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Abstract

A general framework for the first and second complex-step derivative approximation to compute numerical derivatives is presented.
For first derivatives the complex-step approach does not suffer roundoff errors as in standard numerical finite-difference approaches.
Therefore, since an arbitrarily small step size can be chosen, the complex-step approach can achieve near analytical accuracy.
However, for second derivatives straight implementation of the complex-step approach does suffer from roundoff errors. Therefore,
an arbitrarily small step size cannot be chosen. In this paper the standard complex-step approach is expanded by using general
complex-step sizes to provide a wider range of accuracy for both the first- and second-derivative approximations. Even higher
accuracy formulations are obtained by repetitively applying Richardson extrapolations. The new extensions can allow the use of
one step size to provide optimal accuracy for both derivative approximations.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Complex step; Jacobian; Hessian; Finite-difference

1. Introduction

Using complex numbers for computational purposes are often intentionally avoided because of the nonintuitive
nature of this domain. However, this perception should not handicap our ability to seek better solutions to the problems
associated with traditional (real-valued) finite-difference approaches. Many physical world phenomena actually have
their roots in the complex domain [4]. The complex-step derivative approximation (CSDA) can be used to determine
first derivatives in a relatively easy way, while providing near analytic accuracy. Early work on obtaining derivatives
via a complex-step approximation in order to improve overall accuracy is shown in [5], as well as in [4]. Various
recent papers reintroduce the complex-step approach to the research community [1,2,7,8,10]. The advantages of the
complex-step approximation approach over a standard finite difference include: (1) the Jacobian approximation is not
subject to roundoff errors, (2) it can be used on discontinuous functions, and (3) it is easy to implement in a black-box
manner, thereby making it applicable to general nonlinear functions.

The complex-step approximation in the aforementioned papers is derived only for first derivatives. A second-
derivative approximation using the complex-step approach is straightforward to derive; however, this approach is
subject to roundoff errors for small step sizes since difference errors arise, as shown by the classic plot in Fig. 1. As the
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Fig. 1. Finite-difference error versus step size.

step size increases the accuracy decreases due to truncation errors associated with not adequately approximating the
true slope at the point of interest. Decreasing the step size increases the accuracy, but only to an “optimum” point. Any
further decrease results in a degradation of the accuracy due to roundoff errors. Hence, a tradeoff between truncation
errors and roundoff exists.

The traditional first order CSDA is derived using a Taylor series expansion with an imaginary step size. In this
paper, this will be replaced with a general complex step size. A general complex number is coupled with transcendental
functions via Euler’s relation; thus, in the context wherever appropriate, the Taylor series will be depicted in terms
of an angle. A pair of Taylor series that are 180◦ apart is then used to derive both first and second-order derivative
approximations. As with the traditional complex-step first-derivative, the new first derivative approximations do not
suffer from roundoff errors, but provide better truncation error characteristics. The new second-order derivative approx-
imations offer better roundoff characteristics compared to the straightforward extension of the traditional complex-step
approximation derivation. They also possess the benefit of better truncation characteristics from the complex-step
phenomenon. The new approximations can be evaluated with step sizes at different magnitude. A weighted average is
performed on them to achieve even better accuracy from further improvement of truncation errors. This technique is
known as the Richardson extrapolation.

The organization of this paper proceeds as follows. First, the complex-step approximation for the first derivative of a
scalar function is summarized, followed by the derivation of the second-derivative approximation. Then, the Jacobian
and Hessian approximations for multi-variable functions are derived. Next, the generalized CSDAS are derived. Finally,
a numerical example is then shown that compares the accuracy of the new approximations to standard finite-difference
approaches. A more thorough analysis could be found from Ref. [3].

2. Complex-step approximation to the derivative

In this section the complex-step approximation is shown. First, the derivative approximation of a scalar variable is
summarized, followed by an extension to the second derivative. Then, approximations for multi-variable functions are
presented for the Jacobian and Hessian matrices.

2.1. Scalar case

Numerical finite-difference approximations for any order derivative can be obtained by Cauchy’s integral formula [6]

f (n)(z) = n!
2�i

∫
�

f (�)

(� − z)n+1
d�. (1)
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This function can be approximated by

f (n)(z) ≈ n!
mh

m−1∑
j=0

f (z + hei2�j/m)

ei2�jn/m
, (2)

where h is the step size and i is the imaginary unit,
√−1. For example, when n = 1, m = 2

f ′(z) = 1

2h
[f (z + h) − f (z − h)]. (3)

We can see that this formula involves a subtraction that would introduce roundoff errors when the step size becomes
too small.

