

Jenkins	as	a	web	server	–	the	userContent
directory
You	can	even	get	Jenkins	to	act	as	a	simple	web	server	and	host	the	web	page	we	created
for	you—if	you	copy	the	file	that	is	produced	by	the	job	to	the	userContent	directory	that
is	within	your	JENKINS_HOME	location	on	the	system	that	runs	your	Jenkins	instance,	you
will	see	the	file	appear	at	this	URL:	http://myjenkins:8080/userContent

This	should	look	as	follows:

Clicking	on	the	inforad.html	link	will	give	you	the	following	page—our	very	simple	DIY
Information	Radiator:

This	simple	exercise	illustrates	how	you	can	query	Jenkins	via	the	API	to	retrieve	and
consume	information	in	real	time.

The	Jenkins	CLI
In	this	section,	we	will	review	the	Jenkins	CLI—this	is	another	Jenkins	extension	point
that	can	be	extremely	useful	in	certain	situations—typically	it	is	used	to	run	commands
against	a	remote	Jenkins	server,	performing	functions	such	as	triggering	builds	or	updating
configurations.

How	to	set	it	up
In	order	to	use	the	Jenkins	CLI,	you	need	the	“jenkins-cli.jar”	file.

This	can	be	quickly	and	easily	fetched	from	your	own	Jenkins	server.	If	you	append	“/cli”
to	the	web	address	of	your	Jenkins	instance,	you	should	see	a	page	similar	to	this:

This	URL	provides	everything	you	should	need	to	get	started	with	the	Jenkins	CLI.

There	is	a	link	to	the	Jenkins	Wiki	topic	for	further	information,	a	direct	download	link	for
the	Jenkins-cli.jar	file	from	your	server
(http://{yourserverand:port}/jnlpJars/jenkins-cli.jar),	and	a	list	of	available
CLI	commands	along	with	brief	descriptions.

How	to	use	it
Once	you	have	saved	the	CLI	jar	locally	(you	can	download	it	via	the	browser	or	use	a
command-line	tool,	such	as	wget	or	curl),	you	just	need	to	have	your	Java	environment
set	up	and	then	execute	the	line	detailed	at	the	start	of	the	help	page,	as	follows:
java	-jar	jenkins-cli.jar	-s	http://{yourserverand:port}/	help

Assuming	that	you	have	the	Jenkins-cli.jar	in	the	current	directory	and	you	updated
the	address	to	reflect	your	server,	you	should	get	back	the	basic	help	information,	and	you
are	good	to	go.

Triggering	remote	jobs	via	the	CLI
The	most	common	and	perhaps	the	simplest	task	of	the	CLI	is	triggering	a	remote	job	to
run	at	a	certain	point	in	a	process.	This	can	be	extremely	useful	when	you	are	integrating
Jenkins	with	other	legacy	systems	and	gradually	introducing	automation	to	a	manual
process.	You	may	not	be	able	to	automate	everything	straight	away,	or	have	Jenkins
control	everything	all	at	once,	but	if	you	can	set	up	a	Jenkins	job	to	automate	individual
parts	of	an	existing	manual	workflow,	you	can	then	introduce	Jenkins	gradually	and	work
towards	removing	the	manual	steps	from	the	chain	piece	by	piece.

For	example,	say	we	have	a	legacy	batch	job	that	runs	some	form	of	data	processing.	This
processing	may	take	some	time	to	run,	and	there	may	be	another	step	that	comes	along	and
checks	whether	the	processing	is	complete,	and	if	so,	then	transfers	the	new	data	to
another	location	or	passes	it	to	another	process.	We	can	start	off	by	creating	a	Jenkins	job
that,	when	called,	picks	up	the	data,	checks	whether	it	is	valid,	and	then	passes	it	to	the
next	part	of	the	process.	This	may	remove	a	manual	step	and	reduce	the	overall	processing
time.	But	how	does	the	Jenkins	job	know	when	to	run?	It	may	not	be	efficient	or	possible
to	tell	whether	the	processing	has	completed,	but	we	can	make	a	small	update	to	the
process	to	invoke	the	Jenkins	job	automatically	after	the	initial	processing.

To	remotely	trigger	a	job	to	run	on	a	simplistic	Jenkins	server	is	as	easy	as	this:

Here,	we	are	first	downloading	the	Jenkins	CLI	jar	file	to	the	current	directory	using	curl:

curl	-O	http://minty:8080/jnlpJars/jenkins-cli.jar

This	step	needs	to	be	done	only	once.	We	will	then	invoke	the	remote	job	with	this
command:

java	-jar	jenkins-cli.jar	-s	http://minty:8080/	build	VeryBasicJob

Using	this	simple	configuration,	you	will	get	no	feedback	of	what	happens;	however,
checking	out	VeryBasicJob	on	the	Jenkins	server	should	reveal	that	the	job	was	triggered,
and	in	the	console	output,	it	should	also	mention	the	following:

Started	from	command	line	by	anonymous

So,	we	can	see	that	this	has	worked	ok,	but	the	lack	of	feedback	isn’t	very	helpful.	If	we
add	the	–s	and	–v	arguments	to	the	command,	we	will	get	the	complete	details	of	what	is
going	on,	as	follows:

This	looks	much	better—we	can	now	see	that	we	have	kicked	off	run	#9	of	VeryBasicJob,
which	simply	sleeps	for	20	seconds	before	exiting	successfully.

This	output	information	could	be	used	in	the	client	scripts	to	check	for	a	success	or	failure,
or	you	could	make	a	note	of	the	job	number,	or	record	any	other	output	that	would	be
useful	to	know.

Obviously,	we	wouldn’t	normally	run	Jenkins	without	some	form	of	authentication	in
place,	so	in	the	real	world	things	will	be	a	little	bit	more	complex.	The	user	for	whom	you
are	running	the	CLI	commands	first	needs	to	be	granted	the	“Overall/Read”	account
permissions	in	the	configure	user	page	of	Jenkins.	You	can	then	simply	add	the	user	name
and	password	at	the	end	of	the	command	line,	as	shown	here:

--username	don	--password	MyPassword123

This	is	enough	to	get	things	working,	but	it’s	still	not	great	from	the	security	point	of
view;	the	credentials	will	be	visible	in	plain	text	in	the	script	that	you	add	them	to,	or
within	the	history	of	the	shell	you	have	used,	or	within	the	HTTP	stream	if	you	are	not
using	HTTPS.	The	credentials	may	also	be	visible	as	args	that	are	passed	to	the	running
process	when	users	run	ps	or	top,	and	so	on,	on	the	same	host.

A	more	secure	method	is	to	set	up	SSH	keys	and	pass	in	the	private	key	for	the	public	key.
If	you	go	to	“configure”	in	Jenkins	for	your	user	name,	you	can	set	up	the	SSH	keys	for
your	account	in	the	textbox	provided.	There	are	detailed	instructions	on	setting	up	SSH
here:

https://help.github.com/articles/generating-ssh-keys/

Once	this	is	done,	depending	on	the	version	of	Jenkins	you	are	using,	Jenkins	may
automatically	check	for	and	use	your	SSH	credentials	from	any	of	the	following	locations:

~/.ssh/identity,	~/.ssh/id_dsa,	~/.ssh/id_rsa

https://help.github.com/articles/generating-ssh-keys/

Then,	you	can	explicitly	supply	the	path	to	the	key	as	follows	(appending	this	to	the
command	line	instead	of	the	earlier	user	name	and	password	details):

-i	~/.ssh/id_rsa

For	jobs	that	require	parameters	(that	is,	those	that	you	have	set	up	to	request	information
from	the	user	at	runtime),	you	can	supply	additional	“-p”	arg(s),	as	shown	here:

-p	sprint=1.7

This	will	be	passed	to	the	job	exactly	as	if	the	user	had	entered	the	data	via	the	user
interface	and	assuming	there	was	an	input	element	named	“sprint”	configured	for	that	job.

Updating	Jenkins	configuration
Another	very	useful	ability	of	the	Jenkins	CLI	is	to	update	the	Jenkins	configuration
programmatically	and	remotely.

From	the	help	page,	we	saw	when	we	appended	/cli	to	the	server	URL	earlier	that	the
two	commands,	get-job	and	create-job,	can	be	very	useful.

Running	get-job	will	request	Jenkins	to	supply	the	XML	definition	for	that	job.

For	example,	consider	the	following	command:

java	-jar	jenkins-cli.jar	-s	http://minty:8080/	get-job	VeryBasicJob

When	this	is	run	in	my	server,	it	will	return	the	following	output:

This	XML	can	be	also	redirected	to	a	file	by	appending	“>	VeryBasicJob.xml”	to	the	end
of	that	command	for	example,	and	the	file	can	then	be	added	or	updated	in	your	Version
Control	software	as	a	periodic	backup.

Similarly,	you	can	choose	to	create	a	new	job	using	the	create-job	command	like	this:

java	-jar	jenkins-cli.jar	-s	http://{yourserverand:port}	create-job	

MyNewJobName	<	MyNewJob.xml

The	MyNewJob.xml	file	can,	for	example,	be	created	programmatically	via	a	combination
of	a	Jenkins	job,	an	XML	template,	and	some	user-specified	input.

We	could	also	update	an	existing	job	using	update-job	in	conjunction	with	an	existing	job
name:

java	-jar	jenkins-cli.jar	-s	http://{yourserverand:port}	update-job	

VeryBasicJob	<	VeryBasicJob_v2.xml

This	approach	can	be	used	to	build	a	mechanism	that	will	back	up	all	or	some	of	your

Jenkins	configuration	to	Version	Control,	and	then,	reload	them	programmatically	(via
Jenkins).

You	can	also	expand	this	approach	to	perform	some	modifications	to	the	XML	files	(and
therefore,	the	job	configurations	they	create)	if	changes	are	required;	for	example,
updating	the	release	or	sprint	details	periodically.

Summary
In	this	chapter,	we	explored	the	possibilities	that	the	Jenkins	API	and	the	Jenkins	CLI
open	up.

We	have	worked	through	some	high-level	examples	and	illustrated	how	you	can	go	about
developing	your	own	bespoke	Information	Radiator	using	the	XML	API.

We	have	also	outlined	some	of	the	functionalities	provided	by	the	CLI	and	demonstrated
how	you	can	use	them.

As	you	can	see	from	the	openness	of	both	of	these	features,	the	flexibility	of	Jenkins	is
quite	amazing—it’s	an	open	platform	that	provides	you	with	numerous	ways	of	adapting
and	extending	it	to	suit	your	needs	and	requirements,	whatever	they	may	be.

The	way	in	which	the	plugins	that	we	examined	earlier	were	able	to	show	live	information
on	a	remote	Jenkins	server	is	now	hopefully	quite	obvious,	and	we	will	take	our	usage	of
the	API	and	CLI	still	further	when	we	later	look	at	how	to	develop	our	own	plugins	for
Jenkins.

In	the	next	chapter,	we	will	explore	Jenkins	Extension	Points,	look	at	the	theory	behind
them,	and	review	the	best	practices	of	development.

Chapter	5.	Extension	Points
In	this	chapter,	we	will	introduce	and	explore	the	theory	and	design	concepts	used	while
developing	Jenkins	plugins.	We	will	cover	the	high-level	concepts	here	with	some	generic
examples	as	a	preparation	for	the	next	two	chapters	where	we	will	see	how	to	implement
these	ideas	for	real.

In	this	chapter,	we	will	take	a	look	at	the	following	design	patterns:

Interfaces
Abstract	classes
Singletons

Also,	we	will	review	several	important	design	concepts:

Design	by	contract
Extension	points
Creating	extensions
Annotations

A	brief	history	of	Jenkins	plugins
There	are	thousands	of	plugins	available	for	Jenkins,	and	they	cover	a	vast	range	of	tasks
and	provide	a	wealth	of	valuable	resources	for	the	community	that	uses	and	works	with
Jenkins.	Many	of	the	existing	plugins	started	out	by	providing	simple	functions	and
offering	limited	functionalities,	but	the	majority	of	them	have	grown	and	developed	into
very	mature	software	that	offers	large	degrees	of	functionality.	Many	plugins	have	also
been	incorporated	into	Jenkins	core	functionality—turning	them	from	an	additional	and
optional	add-on	component	to	code	that	is	shipped	within	Jenkins	by	default.

A	major	part	of	the	reason	for	the	success	of	Jenkins	and	its	range	of	plugins	is	the	design
philosophy	that	was	used	to	develop	and	extend	Jenkins	from	the	beginning.	This
approach	to	software	development	has	encouraged	people	to	work	together,	enabled
projects	to	benefit	from	each	other,	and	created	a	highly	productive	and	collaborative
community	of	developers	and	contributors	to	this	project.

When	you	first	look	at	developing	your	own	plugin	for	Jenkins,	there	are	several	questions
you	should	first	address—the	following	link	gives	a	detailed	description	of	the	steps	you
should	take	before	embarking	on	developing	your	own	new	plugin:

https://wiki.jenkins-ci.org/display/JENKINS/Before+starting+a+new+plugin

The	intention	behind	this	is	to	improve	the	quality	of	the	plugins	and	to	avoid	duplication.
This	approach	seeks	to	encourage	developers	of	both	existing	and	future	or	proposed
plugins	to	work	together	and	build	upon	the	existing	functionality	rather	than	have	a
plethora	of	very	similar	plugins,	all	doing	something	slightly	different.

If	you	are	looking	for	some	additional	functionality	that	is	not	available	in	the	current	list
of	plugins,	it	is	possible	that	someone	might	be	working	on	providing	this	feature	right
now.	If	you	publicize	your	requirements	and	intentions	within	the	development
community,	this	might	save	you	a	lot	of	time	and	trouble.	Instead	of	rolling	your	own,	you
could	instead	offer	to	collaborate	on	the	development	of	this	new	plugin.	The	end	result	of
this	collaboration	is	more	likely	to	produce	a	popular	and	high-quality	product	than	two
developers	creating	a	similar	functionality.	It’s	also	possible	that	you	will	find	a	vast
majority	of	the	functionality	that	you	are	seeking	already	available	within	a	related	plugin,
and	with	a	little	information	and	collaboration,	you	may	be	able	to	leverage	this	to	add	a
new	feature	by	reusing	much	of	the	existing	code.

All	of	this	collaboration,	code	reuse,	and	enhancement	are	achieved	largely	through	the
use	of	Extension	Points,	which	represent	some	aspect	of	the	functionality	of	either	a
plugin	or	of	Jenkins.	These	are	interfaces	and	abstract	classes	that	enable	interaction	and
reuse	between	different	plugins	and	the	Jenkins	core	functionality	through	declared	and
publicized	entry	points	that	provide	and	perform	services	to	a	documented	contract.

We	will	now	take	a	quick	look	at	the	theory	behind	these	ideas	so	that	when	we	write	our
own	plugin,	we	will	understand	what	is	going	on	behind	the	scenes	and	why	we	are	doing
things	with	this	reuse	and	extension	in	mind	from	the	start.

https://wiki.jenkins-ci.org/display/JENKINS/Before+starting+a+new+plugin

Interfaces
Interfaces	in	Java	are	the	mechanisms	used	to	provide	and	declare	a	contract	that	defines
how	to	interact	with	and	reuse	an	existing	software.	The	main	idea	behind	this	approach	is
that	it	removes	the	requirement	of	knowing	how	things	are	done	internally;	you	only	need
to	know	what	the	required	input	parameters	should	be	and	what	to	expect	by	calling	an
interface.	Exactly	what	the	internal	workings	of	the	code	are	and	how	the	processing	is
done	are	not	really	important,	and	as	long	as	you	adhere	to	the	declared	contract,
everything	should	be	ok.

