Exterior algebra representations of commutative Moufang loops

By
J. D. H. Sintir

1. Introduction. Exterior algebra or associator calculus? The main theorem on commutative Moufang loops is that of Bruck-Slaby [2, Theorem VIII.10.1] stating the free commutative Moufang loop on a finite number n of generators is nilpotent of class $k(n)$, with the positive integer $k(n)$ strictly less than n. Bruck gave the following example [2, VIII.1], [4, I.10.5], [5, 10.3] to show that $k(n) \geqq 1+[n / 2]$: letting V be an infinite-dimensional vector space over the 3-element Galois field $F, A V$ its exterior algebra and $E_{B}=V \times \Lambda V$, define the composition \circ on E_{B} by

$$
\begin{equation*}
(a, x) \circ(b, y)=(a+b, x+y+(x-y) a b) \tag{1.1}
\end{equation*}
$$

(Throughout this paper, the wedge-product $a \wedge b$ in ΛV is simply denoted $a b$.) ($E_{B}, 0$) becomes a commutative Moufang loop, and for a linearly independent subset $\left\{a_{1}, \ldots, a_{n}\right\}$ of $V(n>2)$ the n-element subset $\left\{\left(a_{1}, 1\right), \ldots,\left(a_{n}, 1\right)\right\}$ of E_{B} generates a nilpotent subloop of ($E_{B}, 0$) of class $1+[n / 2]$.

Bruck's proof of the Bruck-Slaby Theorem involved a complex triple induction process working in what has since become known as the Bruck associator calculus, which defines repeated associators and deals with relationships between them. In the example ($E_{B}, 0$) the associator calculus becomes much simpler, because the associator f_{2} there [2, VIII.7] reduces to zero, i.e. $f_{2}(x, y, z ; a, b)=1$ is identically satisfied. In [1] Bruck showed that if this identity were satisfied by all commutative Moufang loops then $k(n)=1+[n / 2]$ for $n \geqq 3$ and the full intricacies of the associator calculus in the theory of commutative Moufang loops would be superfluous, in particular for the proof of the Bruck-Slaby Theorem, the theory essentially reducing to the exterior algebra of ($E_{B}, 0$). It thus became interesting to decide the exact value of $k(n)$, at the very least for $n=5$. This was the "open question" raised in [1].

Two methods of answering this open question were published in 1978. The author [6], [7] applied the Macdonald-Wamsley technique of nilpotent group theory to the multiplication group of a commutative Moufang loop by making long calculations in the Bruck associator calculus. Quite independently Malbos [3] produced a wonderful exterior algebra construction: with V as above, take $\Lambda^{*} V$ to be the odd part ∞
$\oplus{ }^{\oplus} \Lambda^{2 k+1} V$ of the exterior algebra ΛV, and set $E_{M}=\Lambda^{*} V \times \Lambda^{*} V$. Define a pro$k=0$ duct \circ on E_{M} by

$$
\begin{equation*}
(a, b) \circ(c, d)=(a+c-a c(b-d), b+d-(a d+b c)(b-d)) \tag{1.2}
\end{equation*}
$$

($E_{M}, 0$) becomes a commutative Moufang loop, and for a linearly independent subset $\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\}$ of $V(n>1)$ the n-element subset $\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}$ of E_{M} generates a nilpotent subloop of ($E_{M}, 0$) of class $n-1$.

Malbos's example raises afresh the question as to whether the Bruck associator calculus is superfluous: does the theory of commutative Moufang loops reduce to exterior algebra, now that of ($E_{M}, 0$) ? The third section of the current note aims to indicate how one can deduce from the work of [7] that this is not the case. To this end the next section streamlines Malbos's construction into the notation adumbrated under [6, (6.12)].
2. The wedge-dash notation. For an element $x=(a, b)$ of Malbos's F-algebra E_{M}, define

$$
\begin{equation*}
x^{\prime}=(-b, a) \tag{2.1}
\end{equation*}
$$

One readily checks

$$
\begin{align*}
& \prime: E_{M} \rightarrow E_{M} \text { is linear, } \tag{2.2}\\
& x^{\prime \prime}=-x \tag{2.3}
\end{align*}
$$

and for x, y, z in E_{M}

$$
\begin{equation*}
(x y z)^{\prime}=x^{\prime} y^{\prime} z^{\prime} \tag{2.4}
\end{equation*}
$$

indeed for $x_{1}, \ldots, x_{2 r+1}$ in E_{M}

$$
\begin{equation*}
\left(x_{1} \ldots x_{2 r+1}\right)^{\prime}=x_{1}^{\prime} \ldots x_{2 r+1^{\prime}} \tag{2.5}
\end{equation*}
$$