2.1.1. First derivative
The derivation of the CSDA is accomplished by approximating a nonlinear function with a complex variable using

a Taylor’s series expansion [10]:

f (x + ih) = f (x) + ihf ′(x) − h2

2! f ′′(x) − i
h3

3! f (3)(x) + h4

4! f (4)(x) + · · · . (4)

Taking only the imaginary parts of both sides, dividing by h and rearranging gives

f ′(x) = I{f (x + ih)}
h

+ . (5)

Terms with order h2 or higher can be ignored since the interval h can be chosen up to machine precision. Thus, to
within first order the CSDA is given by

f ′(x) = I{f (x + ih)}
h

, Etrunc(h) = h2

6
f (3)(x), (6)

where Etrunc(h) denotes the truncation error. Note that this solution is not a function of differences, which ultimately
provides better roundoff characteristics than a standard finite difference.

2.1.2. Second derivative
In order to derive a second-derivative approximation, the real components of Eq. (4) are taken, which gives

R

{
h2

2! f ′′(x)

}
= f (x) −R{f (x + ih)} + h4

4! f (4)(x) + · · · . (7)

Analogous to the approach shown before, we solve for f ′′(x) and truncate up to the second-order approximation to
obtain

f ′′(x) = 2

h2
[f (x) −R{f (x + ih)}], Etrunc(h) = h2

12
f (4)(x). (8)

As with Cauchy’s formula, this formula involves a subtraction that may introduce machine roundoff errors when the
step size is too small.

2.2. Vector case

The scalar case is now expanded to include vector functions. This case involves a vector f(x) of order m function
equations and order n variables with x = [x1, x2, . . . , xn]T.
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2.2.1. First derivative
The Jacobian of a vector function is a simple extension of the scalar case. This Jacobian and its complex-step

approximation are defined by

Fx�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�f1(x)

�x1

�f1(x)

�x2
· · · �f1(x)

�xp
...

�f1(x)

�xn

�f2(x)

�x1

�f2(x)

�x2
· · · �f2(x)

�xp
...

�f2(x)

�xn

...
...

...
...

...
...

�fq(x)

�x1

�fq(x)

�x2
· · · �fq(x)

�xp
...

�fq(x)

�xn

...
...

...
...

...
...

�fm(x)

�x1

�fm(x)

�x2
· · · �fm(x)

�xp
...

�fm(x)

�xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9a)

≡ 1

h
I

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(x + ihe1) f1(x + ihe2) · · · f1(x + ihep) ... f1(x + ihen)

f2(x + ihe1) f2(x + ihe2) · · · f2(x + ihep) ... f2(x + ihen)

...
...

...
...

...
...

fq(x + ihe1) fq(x + ihe2) · · · fq(x + ihep) ... fq(x + ihen)

...
...

...
...

...
...

fm(x + ihe1) fm(x + ihe2) · · · fm(x + ihep) ... fm(x + ihen)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9b)

where ep is the pth column of an nth-order identity matrix and fq is the qth equation of f(x).

2.2.2. Second derivative
The procedure to obtain the Hessian matrix is more involved than the Jacobian case. The Hessian matrix for the qth

equation of f(x) and its complex-step approximation are defined by

F
q
xx�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2fq(x)

�x2
1

�2fq(x)

�x1�x2
· · · �2fq(x)

�x1�xp
...

�2fq(x)

�x1�xn

�2fq(x)

�x2�x1

�2fq(x)

�x2
2

· · · �2fq(x)

�x2�xp
...

�2fq(x)

�x2�xn

...
...

...
...

...
...

�2fq(x)

�xn�x1

�2fq(x)

�xn�x2
· · · �2fq(x)

�xn�xp
...

�2fq(x)

�x2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10a)

≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F
q
xx(1, 1) F

q
xx(1, 2) · · · F

q
xx(1, p) · · · F

q
xx(1, n)

F
q
xx(2, 1) F

q
xx(2, 2) · · · F

q
xx(2, p) · · · F

q
xx(2, n)

...
...

...
...

...
...

F
q
xx(n, 1) F

q
xx(n, 2) · · · F

q
xx(n, p) · · · F

q
xx(n, n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (10b)
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where F
q
xx(i, j) is obtained by using Eq. (8). The easiest way to describe this procedure is by showing pseudocode,

given by

Fxx = 0n×n×m

for � = 1 to m

out1= f(x)

for � = 1 to n

small = 0n×1

small(�) = 1
out2= f(x + i ∗ h ∗ small)
Fxx(�, �, �) = 2

h2 [out1(�) −R{out2(�)}]
end
� = 1
� = n − 1
while � > 0

for � = 1 to �
img_vec = 0n×1

img_vec(� . . . � + �, 1) = 1
out2= f(x + i ∗ h ∗ img_vec)

Fxx(�, � + �, �) =
[

2

h2
[out1(�) −R{out2(�)}] −

�+�∑
�=�

�+�∑
	=�

Fxx(�, 	, �)

]/
2

Fxx(� + �, �, �) = Fxx(�, � + �, �)

end
� = � − 1
� = � + 1

end
end

whereR{·} denotes the real value operator. The first part of this code computes the diagonal elements and the second part
computes the off-diagonal elements. The Hessian matrix is a symmetric matrix, so only the upper or lower triangular
elements need to be computed.