Another	major	benefit	of	this	“design	by	contract”	approach	is	that	it	reduces	the	impact	of
code	and	process	updates	on	external	users.	For	example,	if	you	call	an	add	interface	on	a
class	called	calculator	that	takes	two	numbers	and	returns	the	result,	you	(as	a	consumer
of	this	service)	do	not	need	to	know	or	care	how	the	addition	is	done—internally,	the	class
could	be	simply	adding	the	two	Java	integers	together,	or	perhaps	the	input	variables	are
being	passed	over	to	a	web	service	in	the	cloud	somewhere,	which	returns	the	answer	back
to	the	calculator.	The	code	and	the	approach	used	could	be	completely	redesigned	and
rewritten	in	any	way	the	developers	of	the	calculator	desire,	but	as	long	as	everyone
sticks	to	the	agreed	contract	and	interface,	external	consumers	should	not	be	affected.

This	clearly-defined	interface	also	makes	it	easier	to	write	automated	regression	tests.
When	you	know	there	is	a	clearly-defined	and	stable	interface,	it	is	usually	simple	to	write
tests	against	it	that	will	not	require	much	maintenance,	as	the	interface	is	not	normally
likely	to	be	changed.	These	tests	can	be	automatically	rerun	as	part	of	the	CI	build
whenever	there	is	a	related	code	change,	and	any	discrepancy	should	be	easily	identified.

To	create	an	interface	in	Java,	we	use	the	interface	keyword	in	the	class	definition:

interface	Vehicle	{

		//	Vehicle	methods

		//	…

}

For	an	external	class	to	use	this	interface,	we	use	the	implements	keyword	in	the	class
declaration,	as	follows:

class	Motorbike	implements	Vehicle	{

		//	Vehicle	Methods

		//	…

		//	Motorbike	Methods

		//	…

}

As	the	Motorbike	class	has	declared	that	it	implements	Vehicle,	it	will	need	to	implement
each	of	the	methods	that	are	declared	in	Vehicle.	The	Java	compiler	will	ensure	that	this
is	done	at	compile	time.	For	our	Vehicle	example,	the	methods	would	probably	include
logical	functions,	such	as	start,	stop,	turn	left,	turn	right,	brake,	and	accelerate.	The
Motorbike	class-specific	methods	could	include	specifics,	such	as	“pop	a	wheelie”,
extending	the	kickstand,	falling	over,	and	so	forth.

Abstract	classes
Abstract	classes	in	Java	provide	a	high-level	functionality	that	can	be	used	by	other
classes	as	well.	You	can’t	create	an	abstract	class	directly,	but	you	can	implement	another
class	that	derives	from	the	abstract	class.

The	simplest	explanation	is	that	an	abstract	class	is	a	type	of	a	thing,	but	is	not	a	thing—by
this,	I	mean	that	you	can	have	an	abstract	class	like	our	Vehicle	example	that	declares	all
of	the	methods	that	we	mentioned,	but	you	can’t	ever	create	just	a	vehicle—you	have	to
have	something	specific,	such	as	a	car,	motorbike,	hovercraft,	helicopter,	and	so	on;	you
can’t	have	just	a	generic	vehicle.

All	of	our	vehicles	are	slightly	different,	but	share	the	same	base	functionality—they	can
go,	they	can	stop,	and	they	can	turn.	This	common	set	of	functionalities	could,	therefore,
be	modeled	as	base	methods	of	an	abstract	(Vehicle)	class,	and	whenever	you	create	a
new	type	of	vehicle,	you	will	have	all	of	them	available	to	you.

To	create	an	abstract	class	in	Java,	you	have	to	use	the	abstract	keyword:

abstract	class	Vehicle{}

Typically,	an	abstract	class	will	define	the	methods	(go,	stop,	turn)	only,	and	the	subclasses
will	provide	their	actual	implementation.

Our	Motorbike	class	would	then	extend	this	abstract	class:

class	Motorbike	extends	Vehicle	{}

The	subclasses	that	extend	the	abstract	classes	are	known	as	concrete	classes:

Unlike	the	conceptual	and	logical	grouping	of	abstract	classes,	these	represent	real,
tangible	objects.

Abstraction	and	interfaces
Extension	points	make	use	of	both	abstraction	and	interfaces	to	permit	and	encourage
reuse	of	functionality.

In	the	following	diagram,	Deposit	Money	declares	an	extension	point	called	Transfer	to
savings.	If	we	consider	this	to	be	an	existing	piece	of	code,	and	for	the	sake	of	this
example,	if	we	want	to	create	a	new	Savings	Account	object,	we	can	extend	the
functionality	already	provided	by	Deposit	Money	and	use	this	to	implement	a	new	feature
called	Savings	Account,	which	extends	Deposit	Money.	This	means	that	it	will	use	most
of	the	Deposit	Money	functionality,	and	it	will	also	offer	additional	functionality	of	its
own.

In	another	example,	we	are	extending	the	existing	Open	Account	code	to	Add	Joint
Account	Holder.	This	uses	many	of	the	Open	Account	methods,	but	also	declares	some
methods	that	are	specific	to	a	second	applicant.	The	following	diagram	shows	the
relations:

In	cases	where	we	have	more	than	one	application,	we	can	extend	Open	Account	to	create
a	new	Add	Joint	Account	Holder	object.	This	new	object	will	contain	and	reuse	a	lot	of
the	Open	Account	code,	but	it	will	do	so	slightly	differently	to	cater	to	a	secondary
account	holder.

Abstract	types	are	a	key	concept	in	Java	programming	and	in	object-orientated	design,	in
general.	They	are	sometimes	referred	to	as	existential	types,	which	help	to	reinforce	what
they	are—types	of	a	thing	but	without	the	required	implementation	or	properties	to
actually	be	a	thing.

Singletons
Before	we	move	on	from	the	high-level	and	design	theory	topic	and	take	a	look	at
implementing	extensions	in	Jenkins,	there	is	one	more	Java	design	pattern	that	we	still
need	to	cover—the	Singleton	pattern.

Singletons	are	used	when	you	want	to	ensure	that	there	will	only	be	either	zero	or	one
instance	of	a	given	class.

Typically,	this	pattern	occurs	when	you	need	to	control	concurrent	actions—by	ensuring
that	there	is	only	a	maximum	of	one	instance	possible,	we	can	be	sure	that	we	will	not	face
any	concurrency	or	race	conditions,	as	this	class	(and	its	code)	will	definitely	be	the	only
possible	instance	at	any	given	time.	Usually,	a	Singleton	will	be	used	by	many	different
functions,	and	its	purpose	is	to	handle	and	manage	this	demand	safely.

A	common	Singleton	example	is	a	logging	utility.	For	example,	a	class	that	takes	a
message	from	several	different	areas	of	a	system	at	any	point	in	time.	It	then	opens	a	log
file	and	appends	the	message	to	the	file.	We	wouldn’t	want	two	classes	writing	to	the	same
log	file	at	the	same	time—that	would	cause	chaos	and	end	horribly—so	control	and	access
is	managed	by	and	restricted	to	a	maximum	of	one	instance	of	the	class.	This	instance	will
be	guaranteed	to	have	ownership	and	free	rein	to	write	to	the	log	files,	and	it	will	be	safe
in	the	knowledge	that	there	is	no	other	instance	of	the	same	class	doing	the	same	thing	at
the	same	time—it	manages	the	“write	this	information	to	the	log	file”	function	safely.

Each	section	of	code	that	wishes	to	use	the	“write	to	log	file”	method	will	attempt	to
initialize	the	Singleton	object.	If	an	instance	of	this	object	already	exists,	we	will	reuse
this,	and	if	currently	there	is	no	instance,	one	will	be	created.	It	will	then	remain	available
for	other	users	until	the	program	exists,	or	it	is	cleaned	up.

A	Singleton	instantiation	is	managed	via	a	private	constructor	so	that	only	the	code	inside
the	Singleton	can	create	it,	as	follows:

public	class	Singleton	{

		private	static	Singleton	uniqueInstance	=	new	Singleton();

	

		private	Singleton()	{}

	

		public	static	Singleton	getInstance()	{

				return	uniqueInstance;

		}

		

		public	String	getDescription()	{

				return	"Singleton	class";

		}

}

This	is	known	as	Eager	instantiation,	as	we	will	create	a	new	Singleton	object	every	time
prior	to	invoking	the	getInstance()	method.

The	alternative	approach	to	this—and	which	one	you	use	depends	on	your	preferences	and
requirements—is	to	use	Lazy	instantiation,	as	shown	here:

public	class	Singleton	{

		private	static	Singleton	uniqueInstance;

		private	Singleton()	{}

		public	static	synchronized	Singleton	getInstance()	{

				if	(uniqueInstance	==	null)	{

						uniqueInstance	=	new	Singleton();

				}

				return	uniqueInstance;

		}

			

		public	String	getDescription()	{

				return	"Singleton	class";

		}

}

Here,	we	have	used	a	static	Singleton	instance	and	synchronized	the	getInstance()
method.	Comparing	the	two	approaches	should	help	you	to	decide	the	best	approach	for
your	needs.	In	UML,	a	Singleton	can	be	documented	like	this:

Declaring	an	extension	in	Jenkins
As	we	have	seen	so	far,	creating	an	interface	or	an	abstract	class	is	simple	once	we
understand	the	logic	behind	them.	It’s	easier	to	declare	an	interface	or	an	abstract	class,
and	then	implement	the	required	functionality.

Creating	a	Singleton	is	also	straightforward	once	you	understand	when	to	use	each	design
pattern	and	which	approach	suits	your	requirements.

If	we	keep	this	model	in	mind	when	creating	or	adding	components	to	a	Jenkins	plugin,
we	should	be	able	to	identify	appropriate	opportunities	where	it	would	be	helpful	to
expose	an	interface	and	create	an	extension	point	for	others	to	use.	For	example,	if	you	are
working	on	a	plugin	that	for	some	reason	transforms	the	history	of	a	Jenkins	job	in	to	a
CSV	file	so	that	it	can	be	exported	and	analyzed	in	a	spreadsheet,	you	will	be	writing
functions	to	turn	some	data	in	to	CSV	values—this	could	be	declared	as	an	extension
point,	and	as	long	as	the	data	passed	is	of	the	specified	type,	others	can	reuse	your	code	to
convert	their	data	to	CSV	too,	rather	than	everyone	implementing	the	same	functions,
which	would	cause	needless	duplication.

To	define	or	create	an	extension	in	Jenkins,	we	use	the	@Extension	annotation	type.

This	annotation	is	picked	up	by	Jenkins,	and	the	new	extension	will	be	added	to	an
ExtensionList	object,	where	the	extension	can	then	be	found	via	ExtensionFinder.

More	details	on	the	extension	annotation	can	be	found	here:	http://javadoc.jenkins-ci.org/?
hudson/Extension.html.

The	following	example	shows	the	declaration	for	an	Animal	extension	point:

/**

	*	Extension	point	that	defines	different	kinds	of	animals

	*/

public	abstract	class	Animal	implements	ExtensionPoint	{

		...

		/**

			*	All	registered	{@link	Animal}s.

			*/

		public	static	ExtensionList<Animal>	all()	{

				return	Hudson.getInstance().getExtensionList(Animal.class);

		}

}

This	illustrates	an	abstract	class	that	implements	ExtensionPoint:	https://wiki.jenkins-
ci.org/display/JENKINS/Defining+a+new+extension+point.

http://javadoc.jenkins-ci.org/?hudson/Extension.html
https://wiki.jenkins-ci.org/display/JENKINS/Defining+a+new+extension+point

Summary
In	this	chapter,	we	looked	at	the	concepts	behind	several	major	design	patterns	and	saw
when	you	would	use	each	approach	and	why	you	would	do	so.

If	you	are	an	experienced	Java	programmer,	these	concepts	should	be	very	familiar,	and	if
not,	then	hopefully	this	will	serve	as	a	foundation	that	will	help	you	to	understand	not	only
what	we	are	doing	in	the	subsequent	chapters,	but	also	why	we	are	doing	it.

In	the	beginning	of	this	chapter,	we	touched	upon	the	philosophy	behind	plugin
development—that	people	should	seek	to	collaborate,	reuse,	and	extend	existing	code	to
provide	new	functionality	whenever	possible.	If	everyone	went	off	and	created	their	own
plugins	for	their	own	particular	needs,	rather	than	collaborating	and	contributing	to
existing	efforts,	there	would	be	massive	duplication	and	replication,	and	the	quality	would
be	far	poorer	as	a	result.

This	ethos	and	the	preceding	design	approach	has	created	a	community	of	plugin
developers	who	produce	high	quality	software	by	providing	a	vast	array	of	functionality
that	enables	Jenkins	users	to	adapt	and	extend	Jenkins	to	perform	an	incredibly	diverse
number	of	tasks.

In	the	next	chapter,	we	will	build	upon	this	knowledge	and	see	the	concepts	that	we	have
covered	here	being	used	for	real	when	we	develop	our	first	Jenkins	plugin.

Chapter	6.	Developing	Your	Own	Jenkins
Plugin
In	the	previous	chapter,	we	focused	on	the	high-level	concepts	behind	Jenkins	plugins.

In	this	chapter,	we	will	be	hands-on	as	we	work	through	the	practical	aspects	of	setting	up
our	development	environment,	become	familiar	with	the	tools	and	conventions	that	we
need	to	know	about,	and	then	create	our	first	Jenkins	plugin.

By	the	end	of	the	chapter,	you	should	be	familiar	with	the	following:

Using	Maven	for	builds	and	dependency	management
The	structure	and	layout	used	for	plugin	projects
Creating	your	own	Jenkins	plugin	project(s)
Making	basic	code	changes	to	your	plugin	source	code
Compiling,	packaging,	and	deploying	your	plugin	to	a	remote	Jenkins	instance
Using	an	IDE	to	make	changes	and	run	Jenkins
The	basics	of	running	and	debugging	Jenkins	and	your	plugin	code	within	an	IDE

We	will	begin	by	setting	up	our	development	environment;	then,	as	is	traditional,	we	will
create	a	very	simple	Hello	World	Jenkins	plugin	project	to	illustrate	the	mechanics	and
get	us	started.

Most	of	this	chapter	is	based	on	the	topics	covered	in	the	Jenkins	Plugin	tutorial	guide
here:

https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial

Note
This	page	has	many	useful	references	and	should	be	your	first	port	of	call	if	you	have	any
difficulty	with	any	aspect	of	this	chapter.

We	will	focus	initially	on	the	tools,	conventions,	and	frameworks	and	keep	to	the	simplest
plugin	possible	to	provide	a	solid	understanding	of	the	process	and	tools	used	to	develop
plugins.	We	will	look	at	extension	points	and	more	complex	code	changes	in	the	next
chapter.

We	will	also	run	through	the	setting	up	of	an	IDE	for	plugin	development	and	introduce
basic	Jenkins	debugging	that	can	be	done	directly	from	within	Eclipse.

Tip
To	start	off,	we	are	concentrating	on	using	Java	and	Maven	as	they	are	currently	the	most
common	tool	set	that	are	used	to	build	plugins,	but	we	will	also	take	a	look	at	alternative
approaches	such	as	Groovy	and	Gradle	in	the	next	chapter.