3. Generalized CSDA

It can easily be seen from Eq. (4) that deriving second-derivative approximations without some sort of difference is
difficult, if not intractable. With any complex number I that has |I | = 1, it is impossible for I 2 ⊥ 1 and I 2 ⊥ I . But, it
may be possible to obtain better approximations than Eq. (8).

Fig. 2 shows the unity magnitude complex number raised to various rational number powers with common denom-
inator of 6, i.e., multiple of 15◦. It is convenient to represent the complex number in another way. With help from
trigonometry identities, these can be derived using ip/q =ei
 with phase angle 
= (p/q)90◦ = (p/2q)� rad. The Taylor
series expansion pair with complex-step sizes can then be written as

f (x + ei
h) = f (x) +
∞∑

n=1

eni
 hn

n! f
(n)(x), (11a)

f (x + ei(
+�)h) = f (x) +
∞∑

n=1

eni(
+�) h
n

n! f
(n)(x). (11b)
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Fig. 2. Various complex numbers.

Note that ei(
±�) = −ei
. Instead of representing the complex step with powered i or in exponential form, we can
also represent it by using trigonometry with Euler’s relation, ei
 = cos 
+ isin
, which bridges the field of algebra with
geometry. From Eqs. (11) the summation and subtraction pairs are given by

f (x + ei
h) + f (x + ei(
+�)h) = 2f (x) + 2
∞∑

n=1

[cos 2n
 + i sin 2n
] h2n

(2n)!f
(2n)(x), (12a)

f (x + ei
h) − f (x + ei(
+�)h) = 2
∞∑

n=1

[cos[(2n − 1)
] + i sin[(2n − 1)
]] h2n−1

(2n − 1)!f
(2n−1)(x). (12b)

Finally solving for f ′′(x) and f ′(x) yields

f ′′(x) = f (x + ei
h) − 2f (x) + f (x + ei(
+�)h)

[cos 2
 + i sin 2
]h2

− 2
∞∑

n=2

[cos[(2n − 2)
] + i sin[(2n − 2)
]]h
2n−2

(2n)! f (2n)(x) (13a)

f ′(x) = f (x + ei
h) − f (x + ei(
+�)h)

2[cos 
 + i sin 
]h

−
∞∑

n=2

[cos[(2n − 2)
] + i sin[(2n − 2)
]] h2n−2

(2n − 1)!f
(2n−1)(x). (13b)
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Fig. 3. Summation and subtraction for 
 from 0◦ to 45◦ (solid lines = real, dotted lines = imaginary). (a) i0/6 or 
 = 0◦; (b) i1/6 or 
 = 15◦; (c) i2/6

or 
 = 30◦; (d) i3/6 or 
 = 45◦.

Instead of raising i to a number, Eqs. (13) clearly has the advantage of separating the real and imaginary components.
If the separation is not necessary, they can be expressed in a simpler form

f ′′(x) = f (x + ei
h) − 2f (x) + f (x − ei
h)

(ei
h)2
− 2

∞∑
n=2

(ei
h)2n−2

(2n)! f (2n)(x), (14a)

f ′(x) = f (x + ei
h) − f (x − ei
h)

2ei
h
−

∞∑
n=2

(ei
h)2n−2

(2n − 1)! f (2n−1)(x). (14b)

This generalization also works for pure real-valued finite differences by simply using 
 = 0. The extension of all the
aforementioned approximations to multi-variables for the Jacobian and Hessian matrices is straightforward, which
follow along similar lines as the previous section.

The first and second-order CSDAs have so far been generalized for any angle of the complex step. However, a
suitable angle 
 is needed to unlock the full potential of the CSDA. Figs. 3, 4 and 5 show the real and imaginary of
the summation (for finding second derivative) and subtraction (for finding first derivative) pairs of the Taylor series
expansion with complex-step sizes that are 180◦ apart, i.e., from Eqs. (12). The x-axis represents the derivative of
the function. Notice that k 
= n, in fact, k = 2n for the summation (second derivative) cases and k = 2n − 1 for the
subtraction (first derivative) cases. These figures are generated with ikp/q ± ik(2q+p)/q . These figures give some intuitive
perception into the CSDAs.

There are several interesting cases where certain elements (real or imaginary component) of the series annihilate,
shown as “flat lines” in the plots. With reference to Eqs. (12) and (14), these correspond to when sine or cosine evaluates
to zero. This phenomenon is desirable and to be taken advantage to increase the convergence rate of the Taylor series
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Fig. 4. Summation and subtraction for 
 from 60◦ to 105◦ (solid lines = real, dotted lines = imaginary). (a) i4/6 or 
 = 60◦; (b) i5/6 or 
 = 75◦;
(c) i6/6 or 
 = 90◦; (d) i7/6 or 
 = 105◦.

approximation towards the original nonlinear function. In fact, this is the main goal of evaluating functions with a
complex-step size. With a carefully chosen “angle,” we can eliminate terms that we do no wish to evaluate.

In most applications, the more terms in the Taylor series that do no need to be evaluated, the higher order the
approximation, which leads to better accuracy. Thus, more “flat lines” lead to higher accuracy. Most cases have few
or no flat lines where annihilation occurs. A flat line or annihilation occurs when the transcendental function sine or
cosine evaluates to zero. This obviously has to occur at 90◦ or 270◦ for cosine and 0◦ or 180◦ for sine. From Euler’s
relation, cosine is coupled to the real component and sine to the imaginary component. Therefore, the CSDA angle
needs to be related to these four angles to produce the greatest numbers of flat lines. Thus, it is not surprising to see
that 45◦ produces the greatest number of flat lines for the summation cases and 60◦ produces the most flat lines for the
subtraction cases. In addition, it is desired to have more flat lines at the lower k number, since k links to the order of
derivative, and canceling of these terms enhances the derivative approximation accuracy with higher-order truncation
error.

3.1. Richardson extrapolation

Richardson’s extrapolation is now summarized [9]. Assuming D as the derivative approximation, let the first column
of a to-be-determined matrix be

D�,1 = D(h/q�−1) for � = 1, . . . , n (15)

and other elements as

D�,	 = qk	−1D�,	−1 − D�−1,	−1

qk	−1 − 1
for 	 = 2, . . . , n. (16)
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Fig. 5. Summation and subtraction for 
 from 120◦ to 165◦ (solid lines = real, dotted lines = imaginary). (a) i8/6 or 
 = 120◦; (b) i9/6 or 
 = 135◦;
(c) i10/6 or 
 = 150◦; (d) i11/6 or 
 = 165◦.

Then we can find higher precision approximation by filling up a lower triangle matrix

D1,1

D2,1 D2,2 = qk1D2,1 − D1,1

qk1 − 1

D3,1 D3,2 = qk1D3,1 − D2,1

qk1 − 1
D3,3 = qk2D3,2 − D2,2

qk2 − 1

...
...

...
. . .

Dn,1 Dn,2 = qk1Dn,1 − Dn−1,1

qk1 − 1
Dn,3 = qk2Dn,2 − Dn−1,2

qk2 − 1
· · · Dn,n = qkn−1Dn,n−1 − Dn−1,n−1

qkn−1 − 1
,

where the last element, Dn,n is the most accurate approximation with error O(hkn).

3.2. Useful cases

This section studies the two cases with the most flat lines (i.e., highest accuracy or convergence rate) at 
 = 45◦ and
45◦. There is a tradeoff between first-derivative accuracy and second-derivative accuracy. For example 45◦ may work
best for second-order accuracy but offers no CSDA benefit for the first derivative. On the other hand, 60◦ offers better
first-order derivative accuracy at the expense of accuracy in the second-order derivative.
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3.2.1. 
 = 45◦
From Eq. (14a) with 
 = 45◦ and taking only the imaginary components gives

f ′′(x) = I{f (x + i1/2h) + f (x + i5/2h)}
h2

, Etrunc(h) = h4

360
f (6)(x). (17)

Note that when n=2, the imaginary component sin 2n
=0, thus the first nonzero value occurs when n=3 corresponds
to O(h4), which is the main goal of the CSDA. This approximation is still subject to difference errors, but the truncation
error associated with this approximation is h4f (6)(x)/360 whereas the error associated with Eq. (8) is h2f (4)(x)/12.
It will also be shown through simulation that Eq. (17) is less sensitive to roundoff errors than Eq. (8).

Unfortunately, to obtain the first and second derivatives using Eqs. (6) and (17) requires function evaluations of
f (x + ih), f (x + i1/2h) and f (x + i5/2h). To obtain a first-derivative expression that involves f (x + i1/2h) and
f (x + i5/2h), we substitute 
 = 45◦ into Eq. (14b) and again take the imaginary components:

f ′(x) = f (x + i1/2h) − f (x + i5/2h)√
2 (i + 1)h

. (18)

Actually either the imaginary or real parts of Eq. (18) can be taken to determine f ′(x); however, it is better to use the
imaginary parts since no differences exist (they are actually additions of imaginary numbers) since f (x + i1/2h) −
f (x + i5/2h) = f (x + i1/2h) − f (x − i1/2h). This yields

f ′(x) = I{f (x + i1/2h) − f (x + i5/2h)}
h
√

2
, Etrunc(h) = −h2

6
f (3)(x). (19)

The approximation in Eq. (19) has errors equal to Eq. (6). Hence, both forms yield identical answers; however,
Eq. (19) uses the same function evaluations as Eq. (17).