Let’s	start	off	by	setting	up	your	environment.

https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial

An	introduction	to	Maven
We	will	use	Maven	to	build	our	plugin.	If	you	are	unfamiliar	with	Maven,	don’t	worry—
the	main	point	of	Maven	is	that	you	don’t	necessarily	need	to	know	a	lot	about	Maven	to
use	it	and	to	get	a	lot	from	it!

For	a	build	tool	that’s	quite	unusual,	you	may	well	have	expected	yourself	to	be	knee-deep
in	configuration	files	and	code.	However,	Maven	works	quite	well	without	these	due	to	the
core	philosophy	that	is	at	its	heart:	it	uses	convention	over	configuration.

Maven	works	on	the	assumption	that	you	and	your	project	are	following	a	set	of	standard,
sensible	conventions.	These	are	nothing	too	weird	or	onerous,	so	if	you	are	following	this
path,	then	Maven	should	just	know	where	everything	is	and	what	you	would	like	to
achieve	and	will	help	you	get	up	and	running	very	quickly	and	easily.

One	of	these	core	assumptions	is	related	to	your	project	structure;	specifically,	if	you	are
using	a	directory	layout	like	this:

Item Default	dir	(relative	to	the	project	directory)

source	code src/main/java

resources src/main/resources

tests src/test

complied	code target

distributable	JAR target/classes

Given	a	project	that	adheres	to	this	convention,	Maven	will	automatically	know	how	to
build	your	code,	how	to	test	it,	and	how	to	package	it	all	up	nicely	for	you	with	no	other
configuration	or	intervention	required,	providing	a	lot	of	benefit	for	a	very	small	cost.

Tip
This	is	great	as	long	as	your	project	sticks	to	the	path	that	Maven	expects…	if	you	stray,
things	can	get	messy	very	quickly!	This	makes	Maven	great	for	new	and	well-structured
projects,	but	requires	a	bit	more	work	when	introducing	legacy	projects	that	have	their
own	ideas	about	locations	and	naming	conventions.

Installing	Maven
Maven	is	a	Java	tool,	and	therefore,	we	need	to	have	Java	installed	to	use	it.	You	should
have	Java	on	your	system	already	if	you’re	running	Jenkins	locally,	but	if	not,	you	can
download	a	JDK	for	your	platform	from	the	following	link—version	6.0	or	later	is
required:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Once	you’ve	got	the	Java	prerequisite	sorted	out,	download	Maven	for	your	platform	from
the	Apache	site	here:

https://maven.apache.org/download.cgi

Then	follow	the	installation	steps	for	your	operating	system	from	this	page:

https://maven.apache.org/install.html

On	all	platforms,	the	main	requirement	is	to	ensure	that	you	have	a	JAVA_HOME	variable	in
PATH,	and	that	PATH	also	contains	the	Maven	bin	directory	from	the	download	you
extracted.

Once	you	are	set	up,	you	should	get	something	roughly	comparable	to	the	following	when
you	run	java	–version	and	then	mvn	–version—I	am	also	displaying	the	Java	and
Maven	environment	variables	here	for	your	information:

We	now	need	to	tell	Maven	about	Jenkins;	where	it	is	and	how	to	build	it.	We	do	this	by

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html

updating	the	settings.xml	file	in	the	m2	home	directory	with	the	XML	provided	in	the
Setting	up	Environment	section	of	the	Jenkins	Plugin	Tutorial	page	mentioned	earlier:

https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial

Find	your	settings.xml	file	here	for	Linux	or	Mac:	~/.m2/settings.xml.

For	Windows,	the	file	is	available	at:	%USERPROFILE%\.m2\.

Add	the	following	text	within	the	settings.xml	file:

<settings>

		<pluginGroups>

				<pluginGroup>org.jenkins-ci.tools</pluginGroup>

		</pluginGroups>

		<profiles>

				<!--	Give	access	to	Jenkins	plugins	-->

				<profile>

						<id>jenkins</id>

						<activation>

								<activeByDefault>true</activeByDefault>	

										<!--	change	this	to	false,	if	you	don't	like	to	have	it	on	per	

default	-->

						</activation>

						<repositories>

								<repository>

										<id>repo.jenkins-ci.org</id>

										<url>http://repo.jenkins-ci.org/public/</url>

								</repository>

						</repositories>

						<pluginRepositories>

								<pluginRepository>

										<id>repo.jenkins-ci.org</id>

										<url>http://repo.jenkins-ci.org/public/</url>

								</pluginRepository>

						</pluginRepositories>

				</profile>

		</profiles>

		<mirrors>

				<mirror>

						<id>repo.jenkins-ci.org</id>

						<url>http://repo.jenkins-ci.org/public/</url>

						<mirrorOf>m.g.o-public</mirrorOf>

				</mirror>

		</mirrors>

</settings>

It’s	a	good	idea	to	make	a	new	directory	for	each	project.	This	keeps	things	clean	and
simple,	rather	than	having	multiple	projects	coexist	in	one	folder.	To	create	a	directory	for
this	project,	run	mkdir	and	then	cd	to	enter	into	the	directory	as	follows:

mkdir	jenkinspluginexample

cd	jenkinspluginexample

After	this,	we	can	start	the	build,	which	will	create	a	skeleton	plugin	project	for	us:

https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial

mvn	-U	org.jenkins-ci.tools:maven-hpi-plugin:create

Note
If	you	have	any	issues	at	this	point,	check	these	three	common	causes	first:

Does	mvn	work	in	this	directory?	Check	using	mvn	-version
Does	Java	work	in	this	directory?	Check	using	java	-version
Do	you	have	Internet	connectivity?	Check	using	ping	www.google.com

If	all	goes	well,	you	will	be	prompted	to	answer	a	couple	of	simple	questions;	Maven	will
want	you	to	specify	the	groupId	and	the	artifactId	parameters	of	your	plugin.

For	groupId,	the	convention	is	to	use	your	domain	name	in	reverse	followed	by	the
project	name,	all	in	lower	case	and	separated	by	dots.	Given	the	donaldsimpson.co.uk
domain	name	and	the	jenkinspluginexample	project	name,	I	would	use	this:
uk.co.donaldsimpson.jenkinspluginexample.

The	value	of	artifactId	should	be	your	project	name,	that	is,	jenkinspluginexample.

If	you	are	going	to	have	several	components	or	services	comprising	the
jenkinspluginexample	project,	you	should	append	additional	service	names	here,	such	as
the	following:

jenkinspluginexample-service

jenkinspluginexample-web

jenkinspluginexample-gui

The	intention	behind	this	approach	is	to	ensure	that	when	used	in	conjunction	with	the
group	ID,	each	part	of	your	project	will	remain	uniquely	and	readily	identifiable.

The	preceding	screenshot	is	the	result	of	the	previous	input	and	states	that	a	version	1.0
Snapshot	build	has	been	created	using	the	skeleton	plugin,	which	has	produced	a	very
basic	and	the	first	plugin	for	us	to	examine.

Now	take	a	look	inside	the	newly	created	subdirectory,	whose	name	should	match	your
artifactId.

On	exploring	this	directory,	we	should	now	have	the	generated	examples	of	everything
that	is	required	to	create	the	most	basic	plugin.	These	include	the	following:

pom.xml:	A	new	Maven	POM	file	for	our	project	that	contains	the	information
required	for	Maven	to	build,	package,	and	distribute	our	example	plugin
src/main:	This	directory	contains	both	a	Java	directory	and	a	resources	directory
src/main/java:	This	directory	contains	the	Hello	World	builder	class	that	we	will
update	later
src/main/resources:	This	folder	contains	configuration	and	help	files

Taking	a	good	look	around	at	the	contents	of	these	new	folders	that	we	just	generated	and
mentioned	will	help	you	become	familiar	with	the	different	files	and	structure	used	by
Maven	and	Jenkins	to	develop,	build,	and	distribute	plugins.	The	layout	follows	the
Maven	conventions	and	is	used	for	many	other	projects	as	well.

As	you	previously	saw,	our	new	project	directory	has	its	own	pom.xml	file,	so	we	should
be	able	to	build	it	as	a	Maven	project—let’s	take	a	look	and	try	it	out!

Change	directory	to	the	location	of	your	new	pom.xml	file	and	have	a	look	at	it—you	will
see	the	various	goals	available	in	here,	along	with	all	of	the	details	required	to	work	with
our	project.

There	is	also	a	packaging	declaration,	as	follows:

<packaging>hpi</packaging>

This	tells	Maven	that	you	would	like	this	project	to	be	packaged	into	an	HPI	file—this	is
the	standard	file	format	for	Jenkins	plugins.	Other	packaging	instructions	typically	include
ZIP,	JAR,	WAR,	and	EAR.

Maven	also	assumes	that	you	will	want	to	perform	a	standard	set	of	tasks	with	your
project—these	will	usually	include	functions,	or	phases	such	as	the	following:

validate:	This	validates	that	the	project	is	correct	and	all	necessary	information	is
available.
compile:	This	compiles	the	source	code	of	the	project.
test:	This	tests	the	compiled	source	code	using	a	suitable	unit	testing	framework.
The	tests	should	not	require	the	code	be	packaged	or	deployed.
package:	This	takes	the	compiled	code	and	packages	it	in	its	distributable	format,
such	as	a	JAR.
integration-test:	This	processes	and	deploys	the	package,	if	necessary,	into	an
environment	where	integration	tests	can	be	run.
verify:	This	runs	checks	to	verify	that	the	package	is	valid	and	meets	quality	criteria.
install:	This	installs	the	package	into	the	local	repository,	for	use	as	a	dependency
in	other	projects	locally.
deploy:	This	is	done	in	an	integration	or	release	environment.	This	function	copies
the	final	package	to	the	remote	repository	to	share	the	package	with	other	developers
and	projects.
clean:	This	cleans	up	artifacts	created	by	prior	builds.
site:	This	generates	site	documentation	for	this	project.

This	guide	has	more	information	on	Maven	phases	and	goals	and	how	they	are	linked:

https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

If	we	run	the	package	goal	now,	Maven	should	run	through	all	of	the	prerequisite	steps
and	then	produce	an	HPI	file,	which	we	can	deploy	to	Jenkins	by	running	the	following:

mvn	package

This	phase	will	download	all	the	required	dependencies	using	the	information	in	the	POM
file.	It	will	then	compile	the	Java	code	and	would	also	run	tests	(if	any	existed	in	the
expected	location—src/test).

Depending	on	your	Internet	connection,	this	may	take	some	time,	as	Maven	will	perform
an	initial	download	for	all	the	declared	dependencies	(and	their	dependencies!)	that	it

https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

doesn’t	already	have	locally.	In	subsequent	runs,	things	should	be	much	quicker,	as	Maven
will	retain	the	downloaded	resources	in	the	.m2/repository	cache	folder,	which	is	in	your
home	directory	next	to	settings.xml	that	we	updated	earlier.

On	completion,	you	should	now	have	a	distributable	.hpi	file!

As	you	can	see	from	the	preceding	image,	the	console	output	that	is	produced	near	the	end
explains	that	the	code	has	been	compiled	into	a	Java	Archive	(.jar)	file,	the	resources	(the
Jelly,	configuration,	and	HTML	files)	have	been	included,	and	everything	has,	in	my	case,
been	packaged	into	a	resultant	archive	named	jenkinspluginexample.hpi,	which	now
resides	in	the	target/	directory.

We	haven’t	written	a	line	of	code	yet,	but	we	have	just	produced	our	first	Jenkins	plugin!

Let’s	now	deploy	this	to	a	standard	Jenkins	instance:

1.	 Open	the	home	page	for	your	Jenkins	instance.
2.	 Navigate	to	Jenkins	Home	|	Manage	Jenkins.
3.	 Select	Manage	Plugins,	and	then	Advanced.
4.	 Scroll	down	to	the	Upload	Plugin	section	and	click	on	Browse.
5.	 Navigate	to	the	local	folder	where	your	new	.hpi	file	is	(in	the	target	directory	of

your	project):

After	clicking	the	Submit	button,	you	should	see	that	your	plugin	is	uploaded	and
installed	on	your	Jenkins	instance:

You	will	now	have	a	TODO	plugin	in	your	list	of	installed	plugins,	along	with	the	Snapshot
build	number	and	your	name	as	the	author.

If	you	now	click	on	Configure	of	any	Freestyle	job,	there	will	be	a	new	option	to	add	a
build	step	called	Say	hello	world:

Selecting	this	will	produce	the	following	dialog,	where	you	supply	your	name:

Not	too	surprisingly,	for	a	Hello	World	project,	this	will	be	displayed	as	an	additional
build	step	in	the	console	output	the	next	time	you	run	this	job:

It	looks	pretty	cool	to	have	our	own	plugin	installed	and	running	on	a	Jenkins	instance,
and	doing	this	for	the	first	time	is	good	fun.	However,	when	you	are	developing	a	plugin,
running	through	a	process	like	this	every	time	you	make	a	small	change	is	a	bit	more	of	a
hassle	than	you	may	want!

Let’s	now	look	at	making	our	first	code	change	and	a	smarter	and	more	efficient	way	to
package,	deploy,	and	test	our	code.

To	start	off	with,	make	a	tiny	change	as	follows	to	the	HelloWorldBuilder.java	file,

which	is	in	your	src/main/java	directory:

src/main/java/uk/co/donaldsimpson/jenkinspluginexample/jenkinspluginexample

/HelloWorldBuilder.java

Initially,	the	line	was	this:

listener.getLogger().println("Hello,	"+name+"!");

I	have	simply	altered	the	preceding	line	to	the	following:

listener.getLogger().println("Hello	there,	"+name+"!");

Instead	of	going	all	the	way	through	the	previous	process	again—compiling,	packaging,
and	deploying	through	the	Jenkins	web	page	and	so	on—just	to	check	this	minor	update,
we	can	perform	all	these	steps	with	one	simple	Maven	command:

mvn	hpi:run

This	will	compile	the	code	(after	picking	up	our	modification),	and	then	start	up	and	run	a
local	instance	of	Jenkins	on	your	machine	with	our	newly	updated	plugin	already
deployed	to	it—this	makes	the	testing	of	your	changes	much	easier,	quicker,	and	safer	too.

To	do	this	on	Windows,	first	export	the	following	settings:

set	MAVEN_OPTS=-Xdebug	–

Xrunjdwp:transport=dt_socket,server=y,address=8000,suspend=n

On	Unix	and	Mac,	do	the	equivalent,	as	follows:

export	MAVEN_OPTS="-Xdebug	–

Xrunjdwp:transport=dt_socket,server=y,address=8000,suspend=n"

Then,	regardless	of	platform,	call	the	hpi:run	goal,	as	shown	here:

mvn	hpi:run

After	this,	you	will	be	able	to	see	Maven	download	dependencies	and	then	start	up	a	local
Jetty	instance	that	runs	Jenkins	with	your	plugin	installed	on	it!

Keep	an	eye	on	your	console	output,	and	you	will	see	when	everything	is	complete
whenever	the	following	text	is	displayed:	INFO:	Jenkins	is	fully	up	and	running.

After	this	point,	you	can	safely	connect	to	the	Jenkins	instance	by	pointing	your	browser
to	the	following:
http://127.0.0.1:8080/jenkins/

Note
Do	not	try	to	connect	to	the	8000	port	you	have	set	in	MAVEN_OPTS—this	is	used	for
debugging,	which	we	will	take	a	look	at	later.	Use	port	8080,	and	note	that	the	appended
/jenkins/	path	is	also	required	in	order	to	connect.