Now, a Richardson extrapolation is applied for further refinement. From Eq. (16) with q = 2 and k1 = 4,

f ′′(x) =
24
I

{
f

(
x + i1/2 h

2

)
+ f

(
x + i5/2 h

2

)}
h2/4

− I
{
f (x + i1/2h) + f (x + i5/2h)

}
h2

24 − 1

=I
{

64

[
f

(
x + i1/2 h

2

)
+ f

(
x + i5/2 h

2

)]

− [f (x + i1/2h) + f (x + i5/2h)]
}/

(15h2),

Etrunc(h) = − h8

1, 814, 400
f (10)(x). (20)

This approach can be continued ad nauseam using the next value of k. However, the next highest-order derivative-

difference past O(h8) that has imaginary parts is O(h12). This error is given by h12

4.35891456×1010 f (14)(x). Hence, it seems
unlikely that the accuracy will improve much by using more terms. The same approach can be applied to the first
derivative as well. Applying the Richardson extrapolation with q = 2, k1 = 2, to Eq. (19) yields

f ′(x) = I
{

8

[
f

(
x + i1/2 h

2

)
− f

(
x + i5/2 h

2

)]

− [f (x + i1/2h) − f (x + i5/2h)]
}/

(3
√

2h),

Etrunc(h) = h4

120
f (5)(x). (21)
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Performing the Richardson extrapolation again would cancel fifth-order derivative errors, which leads to the following
approximation:

f ′(x) = I
{

4096

[
f

(
x + i1/2 h

4

)
− f

(
x + i5/2 h

4

)]

− 640

[
f

(
x + i1/2 h

2

)
− f

(
x + i5/2 h

2

)]

+ 16[f (x + i1/2h) − f (x + i5/2h)]
}/

(720
√

2 h),

Etrunc(h) = h6

5040
f (7)(x). (22)

As with Eq. (19), the approximations in Eqs. (21) and (22) are not subject to roundoff error, so an arbitrarily small
value of h can be chosen up to the roundoff error.

3.2.2. 
 = 60◦
From Eq. (14) with 
 = 60◦ and taking only the imaginary components gives

f ′(x) = I{f (x + i2/3h) − f (x + i8/3h)}√
3h

, Etrunc(h) = h4

120
f (5)(x), (23a)

f ′′(x) = I{f (x + i2/3h) + f (x + i8/3h)}√
3h

, Etrunc(h) = h2

24
f (4)(x). (23b)

Performing a Richardson extrapolation once on each of these equations yields

f ′(x) = I
{

32

[
f

(
x + i2/3 h

2

)
− f

(
x + i8/3 h

2

)]

− [f (x + i2/3h) − f (x + i8/3h)]
}/

(15
√

3h),

Etrunc(h) = − h6

5040
f (7)(x), (24a)

f ′′(x) = 2I

{
[f (x + i2/3h) + f (x + i8/3h)]

− 16

[
f

(
x + i2/3 h

2

)
+ f

(
x + i8/3 h

2

)]}/
(3

√
3h2),

Etrunc(h) = − h6

40, 320
f (8)(x). (24b)

These solutions have the same order of accuracy as Eq. (22), but involves less function evaluations. Using i2/3 instead
of i1/2 for the second-derivative approximation yields worse results than Eq. (20) since the approximation has errors
on the order of h6 f (8)(x) instead of h8 f (10)(x). Hence, a tradeoff between the first-derivative and second-derivative
accuracy will always exist if using the same function evaluations for both is desired. Higher-order versions of Eq. (24)
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Fig. 6. Comparisons of the various complex-derivative approaches. (a) First- and second-derivative errors. (b) First- and second-derivative errors.

are given by

f ′(x) = I
{

3072

[
f

(
x + i2/3 h

4

)
− f

(
x + i8/3 h

4

)]

− 256

[
f

(
x + i2/3 h

2

)
− f

(
x + i8/3 h

2

)]

+ 5[f (x + i2/3h) − f (x + i8/3h)]
}/

(645
√

3h),

Etrunc(h) = h10

39, 916, 800
f (11)(x), (25a)

f ′′(x) = 2I

{
15[f (x + i2/3h) + f (x + i8/3h)]

+ 16

[
f

(
x + i2/3 h

2

)
+ f

(
x + i8/3 h

2

)]

−4096

[
f

(
x + i2/3 h

4

)
+ f

(
x + i8/3 h

4

)]}/
(237

√
3h2),

Etrunc(h) = h8

3, 628, 800
f (10)(x). (25b)

3.3. Simple examples

Consider the following highly nonlinear function:

f (x) = ex√
sin3(x) + cos3(x)

(26)

evaluated at x = −0.5. Error results for the first- and second-derivative approximations are shown in Fig. 6(a). Case
1 shows results using Eqs. (22) and (20) for the first- and second-order derivatives, respectively. Case 2 shows results
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using Eqs. (21) and (17) for the first and second order derivatives, respectively. Case 3 shows results using Eqs. (6)
and (8) for the first- and second-order derivatives, respectively. We again note that using Eq. (19) produces the same
results as using Eq. (6). Using Eqs. (22) and (20) for the approximations allows one to use only one step size for all
function evaluations. For this example, setting h = 0.024750 gives a first-derivative error on the order of 10−16 and a
second-derivative error on the order of 10−15. Fig. 6(b) shows results using Eqs. (21) and (20), Case A, versus results
using Eqs. (24a) and (24b), Case B, for the first and second derivatives, respectively. For this example using Eqs. (24a)
and (24b) provides the best overall accuracy with the least amount of function evaluations for both derivatives.

Another example is given by using Halley’s method for root finding. The iteration function is given by

xn+1 = xn − 2f (xn)f
′(xn)

2 [f ′(xn)]2 − f (xn) f ′′(xn)
. (27)

The following function is tested:

f (x) = (1 − ex) e3x√
sin4(x) + cos4(x)

(28)

which has a root at x = 0. Eq. (27) is used to determine the root with a starting value of x0 = 5. Eqs. (21) and (20)
are used for the complex-step approximations. For comparison purposes the derivatives are also determined using a
symmetric four-point approximation for the first derivative and a five-point approximation for the second derivative:

f ′(x) = f (x − 2h) − 8f (x − h) + 8f (x + h) − f (x + 2 h)

12h
,

Etrunc(h) = h4

30
f (5)(x), (29a)

f ′′(x) = −f (x − 2h) + 16f (x − h) − 30f (x) + 16f (x + h) − f (x + 2h)

12h2
,

Etrunc(h) = h6

90
f (6)(x). (29b)

MATLAB� is used to perform the numerical computations. Various values of h are tested in decreasing magnitude (by
one order each time), starting at h = 0.1 and going down to h = 1 × 10−16. For values of h = 0.1 to h = 1 × 10−7

both methods converge, but the complex-step approach convergence is faster or (at worst) equal to the standard finite-
difference approach. For values less than 1 × 10−7, e.g., when h = 1 × 10−8, the finite-difference approach becomes
severally degraded. Table 1 shows the iterations for both approaches using 1 × 10−8. For h values from 1 × 10−8

down to 1 × 10−15, the complex-step approach always converges in less than 15 iterations. When h = 1 × 10−16

the finite-difference approach produces a zero-valued correction for all iterations, while the complex-step approach
converges in about 40 iterations.

3.4. Multi-variable numerical example

A multi-variable example is now shown to assess the performance of the complex-step approximations. The infinity
norm1 is used to access the accuracy of the numerical finite-difference and complex-step approximation solutions.
The relationship between the magnitude of the various solutions and step size is also discussed. The function to be
tested is given by two equations with four variables:

f�
[

f1

f2

]
=

[
x2

1x2x3x
2
4 + x2

2x3
3x4

x2
1x2x

2
3x4 + x1x

3
2x2

4

]
. (30)

These functions will be evaluated nominally at x = [5, 3, 6, 4]T.

1 The largest row sum of a matrix A, |A|∞ = max{∑ |AT|}.
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Table 1
Iteration results of x using h = 1 × 10−8 for the complex-step and finite-difference approaches

Iteration Complex-step Finite-difference

0 5.0000 5.0000
1 4.5246 4.4628
2 3.8886 5.1509
3 3.4971 2.6087
4 3.0442 3.2539
5 2.4493 2.5059
6 2.0207 3.2198
7 1.6061 5.2075
8 1.0975 1.3786 × 101

9 5.9467 × 10−1 1.3753 × 101

10 2.9241 × 10−1 1.3395 × 101

11 6.6074 × 10−2 1.2549 × 101

12 1.2732 × 10−3 1.2061 × 101

13 1.0464 × 10−8 1.1628 × 101

14 −3.6753 × 10−17 1.1583 × 101

15 −3.6753 × 10−17 1.1016 × 101

3.4.1. Numerical solutions
The step size for the Jacobian and Hessian calculations (both for complex-step approximation and numerical finite-

difference) is 1×10−4. The absolute Jacobian error between the true and complex-step solutions, and true and numerical
finite-difference solutions, respectively, are

|�cFx | =
[0.0000 0.0000 0.3600 0.0000

0.0000 0.8000 0.0000 0.0000

]
× 10−8, (31a)

|�nFx | =
[0.2414 0.3348 0.0485 0.1074

0.1051 0.4460 0.0327 0.0298

]
× 10−7. (31b)