Now,	we	can	create	and	configure	a	new	Freestyle	job	and	add	in	the	same	build	step	as
before	by	selecting	to	use	our	Say	hello	world	job	and	adding	our	name	to	it.

Running	this	new	job	should	produce	the	expected	output,	as	follows:

This	proves	that	our	code	change	has	been	picked	up	and	demonstrates	just	how	quickly
and	easily	you	can	make,	test,	package,	deploy,	and	verify	your	plugin	changes—one
small	Maven	command	does	most	of	the	work	for	you!	After	the	initial	setup	and
downloading,	it’s	a	fairly	quick	process	too.

To	make	life	even	easier,	we	can	set	up	an	IDE	to	help	us	develop	Jenkins	plugins.

Note
The	official	Jenkins	Plugin	Tutorial	page	is	at	https://wiki.jenkins-
ci.org/display/JENKINS/Plugin+tutorial.	This	tutorial	contains	steps	for	NetBeans,	IntelliJ
IDEA,	and	Eclipse.	The	first	two	are	very	simple,	so	we’ll	cover	the	Eclipse	setup	in	more
detail	here.

The	plugin	guide	currently	recommends	using	this	command	to	generate	a	new	Eclipse
workspace	for	plugin	development:

mvn	–DdownloadSources=true	–DdownloadJavadocs=true	-

DoutputDirectory=target/eclipse-classes	–

Declipse.workspace=/path/to/workspace	eclipse:eclipse	eclipse:add-maven-

repo

You	need	to	update	/path/to/workspace	to	point	to	a	suitable	workspace	location	on	your
system—this	can	be	anywhere	you	like,	but	ideally,	next	to	your	other	Eclipse
workspace(s).

Note
I	had	issues	running	the	suggested	command	and	found	that	eclipse:add-maven-repo	is
deprecated,	so	I	updated	this	to	eclipse:configure-workspace	instead.

For	my	project,	the	following	worked:

mvn	–DdownloadSources=true	–DdownloadJavadocs=true	-

DoutputDirectory=target/eclipse-classes	-

Declipse.workspace=/Users/donaldsimpson/Documents/JenkinsPluginEclipseWorks

pace	eclipse:eclipse	eclipse:configure-workspace

Make	sure	you	run	this	command	from	within	the	same	directory	that	you	have	used	to
create	the	Hello	World	plugin,	as	it	requires	the	pom.xml	file	and	other	resources	from
here.

On	completion,	this	step	should	successfully	populate	a	new	Eclipse	.metadata	directory
in	your	new	workspace	and	have	all	the	required	settings	and	resources	in	your	project
directory.

Next,	open	Eclipse	and	switch	to	your	chosen	workspace,	select	Import	(under	the	File
menu),	select	General	and	then	Existing	Projects	into	Workspace,	as	follows:

https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial

Direct	this	dialog	to	the	directory	where	you	created	your	Hello	World	plugin	(where	the
pom.xml	file	is),	and	Eclipse	should	automatically	load	up	the	project	for	you:

On	completion,	you	should	have	an	IDE	that	looks	something	like	this:

Now	you	can	edit	the	Java	classes	and	the	plugin	resources	from	within	Eclipse.

Tip
Remember	that	you	can	also	enable	the	Mylyn	plugin	that	we	set	up	earlier	to	keep	an	eye
on	how	your	most	important	Jenkins	builds	are	doing!

You	can	also	manage	your	project’s	POM	file	and	run	the	Maven	build	from	here	too—
right-click	on	the	pom.xml	file	and	select	Run	as	and	Maven	Build,	and	Jenkins	should
start	up	directly	in	your	Eclipse	console	now,	with	your	plugin	already	deployed	with	the
latest	version	of	your	code.

To	test	this	setup,	try	making	another	very	simple	change—in	the	preceding	image,	I
updated	the	output	message	to	Hello	again,	just	to	be	different.	Saving	the	Hello	World
builder	class	and	then	running	the	Maven	target	hpi:run	through	Eclipse	will	fire	up
Jenkins,	and	you	can	see	the	alteration	made	in	Eclipse.

You	can	also	run	Jenkins	in	the	Debug	mode	and	set	a	breakpoint	by	clicking	on	the
desired	line	of	your	code	in	Eclipse,	as	follows:

Here,	we	can	see	the	breakpoint	being	activated	when	the	build	is	run	via	Jenkins.	At	this
point,	the	focus	will	automatically	switch	from	Jenkins	in	the	browser	to	the	Eclipse	IDE,
where	we	can	inspect	the	current	values	of	the	existing	variables	at	run	time.	We	can	then
walk	through	the	code	step	by	step	by	debugging	the	values	in	real	time	and	monitoring
the	console	output	at	each	step.

This	is	a	very	handy	development	feature,	and	setting	up	your	Jenkins	plugin	development
environment	in	this	manner	can	make	things	much	more	productive—and	your	life	a	lot
easier!

Summary
In	this	chapter,	we	have	built,	packaged,	and	deployed	our	own	“bare-bones”	Jenkins
plugin.

We	have	looked	at	the	tools	and	conventions	used	to	develop	Jenkins	plugins.	We	have	set
up	Java,	Maven,	and	Eclipse	on	our	development	host	and	learned	how	to	build,	package,
test,	deploy,	and	even	debug	our	own	plugin.

The	main	thing	that	we	are	still	missing	is	what	you	decide	to	put	in	the	middle!	This	is
what	we	will	concentrate	on	in	the	next	chapter.

Chapter	7.	Extending	Jenkins	Plugins
For	Jenkins	plugin	development	so	far,	we	have	looked	at	the	following:

The	approach	to	take—reuse	where	possible,	avoiding	unnecessary	duplication
Collaborating—how	both	the	process	and	the	community	work
Design	methodologies	and	Java	patterns	used
Setting	up	the	development	environment	and	build	tools
Developing	the	first	simple	plugin
Deploying	and	testing	our	plugins	locally	and	remotely

We	will	now	take	a	look	at	the	ways	to	help	you	sort	out	that	missing	middle	part	from	the
previous	chapter	and	implement	the	code	that	enables	your	plugin	to	do	what	it	does…
whatever	that	may	be!

The	intention	here	is	to	walk	you	through	the	development	of	your	own	plugin	and
demonstrate	the	ways	in	which	you	can	(and	should)	approach	the	(re)use	of	the	resources
that	are	already	out	there.

This	means	that	when	you	come	up	with	an	idea	for	your	own	plugin	and	want	to	develop
it,	you	will	be	able	to	do	so	as	quickly	and	easily	as	possible	by	following	best	practices
and	by	avoiding	the	addition	of	unnecessary	duplication	to	the	Jenkins	and	plugin	code
base.

While	doing	this,	we	will	also	explore	some	of	the	additional	frameworks	and
technologies	used	by	and	available	to	Jenkins	plugins.	These	include	Jelly,	Stapler,
localization,	and	internationalization;	when	used	together,	these	tools	and	practices	enable
plugin	developers	to	reuse	the	Jenkins	built-in	functionality	in	order	to	make	their	plugins
look	like	they	“belong”	to	Jenkins,	rather	than	something	that	has	been	simply	added	on,
by	maintaining	the	same	look	and	feel	as	the	rest	of	the	user	interface.

Following	this	approach	of	getting	yourself	started	and	knowing	how	to	use	these
frameworks	will	save	you	a	lot	of	time	and	frustration.	Once	you	know	how	to	go	about
researching	and	reusing	the	code	and	functionality	that’s	already	provided	by	the	existing
plugins	and	Jenkins,	you	will	save	yourself	a	lot	of	development	work	as	well.

While	working	on	the	Hello	World	plugin,	we	covered	quite	a	lot	of	new	information	and
introduced	some	new	concepts.	This	was	all	done	at	a	pretty	high	level	and	with	minimum
coding	and	configuration	so	that	we	could	maintain	focus	on	the	overall	process	and	learn
how	things	work.	The	actual	code	was	about	as	simple	as	you	can	get	for	a	plugin;	all	it
did	was	write	a	message	to	the	console	log	every	time	the	build	was	run.

As	you’re	no	doubt	aware,	Jenkins	plugins	have	been	created	to	perform	all	kinds	of	tasks,
and	they	do	so	in	a	wide	variety	of	ways—some	of	them	integrate	seamlessly	with	the
Jenkins	user	interface,	while	others	work	away	mostly	unseen	in	the	background.	Some
extend	existing	functionalities	and	others	add	entirely	new	functions.	Plugins	seem	to	be
cohesive—they	all	have	roughly	the	same	look	and	feel,	rather	than	appear	to	have	been
developed	by	different	people,	who	had	their	own	ideas	about	color	schemes,	navigation,

dialogs,	and	so	on.	They	are	even	able	to	respond	to	locale	changes	to	provide	dialogs	in
different	languages	depending	on	user-specified	preferences.	While	much	of	Jenkins
functionality	comes	from	a	large	number	of	plugins,	many	of	which	have	been	assimilated
into	the	core	of	Jenkins,	the	impression	and	user	experience	is	that	of	a	quite	slick	and
cohesive	whole,	rather	than	a	collection	of	fragmented	and	disparate	additions.

In	this	chapter,	we	will	take	a	look	at	the	other	elements	that	go	into	Jenkins	plugins,	and
expand	the	ways	in	which	you	can	flesh	out	your	own	plugin.	We	will	also	look	at	how	to
go	about	finding	and	reusing	existing	code/plugins	to	get	you	started	quickly,	and	we	will
walk	through	the	contents	of	a	plugin	that	offers	features	similar	to	a	hypothetical	new
plugin	that	we	would	like	to	start	developing.

Where	to	start?
So,	after	checking	the	Jenkins	site	and	the	community,	we	have	decided	to	write	a	new
plugin,	as	nothing	out	there	(or	currently	in	the	works)	will	do	whatever	it	is	we	want;
where	do	we	start?

We	could	start	off	with	a	new	blank	Eclipse	project	and	write	everything	ourselves	if	we
really	wanted	to,	but	that	would	take	ages.

We	could	use	the	skeleton	Hello	World	project,	delete	what	is	in	there,	and	start	adding
our	code	to	that,	but	this	doesn’t	sound	like	the	sort	of	approach	we’d	expect	to	follow,
given	all	the	code	reuse	and	avoidance	of	duplication	we’ve	been	talking	about	for	a	while
now.

Even	if	you	have	a	completely	novel	idea	for	a	plugin,	there	is	bound	to	be	something
roughly	related	to	it	out	there	already;	even	if	this	doesn’t	provide	the	functionality	that	we
want,	it	may	work	in	a	similar	way	or	use	many	of	the	same	extension	points	that	we	have
identified	as	being	of	interest	to	us,	so	it’s	worth	checking	this	out.

Looking	at	the	list	of	existing	plugins
Usually,	the	first	place	to	look	at	is	the	list	of	available	plugins.	If	your	Jenkins	instance	is
up	to	date,	you	can	browse	through	the	currently	available	options	in	your	Jenkins
Available	plugins	page.

Go	to	Manage	Jenkins,	then	select	Manage	Plugins,	and	select	the	Available	tab	for	an
ever-growing	list	of	plugins	to	choose	from.

Note	that	this	screen	allows	you	to	filter	by	specific	words	and	provides	a	brief	description
of	each	plugin.

Alternatively,	the	Jenkins	Plugins	page	provides	an	easier-to-browse	and	slightly	more
detailed	listing:

https://wiki.jenkins-ci.org/display/JENKINS/Plugins

This	lists	the	plugins	grouped	by	their	general	category	or	function	and	also	hosts	links	to
the	corresponding	Jenkins	home	page	for	each	plugin.	In	turn,	the	home	page	provides
further	information	that	includes	links	to	the	source	code	for	that	plugin	on	GitHub,	which
you	can	browse	online	or	download	locally.

If	you	are	able	to	find	something	similar	to	your	plugin	here,	then	going	through	the
source	code	on	GitHub	will	enable	you	to	see	how	each	plugin	works	in	detail.	You	will
also	be	able	to	find	out	what	extension	points	this	plugin	uses.

Another	option	to	consider	is	going	straight	to	the	Extension	points	index	page	here:

https://wiki.jenkins-ci.org/display/JENKINS/Extension+points

This	list	is	automatically	generated	and	maintained	by	the	Extension	Indexer	program,
which	is	available	at:

https://github.com/jenkinsci/backend-extension-indexer

This	program	parses	the	current	code	base	for	all	the	declared	extension	points	and	then
lists	them	on	the	Extension	points	page	that	it	generates,	along	with	further	details	such
as	the	project	home	page	and	a	list	of	the	plugins	that	use	them.

Whichever	starting	point	works	for	you,	the	list	of	plugins	or	the	list	of	extension	points,
you	should	hopefully	end	up	at	the	same	place—with	an	idea	of	something	roughly	similar
to	what	you	want	to	end	up	with,	which	should	be	a	good	place	to	get	you	started.

For	example,	if	my	plugin	was	connected	to	Docker,	I	could	start	searching	through	the
list	of	existing	plugins	from	here	on	my	local	Jenkins:

https://wiki.jenkins-ci.org/display/JENKINS/Plugins
https://wiki.jenkins-ci.org/display/JENKINS/Extension+points
https://github.com/jenkinsci/backend-extension-indexer

Alternatively,	I	could	go	to	https://wiki.jenkins-
ci.org/display/JENKINS/Extension+points,	and	search	for	Docker	references	here:

https://wiki.jenkins-ci.org/display/JENKINS/Extension+points

Both	of	these	routes	eventually	lead	to	the	home	page	of	the	plugin	in	question,	for
example:

This	tells	you	everything	that	you	need	to	know	about	the	plugin	and	includes	a	link	to	the
source	code	and	configuration	files	for	this	plugin	that	are	hosted	on	GitHub.

To	illustrate	the	rest	of	the	process	and	introduce	the	other	frameworks	and	files	that	you
may	want	to	use,	we	will	think	of	a	new	plugin	that	we’d	like	to	start	developing.	We	will
try	to	find	something	that	already	exists,	use	it	to	get	us	started,	and	then	look	at	the	code,
configuration	files,	and	extension	points	that	will	be	used	to	get	us	to	the	point	where	we
can	start	adding	our	own	code.

A	new	build	type	required
For	this	hypothetical	example,	I’m	going	to	start	off	by	creating	a	new	build	step	for
Docker	builds.	This	would	allow	the	user	to	create	a	build	of	this	type,	add	in	some
information,	and	then	eventually	do	something	with	it	along	the	lines	of	a	Docker	build.

Where	you	normally	have	options	to	add	build	steps	of	these	types	(with	the	addition	of
our	Say	hello	world	example):

This	amazing	new	plugin-to-be	will	add	an	additional	entry	to	kick	off	a	Docker	Build.

By	looking	through	similar	projects	that	add	additional	build	steps	and	from	the	Hello
World	example,	I	can	guess	that	my	new	plugin	will	also	want	to	extend	the	Builder,
BuildStep,	and	AbstractProject	classes.