The infinity norms of Eq. (31) are 8.0008 × 10−9 and 7.3217 × 10−8, respectively, which means that the complex-step
solution is more accurate than the finite-difference one. The absolute Hessian error between the true solutions and the
complex-step and numerical finite-difference solutions, respectively, are

|�cF 1
xx | =

⎡
⎢⎢⎢⎣

0.0000 0.0011 0.0040 0.0016

0.0011 0.0010 0.0011 0.0009

0.0040 0.0011 0.0019 0.0021
0.0016 0.0009 0.0021 0.0004

⎤
⎥⎥⎥⎦ , (32a)

|�nF 1
xx | =

⎡
⎢⎣

0.0002 0.0010 0.0041 0.0017
0.0010 0.0009 0.0011 0.0011
0.0041 0.0011 0.0021 0.0019
0.0017 0.0011 0.0019 0.0003

⎤
⎥⎦ (32b)

and

|�cF 2
xx | =

⎡
⎢⎣

0.0018 0.0007 0.0030 0.0064
0.0007 0.0016 0.0010 0.0018
0.0030 0.0010 0.0018 0.0004
0.0064 0.0018 0.0004 0.0029

⎤
⎥⎦ , (33a)

|�nF 2
xx | =

⎡
⎢⎣

0.0018 0.0007 0.0031 0.0065
0.0007 0.0015 0.0008 0.0021
0.0031 0.0008 0.0018 0.0006
0.0065 0.0021 0.0006 0.0025

⎤
⎥⎦ . (33b)