After	looking	through	the	links	and	resources	previously	listed,	I	can	see	that	there	is	an
existing	Graven	Plugin	project	that	performs	very	similar	steps	to	what	we	are	after	and
also	just	happens	to	include	all	of	the	new	resources	that	we	wanted	to	examine	in	this
chapter.	Plus,	it’s	got	some	handy	documentation	here:

https://wiki.jenkins-
ci.org/display/JENKINS/Create+a+new+Plugin+with+a+custom+build+Step

Let’s	take	a	look	at	it.	The	source	code	can	be	downloaded	from	GitHub	here	and	then
extracted	to	a	local	directory:

https://github.com/jenkinsci/graven-plugin

This	gives	us	everything	we	need	to	get	started	on	our	own	plugin,	which	should	make
things	much	easier	than	starting	from	scratch—we	can	examine	and	reuse	the	extension
points	used	here	to	see	how	the	plugin	goes	about	creating	a	new	build	type,	and	adjusts
the	properties	files	and	other	resources,	as	they	perform	the	same	steps	that	we	want	to	do.

https://wiki.jenkins-ci.org/display/JENKINS/Create+a+new+Plugin+with+a+custom+build+Step
https://github.com/jenkinsci/graven-plugin

Loading	and	building	our	starting	point
Let’s	import	this	project	in	to	Eclipse.	Again,	the	process	is	quite	simple;	as	we	did	in	the
previous	chapter,	we	will	make	a	directory	for	our	Eclipse	Project,	use	cd	to	enter	into	the
directory	containing	our	project’s	POM	file,	and	then	run	the	eclipse:configure-
workspace	goal	again,	as	follows:

mvn	-DdownloadSources=true	-DdownloadJavadocs=true	-

DoutputDirectory=target/eclipse-classes	-

Declipse.workspace=/Users/donaldsimpson/Documents/GravenPluginMasterWorkspa

ce	eclipse:eclipse	eclipse:configure-workspace

This	should	download	all	the	dependencies	and	allow	you	to	import	the	project	to	your
IDE	(navigate	to	File	|	Import	|	General	|	Existing	Projects	in	to	Workspace),	in	the
same	way	as	we	did	in	the	previous	chapter.

You	should	now	have	all	the	resources	and	source	code,	which	constitutes	this	plugin,
loaded	in	to	your	IDE,	and	it	should	look	roughly	like	this:

We	will	now	take	a	quick	look	through	these	files	and	file	types,	explain	their	functions,
and	explore	the	additional	plugin	components	and	options	they	provide	for	this	plugin,	and
could	potentially	bring	to	our	new	plugin.

The	Builder	class	and	Stapler
The	first	class	is	GravenBuilder.java.	The	class	declares	that	it	extends	the	Builder
class:

public	class	GravenBuilder	extends	Builder	{

As	we	can	see	in	the	JavaDoc	at	http://javadoc.jenkins-ci.org/hudson/tasks/Builder.html,
extending	the	Builder	class	will	register	this	class	with	Jenkins	as	a	custom	builder,
which	is	what	we	are	after.

Tip
This	extension	declaration	is	how	the	Extension	point	page	is	updated—the	program	that
builds	the	index	will	find	this	reference	in	the	code	and	automatically	create	the
association	for	us.

The	GravenBuilder	class	also	contains	this	simple	method:

@DataBoundConstructor

public	GravenBuilder(String	task)	{

		this.task	=	task;

}

Through	the	use	of	the	@DataBoundConstructor	annotation,	this	method	will	register	the
selection	of	this	task/build	type	when	the	user	decides	to	create	this	new	build	type.	This	is
done	automatically	via	the	Stapler	framework,	which	Jenkins	uses	to	serialize	and	convert
Java	objects.	You	can	find	out	more	about	Stapler,	how	it	works,	and	how	to	make	use	of
it	in	your	plugins	here:

http://stapler.kohsuke.org/what-is.html

Also,	in	the	GravenBuilder	class,	there	is	an	inner	class	named	Descriptor.	This	extends
BuildStepDescriptor,	and	its	function	is	to	provide	a	way	for	Jenkins	to	manage
instances	of	GravenBuilder	and	their	lifecycles.

The	GravenInstallation	class	contains	all	the	required	installation	and	registration
settings;	this	sets	the	tool	tips	and	defines	the	display	name	to	be	used	for	this	plugin,	and
so	on.

http://javadoc.jenkins-ci.org/hudson/tasks/Builder.html
http://stapler.kohsuke.org/what-is.html

Jelly	and	Jenkins
The	config.jelly	configuration	file	is	a	simple	Jelly	template.	You	can	find	out	more
about	Jelly	in	Jenkins	in	the	following	link:

https://wiki.jenkins-ci.org/display/JENKINS/Basic+guide+to+Jelly+usage+in+Jenkins

You	can	read	more	about	Jelly,	in	general,	here	at
http://commons.apache.org/proper/commons-jelly/.	This	article	states	the	following:

Jelly	is	a	Java	and	XML	based	scripting	and	processing	engine.

The	main	purpose	of	Jelly	in	this	context	is	to	provide	developers	with	a	highly	flexible
tag	library	through	which	they	can	quickly	and	easily	create	and	handle	UI	view	changes.

From	a	developer	point	of	view,	Jelly	files	interact	with	Java	code	to	get	and	set	declared
values	at	runtime	and	presents	them	to	the	user	via	the	UI.

https://wiki.jenkins-ci.org/display/JENKINS/Basic+guide+to+Jelly+usage+in+Jenkins
http://commons.apache.org/proper/commons-jelly/

Help
The	help*.html	files	provide	context-sensitive	help	messages	to	the	user.	These	messages
are	simply	defined	within	the	<div>	tags	and	will	be	displayed	as	standard-looking
tooltips	within	the	Jenkins	user	interface.	This	approach	allows	you	to	guide	your	user,
advise	them	on	what	they	can	and	can’t	do,	and	explain	what	your	plugin	does	and
requires.

The	index.jelly	file	provides	the	user	with	a	general	high-level	description	of	what	this
plugin	does—we	will	see	this	text	being	displayed	as	the	plugin	description	in	Jenkins
when	we	look	at	the	plugin	in	action	later	on.

Properties	files	and	Messages
The	Messages.properties	and	config_fr.properties	files	are	there	to	provide	users
with	i18n	internationalization,	as	described	here:

https://wiki.jenkins-ci.org/display/JENKINS/Internationalization

There	is	some	more	detail	on	localization	and	internationalization	at	this	link:

http://www.w3.org/International/questions/qa-i18n

In	Jenkins	plugin	development,	all	we	really	need	to	do	is	provide
config_LOCALE.properties	files	to	cater	to	each	language.	For	example,	if	the	user’s
LOCALE	variable	is	set	to	fr,	the	messages	in	the	config_fr.properties	file	will	be	used
—other	LOCALE	files	can	be	added	as	desired	to	support	other	languages.

Your	plugin	code	is	able	to	use	and	refer	to	the	properties	at	runtime,	as	follows:

Messages.GravenBuilder_Task()

The	Messages.java	class	in	the	target	directory	is	generated	at	build	time,	based	on	these
properties	files.

https://wiki.jenkins-ci.org/display/JENKINS/Internationalization
http://www.w3.org/International/questions/qa-i18n

The	POM	file
The	last	remaining	file,	pom.xml,	is	the	Maven	settings	file	that	we	have	looked	at	before.
This	one	is	particular	to	the	plugin	we	are	using	here	and	contains	the	group,	artifact,	and
version	information	that	will	be	used	to	build,	run,	and	package	the	project,	which	we	will
do	now.

Right-clicking	on	the	pom.xml	file	and	selecting	Run	as	and	then	Maven	Build…	allows
you	to	specify	the	hpi:run	goal	again,	which	should	start	up	a	new	local	instance	of
Jenkins	with	this	plugin	compiled	and	deployed	to	this	new	instance,	along	with	all	of	the
resources	and	localization	settings	the	plugin	contains.

When	the	instance	starts	up,	we	can	connect	via	a	browser	and	see	the	various	settings	and
code	that	we	have	reviewed	in	theory	being	used	in	practice.

We	can	check	and	see	that	the	plugin	is	listed	as	installed,	along	with	the	message	text,
which	is	picked	up	from	index.jelly:

When	we	create	a	new	Freestyle	job	and	take	a	look	at	the	available	Build	steps	that	we
could	add,	this	plugin	will	be	displayed	as	a	new	option—execute	GRaveN	task,	which
has	been	picked	up	from	Messages.properties:

When	we	select	this	option,	we	will	be	presented	with	the	dialogs,	localized	tool	tips,	and
input	boxes	that	were	defined	in	the	configuration	and	code	we	just	reviewed:

This	example	plugin	looks	like	a	good	starting	point	for	our	hypothetical	one.	It	may	not
do	everything	that	we	want	to	do,	but	we	can	adjust	and	reuse	the	settings	files	and	some
of	the	code	and	extension	points	it	uses	to	get	us	started,	and	we	can	have	the	basics	of	our
own	plugin	up	and	running	very	quickly.

The	implementation	of	this	hypothetical	plugin,	or	your	own	plugin,	may	well	have
different	needs	when	you	get	down	to	the	details,	but	hopefully,	this	will	illustrate	the
approaches	and	routes	you	could	follow	to	get	your	plugin	up	and	running	quickly.

If	you	ever	want	to	find	out	how	a	plugin	works,	or	how	to	change	a	plugin,	or	fix	a	bug	in
a	plugin,	knowing	your	way	around	the	various	resource	files	and	how	to	load	and	run	any
locally	based	plugin	by	starting	off	with	its	source	code	is	a	very	useful	skill.

Plugin	progress
We	searched	and	identified	something	that	did	roughly	what	we	wanted	to	do,	at	least	to
start	off	with.	We	have	identified	extension	points	that	provide	some	of	the	functionalities
that	we	are	after,	and	we	have	the	beginnings	of	a	pretty	fully-featured	plugin	that	will
look	and	feel	like	a	normal	part	of	Jenkins.	It	will	provide	the	user	with	inbuilt	help	and
will	even	speak	the	user’s	preferred	language…	so	long	as	we	add	the	corresponding
config	files.

Summary
The	next	steps	for	this	plugin	would	be	to	implement	more	of	our	own	code,	to	perform
the	Docker	build,	or	whatever	functions	we	want	to	perform.	Again,	this	functionality
could	take	further	advantage	of	the	available	extension	points,	or	if	there	are	none
available	that	will	do	what	we	want,	we	should	consider	declaring	their	interfaces	and
sharing	them	with	the	community	after	coding	our	own	implementation.

In	the	next	chapter,	we	will	explore	the	tools,	options,	and	resources	available	for	testing
our	plugins.	We	will	also	look	further	into	debugging	as	we	explore	how	to	approach,
resolve,	and	avoid	issues	with	plugins.

Chapter	8.	Testing	and	Debugging	Jenkins
Plugins
In	this	chapter,	we	will	take	a	look	at	the	testing	and	debugging	of	Jenkins	plugins.	We
will	explore	several	popular	options	and	approaches	that	are	currently	available,	and	we
will	review	the	benefits	and	suitability	of	each	approach.

Testing	Jenkins	plugins	is	reasonably	straightforward	if	you	are	happy	to	simply	run
standard	Java	Unit	tests,	but	if	you	wish	to	test	and	mimic	interactions	via	the	user
interface,	testing	can	become	a	little	bit	more	involved.	We	will	start	off	with	a	simple
example	and	then	look	at	some	of	the	approaches	and	tools	you	may	want	to	investigate
further	for	more	complex	scenarios.

Being	able	to	debug	a	Jenkins	plugins	is	a	valuable	addition	to	your	development	skills—
it	can	help	you	understand	what	is	going	on	with	your	own	plugin	while	you	are
developing	it,	and	it	can	also	help	you	to	resolve	issues	in	other	plugins	or	Jenkins	itself.

In	this	chapter,	we	will	take	a	look	at	the	following	topics:

Testing:	Under	Testing,	we’ll	cover	the	following	topics:

Running	tests	for	an	existing	project
Writing	your	own	tests
Available	tools
Techniques—HTML	scraping,	Mocking,	and	so	on

Debugging:	Under	Debugging,	we’ll	cover	the	following	topics:

Standard	log	files
Using	the	local	Jenkins	debug	session
Connecting	from	an	IDE
The	mvnDebug	command

Running	tests	with	Maven
When	we	were	exploring	plugin	development	earlier,	we	learned	where	to	find	and	how	to
fetch	the	source	code	for	any	given	Jenkins	plugin.

The	full	source	code	for	most	plugins	can	be	quickly	and	easily	downloaded	from	GitHub
and	then	built	on	your	local	machine.	In	many	cases,	this	also	includes	Unit	tests,	which
are	bundled	with	the	source	code	and	can	be	found	in	the	expected	(by	Maven	convention)
location	of	src/test.	Examining	a	selection	of	popular	plugins	would	provide	you	with
useful	information	and	a	great	starting	point	to	write	your	own	test	cases.

The	Maven	test	target	will	execute	all	of	the	tests	and	produce	a	summary	of	the	outcome
by	detailing	all	the	usual	statistics	such	as	the	number	of	tests	run	along	with	how	many
failures	and	errors	there	were	and	the	number	of	skipped	tests.

To	demonstrate	this	process,	we	will	take	a	look	at	the	very	popular	Green	Balls	plugin,
which	simply	replaces	the	standard	blue	balls	in	Jenkins	with	green	ones.

Tip
This	link	explains	why	Jenkins	has	blue	balls	as	default:

http://jenkins-ci.org/content/why-does-jenkins-have-blue-balls

The	Green	Balls	plugin	homepage	links	to	this	GitHub	location,	where	you	can	download
the	source	and	configuration	files	in	a	zip	file	or	clone	it	using	the	URL	provided:

https://github.com/jenkinsci/greenballs-plugin

We’re	looking	at	this	example	plugin,	as	it	contains	a	good	variety	of	tests	that	cover	the
main	topics	and	styles	of	testing—we	will	take	a	closer	look	at	the	contents	shortly.	Once
you	have	the	source	code	downloaded	to	your	local	machine,	you	should	be	able	to	kick
off	the	tests	by	simply	running	the	Maven	test	target:

mvn	test

This	target	will	then	run	through	all	the	prerequisite	setup	steps	before	executing	all	the
tests	and	then	report	on	the	outcome	as	follows:

http://jenkins-ci.org/content/why-does-jenkins-have-blue-balls
https://github.com/jenkinsci/greenballs-plugin

Note	that	a	single	test	can	be	run	by	specifying	the	name	of	the	test,	as	shown	here:

mvn	test	-Dtest=GreenBallIntegrationTest

This	will	result	in	one	test	being	run,	or	you	can	use	wildcards	such	as	this:

mvn	test	-Dtest=*ilter*

The	preceding	code	results	in	four	tests	being	run	in	this	case.

This	approach	could	be	used	to	categorize	your	tests	into	logical	suites—integration	tests,
nightly	tests,	regression	tests,	or	unit	tests—whatever	you	like,	simply	by	applying	a
consistent	naming	convention	to	your	test	classes	and	then	setting	up	Jenkins	jobs,	or
running	Maven	targets	that	will	perform	the	corresponding	actions,	for	example:

mvn	test	–Dtest=*Integration*

The	Green	Balls	plugin	contains	two	test	classes:	GreenBallFilterTest	and
GreenBallIntegrationTest,	which	illustrate	two	different	approaches	of	plugin	testing—
taking	a	look	through	their	source	code	should	help	you	to	see	how	you	can	develop	your
own	tests.

GreenBallFilterTest	performs	some	simple	pattern	matching	tests	to	ensure	that	correct
images	are	in	place:

GreenBallIntegrationTest,	as	shown	in	the	following	screenshot,	extends
HudsonTestCase	and	uses	com.gargoylesoftware.htmlunit.WebResponse	to	test	and
interact	directly	with	the	deployed	web	components,	asserting	that	they	return	the
expected	results:

This	Jenkins	page	provides	useful	resources	for	further	reading	that	would	cater	to	more
detailed	and	complex	testing	scenarios:

https://wiki.jenkins-ci.org/display/JENKINS/Unit+Test

This	link	covers	topics	such	as	Mocking,	HTML	scraping,	submitting	forms,	JavaScript,
and	web	page	assertions.

https://wiki.jenkins-ci.org/display/JENKINS/Unit+Test

Debugging	Jenkins
The	remainder	of	this	chapter	focuses	on	debugging	in	a	number	of	different	ways	in	order
to	help	in	further	understanding	the	application	and	its	behavior	at	run	time.

The	main	focus	is	on	using	a	local	instance	of	Jenkins	and	an	IDE	to	debug	development
sessions;	however,	it	is	still	useful	to	know	about	the	options	available	through	the	inbuilt
logging	options	in	Jenkins,	which	are	sophisticated	and	highly	customizable.	These	are
often	a	good	starting	point	for	any	kind	of	issue,	so	we	will	start	with	a	quick	overview	of
the	options	here	before	moving	on	to	the	type	of	debugging	that	you’ll	probably	want	to
set	up	and	use	when	developing	your	own	code.

Server	debugging	–	a	quick	recap
Jenkins	uses	the	java.util.logging	package	for	logging;	the	details	of	this	can	be	found
here:

https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html

The	Jenkins	documentation	on	logging	is	available	here:

https://wiki.jenkins-ci.org/display/JENKINS/Logging

This	page	explains	how	to	go	about	setting	up	your	own	custom	log	recorders—this	can	be
very	useful	to	separate	and	filter	all	the	log	output	to	help	in	finding	what	you	are
interested	in,	as	everything	is	often	piped	to	the	default	log,	which	can	make	analyzing
difficult.

The	Jenkins	system	log	can	be	checked	out	using	the	user	interface	at	Manage	Jenkins	|
System	Log	|	All	Jenkins	Logs,	and	there	are	also	links	to	the	RSS	feeds	available	at	the
bottom	of	the	page:

These	can	help	identify	and	filter	the	different	types	of	events	within	the	system.

For	issues	with	slave	nodes,	there	are	log	files	available	in	the	following	location:
~/.jenkins/logs/slaves/{slavename}.

For	job	issues,	historic	log	files	are	kept	at
~/.jenkins/jobs/{jobname}/builds/{jobnumber}.

You	can	also	start	Jenkins	at	a	specific	logging	level	by	adding	an	additional	–D	argument
to	your	startup	process:

-Djava.util.logging.loglevel={level}

Here,	level	is	one	of	the	following:

SEVERE	(highest	value)

WARNING

INFO

CONFIG

FINE

FINER

FINEST	(lowest	value)

The	Off	and	All	levels	are	also	available—see	this	page	for	further	details	and	options:

https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
https://wiki.jenkins-ci.org/display/JENKINS/Logging

http://docs.oracle.com/javase/7/docs/api/java/util/logging/Level.html

http://docs.oracle.com/javase/7/docs/api/java/util/logging/Level.html

Debugging	with	IntelliJ
To	debug	from	within	IntelliJ,	point	IntelliJ	to	the	pom.xml	file	of	the	project	and	then
select	the	option	from	the	Run	menu	to	create	a	new	Run/Debug	configuration.	This
should	lead	you	to	a	screen	similar	to	this:

IntelliJ	will	have	already	parsed	the	POM	file	and	will	be	aware	of	the	available	targets	it
contains.	As	soon	as	you	start	typing,	for	example,	hpi,	you	would	be	presented	with	a
drop-down	list	of	all	matching	options	to	select	from.

Select	and	run	the	required	target	(hpi:run	again	in	this	case)	from	the	dropdown	and	then
click	on	Debug.

You	should	see	the	familiar	Jenkins	startup	process	in	the	console	and	then	be	able	to
connect	to	a	local	debug	session	at:
http://localhost:8080/jenkins

Add	a	debug	point	to	the	code	at	the	same	place	where	we	made	our	“Hello	World”	text
change	previously	(double-click	on	the	left	margin	of	the	line	that	says	hello	world…	and
then	run	the	Jenkins	job).	This	should	run	up	to	the	break	point	you	have	set	and	produce
this:

You	can	then	use	the	debug	arrows	and	buttons	to	drive	through	the	debug	process:

These	allow	you	to	step	in	to,	over,	or	out	of	the	current	debug	point,	and	you	should	be
able	to	inspect	the	listed	variables	that	are	being	updated	to	reflect	the	live	state	of	the
application	being	debugged.

For	more	information	on	debugging	with	IntelliJ,	see	this	link:

https://www.jetbrains.com/idea/help/stepping-through-the-program.html

https://www.jetbrains.com/idea/help/stepping-through-the-program.html

Debugging	with	Eclipse
Debugging	with	Eclipse	is	very	similar	to	the	process	described	for	IntelliJ	previously.

To	set	your	breakpoint,	double-click	on	the	left-hand	side	margin	in	the	code	window,	like
this:

Next,	right-click	on	the	POM	file	in	your	Eclipse	project	and	select	Debug	as…	and	the
following	window	appears:

Specify	the	hpi:run	target	and	then	click	on	Debug;	Jenkins	should	start	up	as	usual	in
the	Eclipse	console	window.

As	before,	point	your	browser	to	http://localhost:8080/jenkins	and	then	create	or	run
a	job	that	hits	the	breakpoint	you	set	earlier—when	this	code/point	is	reached,	Jenkins	will
freeze	and	the	focus	will	switch	to	Eclipse,	where	you	can	inspect	the	current	state	of	the
variables	and	properties	and	navigate	through	the	various	debugging	steps	to	drill	further
into	issues	or	step	over	areas	to	see	what	changes	and	happens.

mvnDebug
The	mvnDebug	tool	provides	an	alternative	approach	that	may	be	of	interest	to	you.	To	use
this,	run	mvnDebug	hpi:run	in	the	command	line.

This	should	start	up	Maven	in	debug	mode	and	a	listener	on	port	8000	of	local	host,	like
this:

Now	switch	to	your	IDE	and	connect	a	debug	session	to	this	port.	For	example,	in	Eclipse,
select	Run	|	Debug	Configurations…

This	should	produce	the	following	window	from	which	you	can	select	Remote	Java
Application.	Check	whether	the	host	and	the	port	match:

Next,	select	Debug	to	connect	to	the	mvnDebug	session	you	started	in	the	console.	At	this
point,	the	hpi:run	target	will	start	up	(in	the	console)	and	run	Jenkins	in	debug	mode	in
Maven	while	connected	to	your	chosen	debugger—for	example,	Eclipse.

If	you	examine	the	mvnDebug	executable,	you	will	see	that	it	simply	sets
MAVEN_DEBUG_OPTS	before	running	the	normal	mvn	binary,	as	follows:

MAVEN_DEBUG_OPTS="-Xdebug	-

Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8000"

echo	Preparing	to	Execute	Maven	in	Debug	Mode

env	MAVEN_OPTS="$MAVEN_OPTS	$MAVEN_DEBUG_OPTS"	$(dirname	$0)/mvn	"$@"

This	reveals	that	it	would	be	easy	to	specify	a	different	port	if	you	wish,	or	you	could
adjust	this	script	to	add	any	additional	parameters	or	settings	you	may	want	to	include.

The	Jenkins	Logger	Console
The	final	topic	in	this	chapter	is	the	Logger	Console	that	is	built	in	to	the	debug	versions
of	Jenkins.

When	you	start	up	a	local	dev	instance	of	Jenkins	via	Maven	(whether	through	the
command	line	or	an	IDE),	you	will	notice	the	additional	Logger	Console	box	that	is
included	on	the	left-hand	side	of	the	screen:

Expanding	this	box	will	reveal	a	live	log	output	window,	which	you	can	customize	in	real
time	to	adjust	and	filter	in	or	out	the	types	and	severities	of	log	items	that	you	want	to	see
or	hide.

Keeping	info	selected	provides	a	very	verbose	level	of	output,	which	includes	information
on	mouseover	events	and	other	UI	interactions.	These	can	be	very	useful	when	debugging
UI	issues.

Unchecking	the	info	box	leaves	just	the	warn	and	error	messages.	The	log	output	can	be
managed	by	pausing	and	optionally	clearing	the	output	and	adjusting	the	filters	to	suit
your	need.	The	following	screenshot	shows	the	Logger	Console:

Summary
As	you	can	see,	there	is	a	large	range	of	options	and	approaches	available	for	both	testing
and	debugging	within	Jenkins.	This	chapter	introduced	some	of	the	main	tools	and
approaches	that	you	may	hopefully	find	useful	for	your	own	development	processes.

Knowing	how	to	test	and	debug	your	code	and	set	up	a	productive	development
environment	that	suits	your	needs	and	preferences	should	improve	the	quality	of	your	own
development.	It	should	also	make	things	much	easier	further	down	the	line,	when	you	look
at	distributing	your	own	plugin	and	are	considering	alternative	development	options.	We
will	take	a	look	at	some	alternative	technologies	and	languages	in	the	next	chapter.

Chapter	9.	Putting	Things	Together
In	this	chapter,	we	will	take	a	look	at	a	selection	of	ways	in	which	Jenkins	can	be	extended
by	combining	it	with	other	languages,	tools,	and	software.

In	doing	so,	we	will	take	a	look	at	the	following	topics:

Using	the	Jenkins	script	console
Developing	with	Groovy,	Grails,	and	Gradle
Jenkins	and	Docker—Jenkins	in	Docker	and	Docker	in	Jenkins
Building	Android	applications	with	Jenkins
Building	iOS	applications	with	Jenkins

Covering	all	of	these	topics	in	detail	is	out	of	the	scope	of	this	book,	but	we	will	introduce
the	topics,	explain	the	basic	setup,	and	provide	links	for	further	information.	This	should
provide	a	good	enough	overview	and	enable	you	to	get	started	with	using	Jenkins	with
these	technologies.	Also,	it	may	provide	some	ideas	for	extending	your	Jenkins	setup	to
incorporate	other	tools	and	technologies.

The	Jenkins	script	console	and	Groovy
The	inbuilt	script	console	is	a	very	useful	and	powerful	Jenkins	extension	and	ideally	suits
certain	types	of	tasks.	This	simple	but	powerful	built-in	web	console	allows	you	to	run
Groovy	scripts	on	your	Jenkins	instance	(or	its	slave	nodes)	from	directly	within	the	user
interface,	and	is	installed	as	standard.

To	access	the	console,	either	navigate	to	Manage	Jenkins	and	then	select	Script	Console,
or	simply	append	/script	to	your	Jenkins	host	and	port,	like	this	for	example:
http://jenkinshost:8080/script

You	should	then	be	presented	with	a	page	similar	to	the	following.	This	contains	some
introductory	information	and	a	link	to	the	website	http://www.groovy-lang.org/	for	further
details	on	Groovy,	the	language	that	the	script	console	uses.

This	provided	link	is	from	the	Jenkins	home	page:

https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+Script+Console

http://www.groovy-lang.org/
https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+Script+Console

It	provides	a	useful	collection	of	example	scripts	to	show	you	how	this	works	in	order	to
get	you	started.

These	example	scripts	cover	a	wide	range	of	functions	and	are	mostly	focused	on	general
Jenkins	admin	and	housekeeping	tasks—tasks	that	this	tool	suits	very	well	due	to	its	ease
of	use	and	flexibility.	Using	this	interface,	you	can	quickly	and	easily	insert	and	edit	code
in	a	web	page,	run	it	with	the	click	of	a	button,	and	see	immediate	results.	There	are	no
compilation	steps	or	external	dependencies	to	worry	about.

For	example,	copying	this	Groovy	code:

import	hudson.model.*

import	hudson.triggers.*

for(item	in	Hudson.instance.items)	{

		for(trigger	in	item.triggers.values())	{

				if(trigger	instanceof	TimerTrigger)	{

						println("---	Timer	trigger	for	"	+	item.name	+	"	---")

						println(trigger.spec	+	'\n')

				}

		}

}

After	entering	the	example	script	at	https://wiki.jenkins-
ci.org/display/JENKINS/Display+timer+triggers	into	the	console	and	hitting	Run	will
return	the	expected	results—the	details	of	all	the	scheduled	jobs	on	this	Jenkins	instance
(assuming	you	have	some	set	up):

https://wiki.jenkins-ci.org/display/JENKINS/Display+timer+triggers

As	you	can	see	from	this	very	simple	example	and	the	Groovy	website,	the	Groovy
language	is	aimed	at	Java	developers	and	has	a	very	flat	learning	curve.	It	is	an	extremely
powerful	tool	and	is	well	suited	for	certain	tasks.	It	is	often	used	in	situations	where
developing	and	managing	your	own	plugin	is	more	than	you	really	want	or	need.	A	simple
Groovy	script	that	can	be	run	and	altered	on	the	fly	can	often	be	a	better	option	for	these
tasks.

You	can	also	create	jobs	that	execute	system	Groovy	scripts.	These	run	within	the	Jenkins
JVM,	and	therefore	have	access	to	the	Jenkins	internal	objects	and	can	interact	with	them.

This	example	details	the	setting	up	of	a	Groovy	job	that	monitors	the	status	of	your	slave
nodes,	refer	to	http://www.donaldsimpson.co.uk/2013/06/07/monitoring-jenkins-slave-
nodes-with-groovy/	for	more	details.

The	crux	of	this	approach	is	the	following	simple	Groovy	code:

int	exitcode	=	0

for	(slave	in	hudson.model.Hudson.instance.slaves)	{

		if	(slave.getComputer().isOffline().toString()	==	"true"){

				println('Slave	'	+	slave.name	+	"	is	offline!");

				exitcode++;

		}

}

if	(exitcode	>	0){

		println("We	have	a	Slave	down,	failing	the	build!");

		return	1;

}

When	added	to	a	Jenkins	job	and	run	via	a	scheduled	task,	the	Groovy	code	should	exit
with	an	error	status	whenever	one	or	more	of	your	existing	slaves	are	offline,	with	the
output	being	something	along	these	lines:

Building	on	master	in	workspace	/apps/jenkins/jobs/MonitorSlaves/workspace	

Slave	<YOURSLAVENAME>	is	offline!

We	have	a	Slave	down,	failing	the	build!

Script	returned:	1

Build	step	'Execute	system	Groovy	script'	marked	build	as	failure	Finished:	

FAILURE

This	could	obviously	be	extended	to	then	perform	whatever	follow-up	actions	you	want,
for	example,	sending	out	an	e-mail	alert,	or	performing	some	other	function	(such	as
attempting	to	restart	the	slave	or	bringing	a	replacement	slave	online).