290 K.-L. Lai, J.L. Crassidis / Journal of Computational and Applied Mathematics 219 (2008) 276–293

Table 2
Infinity norm of the difference from truth for larger step sizes, h

h 1 × 100 1 × 10−1 1 × 10−2

|�nFx | 8.0004 × 10−9 8.0554 × 10−9 8.2664 × 10−9

|�cFx | 8.0026 × 10−9 8.0004 × 10−9 8.0013 × 10−9

|�nF 1
xx | 8.0000 9.1000 × 10−3 9.1000 × 10−3

|�cF 1
xx | 9.1000 × 10−3 9.1000 × 10−3 9.1000 × 10−3

|�nF 2
xx | 7.9990 1.1100 × 10−2 1.1900 × 10−2

|�cF 2
xx | 1.1900 × 10−2 1.1900 × 10−2 1.1900 × 10−2

|�nFx | − |�cFx | −2.2737 × 10−12 5.5024 × 10−11 2.6512 × 10−10

|�nF 1
xx | − |�cF 1

xx | 7.9909 −5.0477 × 10−11 3.5698 × 10−10

|�nF 2
xx | − |�cF 2

xx | 7.9871 −8.0000 × 10−4 −6.5184 × 10−8

h 1 × 10−3 1 × 10−4

|�nFx | 9.6984 × 10−9 7.3218 × 10−8

|�cFx | 8.0026 × 10−9 8.0008 × 10−9

|�nF 1
xx | 9.1000 × 10−3 9.2000 × 10−3

|�cF 1
xx | 9.1000 × 10−3 9.1000 × 10−3

|�nF 2
xx | 1.1900 × 10−2 1.2100 × 10−2

|�cF 2
xx | 1.1900 × 10−2 1.1900 × 10−2

|�nFx | − |�cFx | 1.6958 × 10−9 6.5217 × 10−8

|�nF 1
xx | − |�cF 1

xx | 1.5272 × 10−6 1.1200 × 10−4

|�nF 2
xx | − |�cF 2

xx | −5.3940 × 10−8 2.3823 × 10−4

Table 3
Infinity norm of the difference from truth for smaller step sizes, h

h 1 × 10−5 1 × 10−6 1 × 10−7

|�nFx | 1.0133 × 10−6 6.4648 × 10−6 5.8634 × 10−5

|�cFx | 8.0026 × 10−9 8.0004 × 10−9 8.0026 × 10−9

|�nF 1
xx | 1.0160 × 10−1 7.6989 9.5627 × 102

|�cF 1
xx | 9.1000 × 10−3 9.1000 × 10−3 9.1000 × 10−3

|�nF 2
xx | 7.3500 × 10−2 4.2094 3.1084 × 102

|�cF 2
xx | 1.1900 × 10−2 1.1900 × 10−2 1.1700 × 10−2

|�nFx | − |�cFx | 1.0053 × 10−6 6.4568 × 10−6 5.8626 × 10−5

|�nF 1
xx | − |�cF 1

xx | 9.2500 × 10−2 7.6898 9.5626 × 102

|�nF 2
xx | − |�cF 2

xx | 6.1600 × 10−2 4.1976 3.1082 × 102

h 1 × 10−8 1 × 10−9 1 × 10−10

|�nFx | 5.0732 × 10−4 3.5000 × 10−3 3.1200 × 10−2

|�cFx | 8.0013 × 10−9 7.9995 × 10−9 7.9999 × 10−9

|�nF 1
xx | 5.2882 × 104 2.2007 × 106 1.5916 × 108

|�cF 1
xx | 9.1000 × 10−3 1.4800 × 10−2 1.2730 × 10−1

|�nF 2
xx | 4.9658 × 104 7.6182 × 105 2.4253 × 108

|�cF 2
xx | 1.3500 × 10−2 8.8000 × 10−3 9.9700 × 10−2

|�nFx | − |�cFx | 5.0731 × 10−4 3.5000 × 10−3 3.1200 × 10−2

|�nF 1
xx | − |�cF 1

xx | 5.2882 × 104 2.2007 × 106 1.5916 × 108

|�nF 2
xx | − |�cF 2

xx | 4.9658 × 104 7.6182 × 105 2.4253 × 108

The infinity norms of Eq. (32) are 9.0738 × 10−3 and 9.1858 × 10−3, respectively, and the infinity norms of Eq. (33)
are 1.1865 × 10−3 and 1.2103 × 10−3, respectively. As with the Jacobian, the complex-step Hessian approximation
solutions are more accurate than the finite-difference solutions.
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Fig. 7. Infinity norm of the error matrix for different magnitudes (solid lines = finite difference, dotted lines = complex step). (a) Jacobian;
(b) Hessian 1; (c) Hessian 2.

3.4.2. Performance evaluation
The performance of the complex-step approach in comparison to the numerical finite-difference approach is examined

further here using the same function. Tables 2 and 3 show the infinity norm of the error between the true and the
approximated solutions. The difference between the finite-difference solution and the complex-step solution is also
included in the last three rows, where positive values indicate the complex-step solution is more accurate. In most cases,
the complex-step approach performs either comparable or better than the finite-difference approach. The complex-step
approach provides accurate solutions for h values from 0.1 down to 1 × 10−9. However, the range of accurate solutions
for the finite-difference approach is significantly smaller than that of complex-step approach. Clearly, the complex-step
approach is much more robust than the numerical finite-difference approach.

Fig. 7 shows plots of the infinity norm of the Jacobian and Hessian errors obtained using a numerical finite-difference
and the complex-step approximation. The function is evaluated at different magnitudes by multiplying the nominal
values with a scale factor from 1 down to 1 × 10−10. The direction of the arrow shows the solutions for decreasing x.
The solutions for the complex-step and finite-difference approximation using the same x value are plotted with the
same color within a plot.

For the case of the finite-difference Jacobian, shown in Fig. 7(a), at some certain point of decreasing step size, as
mentioned before, the roundoff error becomes dominant which decreases the accuracy. The complex-step solution
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does not exhibit this phenomenon and the accuracy continues to increase with decreasing step size up to machine
precision. As a higher-order complex-step approximation is used, Eq. (24a) instead of Eq. (6), the truncation errors
for the complex-step Jacobian at larger step sizes are also greatly reduced to the extent that the truncation errors are
almost unnoticeable, even at large x values. The complex-step approximation for the Hessian case also benefits from the
higher-order approximation, as shown in Figs. 7(b) and (c). The complex-step Hessian approximation used to generate
these results is given by Eq. (24b). One observation is that there is always only one (global) optimum of specific step
size with respect to the error.

Figs. 8 and 9 represent the same information in more intuitive looking three-dimensional plots. The “depth” of
the error in log scale is represented as a color scale with dark red being the highest and dark blue being the lowest.
A groove is clearly seen in most of the plots (except the complex-step Jacobian), which corresponds to the optimum
step size. The “empty surface” in Fig. 8 corresponds to when the difference between the complex-step solution and the
truth is below machine precision. This is shown as “missing line” in Fig. 7(a). Clearly, the complex-step approximation
solutions are comparable or more accurate than the finite-difference solutions.

4. Conclusion

This paper demonstrated the ability of numerically obtaining derivative information via complex-step approxima-
tions. For the Jacobian case, unlike standard derivative approaches, more control in the accuracy of the standard
complex-step approximation is provided since it does not succumb to roundoff errors for small step sizes. For the
Hessian case, however, an arbitrarily small step size cannot be chosen due to roundoff errors. Also, using the standard
complex-step approach to approximate second derivatives was found to be less accurate than the numerical finite-
difference obtained one. The generalized complex-step derivative approximations were derived for first and second
derivatives and their truncation errors were decreased by evaluating the function with complex step at various angles.
These new approximations offer a wider range of accuracy for larger step sizes in both the Jacobian and Hessian
approximations by using the same function evaluations and step sizes for both. These new expressions allow a designer
to choose one step size in order to provide very accurate approximations, which minimizes the required number of
function evaluations. Another main advantage is that a “black box” can be employed to obtain the Jacobian or Hessian
matrices for any vector function. Further increase in accuracy can be achieved with Richardson extrapolations.
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