This	link	demonstrates	an	approach	for	automatically	restarting	offline	slave	nodes—it’s
written	in	Groovy	too:

https://wiki.jenkins-ci.org/display/JENKINS/Monitor+and+Restart+Offline+Slaves

Jenkins’	built-in	support	for	Groovy	allows	you	to	quickly	and	easily	develop	powerful
custom	scripts	for	your	own	needs.	The	Jenkins	script	console	home	page	also	details	how
you	can	run	Groovy	scripts	remotely,	and	provides	a	list	of	available	Jenkins	plugins	that
use	and	support	the	Groovy	language.	These	can	be	set	up	to	allow	you	to	run	Groovy
scripts	as	part	of	your	builds.

http://www.donaldsimpson.co.uk/2013/06/07/monitoring-jenkins-slave-nodes-with-groovy/
https://wiki.jenkins-ci.org/display/JENKINS/Monitor+and+Restart+Offline+Slaves

Groovy	and	Gradle	as	alternatives
If	you	are	interested	in	Groovy,	you	can	also	use	this	language	and	a	combination	of	other
tools	to	create	your	own	plugins—you	don’t	have	to	stick	to	Java	and	Maven	if	you	don’t
want	to.

This	page	explains	how	to	modify	your	project	to	use	a	build.gradle	file	in	place	of	the
Maven	POM	file	that	we	used	previously:

http://jenkins-ci.org/content/gradle-fy-your-jenkins-plugin-project

You	can	then	execute	commands	such	as	gradle	jpi,	gradle	check,	gradle	install,
and	so	on	to	build	and	manage	the	plugin	life	cycle	without	Maven.

This	CloudBees	presentation	illustrates	the	use	of	Groovy	instead	of	Java	for	the	plugin
itself:

https://www.cloudbees.com/event/topic/groovy-way-write-jenkins-plugin

This	is	an	increasingly	popular	approach	due	to	the	power	and	simplicity	of	Groovy.	It
also	explains	how	you	can	replace	Jelly	with	Groovy—using	the	same	language	(Gradle	is
based	on	Groovy,	so…	it’s	all	Groovy!)	throughout	the	development	process	makes	a	lot
of	sense.

http://jenkins-ci.org/content/gradle-fy-your-jenkins-plugin-project
https://www.cloudbees.com/event/topic/groovy-way-write-jenkins-plugin

Jenkins	and	Docker
Docker	is	an	application	that	enables	you	to	package	an	application	along	with	all	of	its
dependencies	into	a	single	unit	(a	Docker	container)	that	can	be	version	controlled	and
deployed	in	an	easy	and	standardized	way.

The	Docker	home	page	explains	how	Docker	works	and	how	to	install	and	use	it:

https://www.docker.com/what-docker.

Conceptually,	Docker	containers	are	similar	to	lightweight	virtual	machines,	but	they	have
some	fundamental	architectural	differences	that	make	them	more	lightweight	and	more
efficient,	as	illustrated	by	the	following	Docker	and	virtual	machine	comparison	diagrams.

The	following	figure	shows	a	normal	virtual	machine:

The	following	figure	shows	a	Docker	container:

https://www.docker.com/what-docker

Docker	containers	can	be	published	and	managed	with	every	change	recorded.	They	are
like	highly	efficient	VMs	managed	under	a	version	control	system	that	provides	functions
similar	to	Git.	They	are	also	highly	configurable	and	offer	flexible	and	scalable
deployment	processes.

In	addition	to	the	auditing	and	ease	of	use,	there	is	also	a	guarantee	that	containers	will	be
(and	behave)	exactly	the	same	on	any	environment	that	is	capable	of	running	Docker.

This	can	remove	many	of	the	environmental	discrepancies	that	are	normally	associated
with	modern	software	development,	eliminating	the	old	well,	it	works	on	my	machine
syndrome,	and	the	subtle	variances	between	(supposedly	identical)	environments	that
sometimes	cause	serious	and	hard-to-detect	issues.

Like	Jenkins,	Docker	is	extremely	flexible,	incredibly	powerful,	and	highly	extendable.
Not	surprisingly,	they	work	extremely	well	together.

There	are	many	ways	in	which	you	can	combine	and	leverage	the	power	of	Docker	and
Jenkins.	These	approaches	typically	mean	using	either	Docker	in	Jenkins	or	Jenkins	in
Docker.

Docker	in	Jenkins
Using	the	Docker	plugin	for	Jenkins	(https://wiki.jenkins-
ci.org/display/JENKINS/Docker+Plugin),	you	can	set	up	Jenkins	jobs	that	can	perform	a
guaranteed	clean	build	every	time	in	a	fresh	and	known-good	Docker	container.

This	can	be	done	by	dynamically	provisioning	a	new	slave	node	for	the	job	to	run	on
(pulled	from	a	version-controlled	Docker	Hub).

The	build	or	tests	can	then	be	run	on	this	environment,	and	the	results	can	be	recorded	and
archived.	The	entire	environment	can	then	be	deleted	with	the	guarantee	that,	should	you
ever	wish	to,	combining	that	very	Docker	container	with	the	same	version	of	the	deployed
code	will	recreate	exactly	the	same	results	at	any	future	date	and	on	any	environment.

https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

Jenkins	in	Docker
We	have	previously	looked	at	several	different	ways	to	set	up	and	manage	your	Jenkins
server.	We	have	also	stressed	the	importance	of	storing	your	Jenkins	configuration	in	a
version	control	system,	and	ensuring	that	you	can	recover	from	issues	without	losing	data.

Extending	Jenkins	to	take	advantage	of	Docker	enables	you	to	rapidly	and	easily	create	(or
recreate)	your	own	Jenkins	environment	from	a	known-good	snapshot.	Simply	by	setting
up	and	maintaining	your	Jenkins	server	within	a	Docker-managed	container,	you
immediately	gain	all	the	advantages	and	abilities	that	Docker	offers.

A	popular,	readymade	Docker	container	for	this	approach	is	the	CloudBees	one	here:

https://github.com/jenkinsci/docker

Once	you	have	Docker	installed	and	set	up	on	your	environment,	all	you	need	to	do	is	run
this	command:

docker	run	-p	8080:8080	-p	50000:50000	jenkins

The	Dockerfile	on	the	following	GitHub	page	details	how	this	container	is	built	and
some	of	the	many	alternative	approaches	and	options	that	you	can	use	and	adapt:

https://github.com/jenkinsci/docker/blob/master/Dockerfile

Once	you	have	Jenkins	running	in	Docker,	you	can	make	any	changes	that	you	may	want,
and	then	publish	a	snapshot	of	your	altered	version	under	your	own	account	on	the	Docker
Hub,	effectively	version	controlling	the	entire	setup.	If	you	prefer,	you	can	even	create	and
maintain	your	own	local	version	of	the	Docker	Hub	(running	on	Docker,	of	course)	and
publish/pull	your	own	images	to	and	from	there.

Docker	containers	do	not	persist	their	data	once	the	container	itself	dies—you	need	to	save
the	state	and	publish	it.	As	mentioned	on	the	GitHub	page	though,	you	can	set	up
persistent	storage	by	mounting	data	volumes	from	the	local	filesystem	(that	is,	a	specified
folder	on	the	host	running	Docker).	The	contents	of	these	folders	(which	could	contain
configuration	information,	public	keys,	or	plugin	data	for	example)	can	be	pulled	from	and
managed	by	version	control	too.	Alternatively,	you	can	create	your	own	dedicated	volume
container	that	would	allow	you	to	manage	all	of	the	persistent	data	within	another	Docker
container.	This	can	also	be	version	controlled	and	attached	to	your	Jenkins	containers	as
and	when	required.

You	can	also	set	up	your	Jenkins	slaves	to	run	on	dynamically	provisioned	Docker	slaves.
There	are	a	number	of	Jenkins	plugins	for	doing	this,	and	as	this	is	a	rapidly	evolving
technology,	there	are	bound	to	be	many	more,	for	example,	this	plugin:

https://wiki.jenkins-ci.org/display/JENKINS/Docker+Slaves+Plugin

This	detailed	post	on	creating	Jenkins	slave	Docker	images	for	dynamic	provisioning	is
available	at:

https://developer.jboss.org/people/pgier/blog/2014/06/30/on-demand-jenkins-slaves-using-
docker

https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker/blob/master/Dockerfile
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Slaves+Plugin
https://developer.jboss.org/people/pgier/blog/2014/06/30/on-demand-jenkins-slaves-using-docker

These	are	just	a	few	of	the	(currently)	most	common	ways	of	combining	Jenkins	and
Docker;	there	are	many	other	possibilities	and	more	are	bound	to	evolve	soon.	You	could,
for	example,	run	your	main	Jenkins	instance	inside	a	Docker	container	and	have	it	run
Jenkins	jobs	that	create	other	Docker	containers	to	run	your	tests	and	builds,	which	in	turn
could	use	Docker	containers!

There	is	even	a	Docker	in	Docker	project,	which	allows	you	to	create	and	manage	Docker
containers	from	inside	Docker	containers…	many	interesting	possibilities!

Jenkins	and	Android
Jenkins	can,	with	the	help	of	an	SDK	and	a	few	plugins,	be	set	up	to	automate	the
building,	deployment,	testing,	and	publishing	of	Android	applications.	To	build	Android
applications,	you	need	the	Android	software	development	kit,	which	you	can	download
from:

http://developer.android.com/sdk/index.html

When	it	is	downloaded,	extract	the	archive	to	a	local	directory.	Then	edit	and	add	the
following	environment	variables	to	your	system:

export	ANDROID_HOME="<location	of	extracted	files>"	export	

PATH="$ANDROID_HOME/tools:$ANDROID_HOME/platform-tools:$PATH"

Once	this	is	done,	update	the	SDK	and	verify	that	your	Jenkins	user	has	read	and	execute
permissions	on	the	SDK	executable	files.

To	run	an	Android	emulator	as	part	of	your	build	process,	add	this	plugin	to	your	Jenkins
server:

https://wiki.jenkins-ci.org/display/JENKINS/Android+Emulator+Plugin

Note	that	this	will	attempt	to	install	an	Android	SDK	for	you	if	it	doesn’t	find	one.	It’s
often	preferable	to	set	up	the	SDK,	as	per	your	requirement,	in	advance	though.	You	can
disable	the	autoinstall	attempt	through	the	Automatically	install	Android	components
when	required	option	on	the	Manage	Jenkins	settings	page,	and	specify	which	SDK	it
should	use	here:

As	described	in	the	Android	emulator	plugin	instructions,	you	should	then	be	able	to
create	a	new	Jenkins	job	that	runs	an	Android	emulator	during	the	build	with	whatever

http://developer.android.com/sdk/index.html
https://wiki.jenkins-ci.org/display/JENKINS/Android+Emulator+Plugin

hardware	and	software	specification	you	would	like	to	use.	You	can	specify	the	memory,
screen	size	and	resolution,	OS	version,	and	so	on,	as	shown	here:

(Source:	https://wiki.jenkins-ci.org/download/attachments/43712988/android_job-
custom.png?version=1&modificationDate=1270447137000)

Your	Jenkins	job	can	then	proceed	to	install	your	recently	compiled	application	using	the
Android	adb	command-line	tool,	like	this	for	example:

adb	install	my-app.apk

Alternatively,	you	can	specify	a	new	build	step	that	will	(re)install	the	APK	for	you,	as
shown	in	the	following	diagram:

(Image	taken	from	https://wiki.jenkins-
ci.org/download/attachments/43712988/android_install-package.png?

version=1&modificationDate=1299432099000)

After	the	application	is	deployed,	you	can	include	an	additional	test	step	to	run	the
Android	Monkey	Tester	tool.	This	will	run	your	tests	against	the	latest	APK	running	on
the	Android	emulator,	which	will	emulate	whatever	hardware	and	software	specifications
you	have	selected.	It’s	often	useful	to	set	up	multiple	jobs	to	ensure	that	your	tests	cover
all	the	combinations	and	permutations	of	hardware	and	software	that	your	users	may	have.

There	is	also	a	Jenkins	plugin	that	enables	you	to	automatically	publish	and	roll	out	your
built	application	to	the	Google	Play	store:

https://wiki.jenkins-ci.org/display/JENKINS/Google+Play+Android+Publisher+Plugin

For	further	details	on	building,	deploying,	and	testing	Android	applications	with	Jenkins,
this	link	is	a	great	place	to	start:

https://wiki.jenkins-ci.org/display/JENKINS/Building+an+Android+app+and+test+project

https://wiki.jenkins-ci.org/display/JENKINS/Google+Play+Android+Publisher+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Building+an+Android+app+and+test+project

Jenkins	and	iOS
Your	Jenkins	setup	and	scope	can	also	be	extended	to	build	iOS	projects	in	a	very	similar
way	to	the	preceding	steps	for	Android.	The	general	idea	is	the	same;	install	and	configure
an	SDK	(XCode	for	iOS),	add	the	required	Jenkins	plugin,	build	and	deploy	the
application	on	an	emulator,	run	the	tests	against	it,	and	record	the	outcome.

However,	one	important	distinction	for	iOS	builds	is	that	you	need	an	OS	X	host	to	run	it
on.	This	host	can	be	set	up	as	a	Jenkins	slave	node	though,	with	your	iOS-based	Jenkins
jobs	set	to	run	on	that	node	only.

The	host	will	need	a	local	installation	of	XCode,	which	is	available	here:

https://developer.apple.com/xcode/download/

Or	it	is	available	from	within	the	Apple	App	Store.

This	Jenkins	page	covers	the	installation	and	setup	process	in	detail:

https://wiki.jenkins-ci.org/display/JENKINS/Xcode+Plugin

And	here	are	a	few	additional	links	for	further	information	on	iOS	and	Jenkins:

http://savvyapps.com/blog/continuous-integration-ios-jenkins
https://www.built.io/blog/2014/10/how-to-set-up-customized-jenkins-for-ios/
http://blog.pivotal.io/labs/labs/ios-ci-jenkins
http://youandthegang.com/2015/continuous-integration-delivery-with-jenkins/

https://developer.apple.com/xcode/download/
https://wiki.jenkins-ci.org/display/JENKINS/Xcode+Plugin
http://savvyapps.com/blog/continuous-integration-ios-jenkins
https://www.built.io/blog/2014/10/how-to-set-up-customized-jenkins-for-ios/
http://blog.pivotal.io/labs/labs/ios-ci-jenkins
http://youandthegang.com/2015/continuous-integration-delivery-with-jenkins/

Keeping	your	Jenkins	version	and	plugins
up	to	date
As	with	all	modern	software,	it	is	important	to	keep	your	Jenkins	version	and	plugins	up	to
date.

You	can	subscribe	to	plugin	release	notifications	via	RSS	here:
http://feeds.feedburner.com/JenkinsPluginReleases

Otherwise,	you	can	subscribe	here:	https://jenkins-ci.org/releases.rss

You	can	follow	Jenkins	release	notifications	on	Twitter	at	this	link:
https://twitter.com/jenkins_release

http://feeds.feedburner.com/JenkinsPluginReleases
https://jenkins-ci.org/releases.rss
https://twitter.com/jenkins_release

Summary
From	the	brief	introductions	and	examples	in	this	chapter,	we	have	seen	how	easily
Jenkins	can	be	extended	and	adapted	to	work	and	integrate	with	other	languages	and
technologies,	taking	advantage	of	what	they	offer	and	allowing	you	to	set	up	processes
that	work	the	way	you	want	and	need	them	to.	Combining	Jenkins	with	other	tools	enables
you	to	create	powerful	and	flexible	build	processes	for	a	wide	variety	of	projects	and
purposes.

Jenkins	integrates	well	with	these	technologies	(and	many	others),	largely	due	to	its
inherent	flexibility	and	extensibility,	its	wealth	of	plugins,	and	the	vibrant	development,
support,	and	user	community.

Throughout	this	book,	we	have	explored	many	different	ways	in	which	Jenkins	can	be
adapted	and	extended	to	perform	whatever	functions	you	would	like,	from	leveraging
APIs,	interacting	through	IDEs,	and	adapting	the	user	interface	to	developing	your	own
plugin,	creating	and	using	extension	points,	to	embracing	and	leveraging	new	and
emerging	technologies.

Hopefully,	these	topics	and	skills	will	encourage	and	empower	you	to	find	new	and
interesting	ways	to	leverage	the	power	of	Jenkins	for	your	own	projects.

Index
A

abstract	classes
about	/	Abstract	classes

abstraction
using	/	Abstraction	and	interfaces

Android	applications
developing,	with	Jenkins	/	Jenkins	and	Android

Android	emulator
reference	link	/	Jenkins	and	Android

Android	software	development	kit
reference	link	/	Jenkins	and	Android

Awk
about	/	Use	case	scenario	1	–	a	large	number	of	jobs

B
$BUILD_TO_DEPLOY

reference	link	/	Use	case	scenario	3	–	helping	your	users	through	UI	automation
basic	setup

extending	/	Extending	the	basic	setup
blue	balls,	Jenkins

reference	link	/	Running	tests	with	Maven
Builder	class

about	/	The	Builder	class	and	Stapler
Build	Monitor	plugin

reference	link	/	NetBeans
Build	type

about	/	A	new	build	type	required

C
CloudBees	presentation

reference	link	/	Groovy	and	Gradle	as	alternatives
concrete	classes	/	Abstract	classes
config_fr.properties	file

about	/	Properties	files	and	Messages
Continuous	Integration,	with	Jenkins

about	/	Continuous	Integration	with	Jenkins
contract

about	/	Interfaces
cron	generators

reference	link	/	Automating	the	job
custom	Builder	/	The	Builder	class	and	Stapler

D
debugging,	IntelliJ

reference	link	/	Debugging	with	IntelliJ
design	by	contract

benefits	/	Interfaces
Docker

about	/	Use	case	scenario	2	–	multiple	hosts
references	/	Looking	at	the	list	of	existing	plugins
and	Jenkins	/	Jenkins	and	Docker
URL	/	Jenkins	and	Docker
using,	for	Jenkins	/	Docker	in	Jenkins
Jenkins,	using	for	/	Jenkins	in	Docker

docker-plugin
reference	link	/	Use	case	scenario	2	–	multiple	hosts

Docker	container,	CloudBees
reference	link	/	Jenkins	in	Docker

Docker	containers
about	/	Jenkins	and	Docker

Docker	Containers
about	/	Use	case	scenario	2	–	multiple	hosts

Dockerfile,	GitHub	page
reference	link	/	Jenkins	in	Docker

Docker	Images
about	/	Use	case	scenario	2	–	multiple	hosts

Docker	in	Docker	project
about	/	Jenkins	in	Docker

Docker	in	Jenkins
about	/	Jenkins	and	Docker
reference	link	/	Docker	in	Jenkins

Docker	Registry
about	/	Use	case	scenario	2	–	multiple	hosts

E
Eager	instantiation	/	Singletons
Eclipse

about	/	Eclipse	and	Mylyn
debugging	with	/	Debugging	with	Eclipse

ElementTree
about	/	Getting	the	information	from	Jenkins

existential	types	/	Abstraction	and	interfaces
existing	plugins

viewing	/	Looking	at	the	list	of	existing	plugins
extension

declaring,	in	Jenkins	/	Declaring	an	extension	in	Jenkins
extension	annotation

reference	link	/	Declaring	an	extension	in	Jenkins
Extension	Indexer	program

about	/	Looking	at	the	list	of	existing	plugins
reference	link	/	Looking	at	the	list	of	existing	plugins

Extension	Points
about	/	A	brief	history	of	Jenkins	plugins

Extension	points	index	page
reference	link	/	Looking	at	the	list	of	existing	plugins

G
Git

about	/	Jenkins	evolution
GIt,	for	Windows

reference	link	/	Jenkins	evolution
Google	Play	Android	Publisher	Plugin

reference	link	/	Jenkins	and	Android
Gradle

using	/	Groovy	and	Gradle	as	alternatives
Green	Balls	plugin

reference	link	/	Running	tests	with	Maven
Groovy

URL	/	The	Jenkins	script	console	and	Groovy
about	/	The	Jenkins	script	console	and	Groovy
references	/	The	Jenkins	script	console	and	Groovy
using	/	Groovy	and	Gradle	as	alternatives

H
help*.html	files

about	/	Help
Hub

about	/	Docker	in	Jenkins

I
i18n	internationalization

reference	link	/	Properties	files	and	Messages
implements	keyword	/	Interfaces
information

obtaining,	from	Jenkins	/	Getting	the	information	from	Jenkins
radiating	/	Radiating	the	information

Information	Radiator
creating,	with	Jenkins	XML	API	/	Creating	an	Information	Radiator	with	the
Jenkins	XML	API

installation,	Maven	/	Installing	Maven
installation,	Mylyn	/	Installing	Mylyn
IntelliJ

debugging	with	/	Debugging	with	IntelliJ
IntelliJ	IDEA

about	/	IntelliJ	IDEA	and	Jenkins	build	connectors
interface	keyword	/	Interfaces
interfaces

about	/	Interfaces
using	/	Abstraction	and	interfaces

internationalization
reference	link	/	Properties	files	and	Messages

iOS
references	/	Jenkins	and	iOS

iOS	applications
developing,	with	Jenkins	/	Jenkins	and	iOS

J
java.util.logging	package

reference	link	/	Server	debugging	–	a	quick	recap
Java	Development	Kit	(JDK)	/	Jenkins	evolution
Java	IDE

about	/	Jenkins	evolution
JAXP

about	/	Getting	the	information	from	Jenkins
Jelly

about	/	Jelly	and	Jenkins
reference	link	/	Jelly	and	Jenkins

Jenkins
about	/	Getting	started	with	Jenkins,	Jelly	and	Jenkins
URL,	for	homepage	/	Getting	started	with	Jenkins,	Extending	the	basic	setup
evolution	/	Jenkins	evolution
tools,	for	extending	/	Jenkins	evolution
use	case	scenarios	/	Use	case	scenario	1	–	a	large	number	of	jobs,	Use	case
scenario	2	–	multiple	hosts,	Use	case	scenario	3	–	helping	your	users	through	UI
automation,	Use	case	scenario	4	–	UI	tweaks
configuring	/	Mylyn	and	Jenkins	configurations
information,	obtaining	from	/	Getting	the	information	from	Jenkins
using,	as	web	server	/	Jenkins	as	a	web	server	–	the	userContent	directory
extension,	declaring	in	/	Declaring	an	extension	in	Jenkins
running,	basics	/	Installing	Maven
debugging,	basics	/	Installing	Maven
reference	link	/	Jelly	and	Jenkins
debugging	/	Debugging	Jenkins
URL,	for	home	page	/	The	Jenkins	script	console	and	Groovy
and	Docker	/	Jenkins	and	Docker
Docker,	using	for	/	Docker	in	Jenkins
using,	for	Docker	/	Jenkins	in	Docker
Android	applications,	developing	with	/	Jenkins	and	Android
iOS	applications,	developing	with	/	Jenkins	and	iOS
references	/	Jenkins	and	iOS
keeping	up	to	date	/	Keeping	your	Jenkins	version	and	plugins	up	to	date

Jenkins	build	connectors
about	/	IntelliJ	IDEA	and	Jenkins	build	connectors

Jenkins	CLI
about	/	The	Jenkins	CLI
setting	up	/	How	to	set	it	up
using	/	How	to	use	it
remote	jobs,	triggering	via	/	Triggering	remote	jobs	via	the	CLI

Jenkins	configuration

updating	/	Updating	Jenkins	configuration
Jenkins	Control	Plugin

about	/	IntelliJ	IDEA	and	Jenkins	build	connectors
Jenkins	in	Docker

about	/	Jenkins	and	Docker
JenkinsLinuxStartupScript

reference	link	/	Extending	the	basic	setup
Jenkins	Logger	Console

about	/	The	Jenkins	Logger	Console
Jenkins	Plugin

reference	link,	for	tutorial	guide	/	Installing	Maven
Jenkins	plugins

overview	/	A	brief	history	of	Jenkins	plugins
reference	link	/	A	brief	history	of	Jenkins	plugins
URL,	for	home	page	/	Looking	at	the	list	of	existing	plugins

Jenkins	release	notifications,	on	Twitter
reference	link	/	Keeping	your	Jenkins	version	and	plugins	up	to	date

Jenkins	script	console
using	/	The	Jenkins	script	console	and	Groovy

Jenkins	slave	Docker	images,	for	dynamic	provisioning
reference	link	/	Jenkins	in	Docker

Jenkins	slaves
reference	link	/	Jenkins	in	Docker

Jenkins	Source
about	/	Jenkins	evolution

Jenkins	XML	API
Information	Radiator,	creating	with	/	Creating	an	Information	Radiator	with	the
Jenkins	XML	API

job
automating	/	Automating	the	job

JSON	API
about	/	Getting	the	information	from	Jenkins

L
Latest	&	Greatest	link,	Jenkins	homepage

reference	link	/	Getting	started	with	Jenkins
localization

reference	link	/	Properties	files	and	Messages
logging,	Jenkins	documentation

reference	link	/	Server	debugging	–	a	quick	recap
logging	levels,	Jenkins

reference	link	/	Server	debugging	–	a	quick	recap
Long-Term	Support	release,	Jenkins

download	link	/	Getting	started	with	Jenkins

M
Maven

about	/	Jenkins	evolution,	An	introduction	to	Maven
installing	/	Installing	Maven
references	/	Installing	Maven
tests,	running	with	/	Running	tests	with	Maven

Maven	phases
validate	/	Installing	Maven
compile	/	Installing	Maven
test	/	Installing	Maven
package	/	Installing	Maven
integration-test	/	Installing	Maven
verify	/	Installing	Maven
install	/	Installing	Maven
deploy	/	Installing	Maven
clean	/	Installing	Maven
site	/	Installing	Maven
reference	link	/	Installing	Maven

messages
about	/	Properties	files	and	Messages

Messages.properties	file
about	/	Properties	files	and	Messages

mvnDebug	tool
about	/	mvnDebug

Mylyn
about	/	Jenkins	evolution,	Eclipse	and	Mylyn
download	link	/	Jenkins	evolution
URL	/	Eclipse	and	Mylyn
installing	/	Installing	Mylyn
configuring	/	Mylyn	and	Jenkins	configurations

N
NetBeans

about	/	NetBeans

O
offline	slave	nodes

reference	link	/	The	Jenkins	script	console	and	Groovy

P
Perl

about	/	Use	case	scenario	1	–	a	large	number	of	jobs
phases

about	/	Installing	Maven
plugin

writing	/	Where	to	start?
plugin	progress

about	/	Plugin	progress
plugin	release	notifications,	subscribing	via	RSS

reference	link	/	Keeping	your	Jenkins	version	and	plugins	up	to	date
POM	file

about	/	The	POM	file
properties	files

about	/	Properties	files	and	Messages

R
remote	jobs

triggering,	via	Jenkins	CLI	/	Triggering	remote	jobs	via	the	CLI

S
Sed

about	/	Use	case	scenario	1	–	a	large	number	of	jobs
server	debugging

about	/	Server	debugging	–	a	quick	recap
Singletons

about	/	Singletons
SSH	keys

reference	link	/	Triggering	remote	jobs	via	the	CLI
standard	Jenkins	instance

deploying	to	/	Installing	Maven
Stapler

about	/	The	Builder	class	and	Stapler
reference	link	/	The	Builder	class	and	Stapler

starting	point
loading	/	Loading	and	building	our	starting	point
building	/	Loading	and	building	our	starting	point

Subversion	repository
references	/	Use	case	scenario	3	–	helping	your	users	through	UI	automation

Swarm	plugin
reference	link	/	Use	case	scenario	2	–	multiple	hosts

T
testing	scenarios,	Jenkins

reference	link	/	Running	tests	with	Maven
tests

running,	with	Maven	/	Running	tests	with	Maven
tools,	for	extending	Jenkins

Java	Development	Kit	(JDK)	/	Jenkins	evolution
Java	IDE	/	Jenkins	evolution
Mylyn	/	Jenkins	evolution
Maven	/	Jenkins	evolution
Jenkins	Source	/	Jenkins	evolution
Git	/	Jenkins	evolution

U
use	case	scenarios,	Jenkins

large	number	of	jobs	/	Use	case	scenario	1	–	a	large	number	of	jobs
multiple	hosts	/	Use	case	scenario	2	–	multiple	hosts
users,	helping	through	UI	automation	/	Use	case	scenario	3	–	helping	your	users
through	UI	automation
UI	tweaks	/	Use	case	scenario	4	–	UI	tweaks

userContent	directory	/	Jenkins	as	a	web	server	–	the	userContent	directory

V
versions,	IDEs

references	/	Jenkins	evolution
Views	functionality

about	/	Use	case	scenario	3	–	helping	your	users	through	UI	automation

W
web	server

Jenkins,	using	as	/	Jenkins	as	a	web	server	–	the	userContent	directory

X
XCode

references,	for	installing	/	Jenkins	and	iOS
XML**Simple

about	/	Getting	the	information	from	Jenkins
XmlParser

about	/	Getting	the	information	from	Jenkins

	Extending Jenkins
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Preparatory Steps
	Getting started with Jenkins
	Extending the basic setup
	Jenkins evolution
	Continuous Integration with Jenkins
	Summary
	2. Automating the Jenkins UI
	Use case scenario 1 – a large number of jobs
	Use case scenario 2 – multiple hosts
	Use case scenario 3 – helping your users through UI automation
	Use case scenario 4 – UI tweaks
	Summary
	3. Jenkins and the IDE
	Eclipse and Mylyn
	Installing Mylyn
	Mylyn and Jenkins configurations
	IntelliJ IDEA and Jenkins build connectors
	NetBeans
	Summary
	4. The API and the CLI
	Creating an Information Radiator with the Jenkins XML API
	Getting the information from Jenkins
	Automating the job
	Radiating the information
	Jenkins as a web server – the userContent directory
	The Jenkins CLI
	How to set it up
	How to use it
	Triggering remote jobs via the CLI
	Updating Jenkins configuration
	Summary
	5. Extension Points
	A brief history of Jenkins plugins
	Interfaces
	Abstract classes
	Abstraction and interfaces
	Singletons
	Declaring an extension in Jenkins
	Summary
	6. Developing Your Own Jenkins Plugin
	An introduction to Maven
	Installing Maven
	Summary
	7. Extending Jenkins Plugins
	Where to start?
	Looking at the list of existing plugins
	A new build type required
	Loading and building our starting point
	The Builder class and Stapler
	Jelly and Jenkins
	Help
	Properties files and Messages
	The POM file
	Plugin progress
	Summary
	8. Testing and Debugging Jenkins Plugins
	Running tests with Maven
	Debugging Jenkins
	Server debugging – a quick recap
	Debugging with IntelliJ
	Debugging with Eclipse
	mvnDebug
	The Jenkins Logger Console
	Summary
	9. Putting Things Together
	The Jenkins script console and Groovy
	Groovy and Gradle as alternatives
	Jenkins and Docker
	Docker in Jenkins
	Jenkins in Docker
	Jenkins and Android
	Jenkins and iOS
	Keeping your Jenkins version and plugins up to date
	Summary
	Index