The surprising feature of this dash-mapping is that it suffices for the definition of Malbos's commutative Moufang loop product on E_{M} : (1.2) becomes

$$
\begin{equation*}
x \circ y=x+y+x y y^{\prime}+y x x^{\prime} \tag{2.6}
\end{equation*}
$$

The commutativity of \circ is of course immediate from this, and the commutative Moufang loop law follows by checking that both $(x \circ x) \circ(y \circ z)$ and $(x \circ y) \circ(x \circ z)$ reduce to

$$
\begin{align*}
& -x+y+z+y x x^{\prime}+z x x^{\prime}+y z z^{\prime}+z y y^{\prime} \tag{2.7}\\
& -x y y^{\prime}-x z z^{\prime}-x y z^{\prime}-x z y^{\prime}-x y y^{\prime} z z^{\prime}+y z z^{\prime} x x^{\prime}+z y y^{\prime} x x^{\prime}
\end{align*}
$$

The dash mapping is an automorphism of ($\mathbb{E}_{M}, 0$). Now (2.3) and the fact that -1 is not a square in F imply that the dash-mapping has no eigenvectors, so that

$$
\begin{equation*}
x x^{\prime}=0 \quad \text { implies } \quad x=0 . \tag{2.8}
\end{equation*}
$$

It is this property that gives the wedge-dash notation its power for checking commutative Moufang loop identities.

By (2.6), $x \circ x=-x$ and $x \circ(-x)=0$, so inverses in $\left(E_{M},+\right)$ and ($E_{M}, 0$) coincide, and (E_{M}, \circ) has exponent 3 . Replacing x in (2.7) with $-x$ yields

$$
\begin{align*}
x \circ(y \circ z)= & x+y+z \tag{2.9}\\
& +x y y^{\prime}+y z z^{\prime}+z x x^{\prime} \\
& +x z z^{\prime}+y x x^{\prime}+z y y^{\prime} \\
& +x y y^{\prime} z z^{\prime}+y z z^{\prime} x x^{\prime}+z y y^{\prime} x x^{\prime} \\
& +x y z^{\prime}+x z y^{\prime} .
\end{align*}
$$

The only part of this expression not cyclically symmetric in x, y, z is $x y z^{\prime}+x z y^{\prime}$. Now the associator (x, y, z) is defined [2, I. (2.1)] by

$$
\begin{equation*}
(x, y, z)=(z \circ(x \circ y)) \circ(x \circ(y \circ z))^{-1} \tag{2.10}
\end{equation*}
$$

and thus here

$$
\begin{equation*}
(x, y, z)=-x^{\prime} y z-x y^{\prime} z-x y z^{\prime} \tag{2.11}
\end{equation*}
$$

This formula for (x, y, z) may be extended by induction to an explicit formula for the general associator f_{P} (notation as in [6]) in the wedge-dash notation. Some preparation is necessary. Let 2^{k} denote the k-th direct power of the partially ordered group $2=(\{0<1\},+)$, elements of 2^{k} being denoted as concatenations of components such as $0^{k-2} 10=0 \ldots 010$ or $b=b_{1} \ldots b_{k}$. Let $|b|$ denote the sum $b_{1}+\cdots+b_{k}$ as a natural number, and \bar{b} the complement $\left(1-b_{1}\right) \ldots\left(1-b_{k}\right)$ of b, so in particular $|\bar{b}|=k-|b|$. For z, x, y in E_{M}, define

$$
\left\{\begin{array}{l}
(z x y)^{0}=z^{\prime} x y+z x^{\prime} y+z x y^{\prime} \tag{2.12}\\
(z x y)^{1}=z^{\prime} x^{\prime} y+z^{\prime} x y^{\prime}+z x^{\prime} y^{\prime} \\
(x y)^{00}=(x y)^{11}=x^{\prime} y+x y^{\prime} \\
(x y)^{10}=x y \\
(x y)^{01}=x^{\prime} y^{\prime}
\end{array}\right.
$$

For b in $2^{k}, z, x_{i}, y_{i}$ in E_{M}, define

$$
\begin{equation*}
f^{b}\left(z, x_{1}, y_{1}!x_{2}, y_{2}!\ldots!x_{k}, y_{k}\right)=(-1)^{|b|}\left(z x_{1} y_{1}\right)^{b_{1}} \prod_{1<i \leq k}\left(x_{i} y_{i}\right)^{b_{i-1} b_{i}} \tag{2.13}
\end{equation*}
$$

The right hand side of (2.13) expands under the distributivity of the wedge product over addition in E_{M} to a sum of products of $z, x_{1}, y_{1}, \ldots, x_{k}, y_{k}, z^{\prime}, x_{1}^{\prime}, \ldots, y_{k}^{\prime}$. A straightforward induction over k shows that the number of dashed factors in such a product is $k+b_{k}$. In particular, using (2.12):

$$
\begin{equation*}
\text { for } \quad b_{z}=0, \quad f^{b}\left(z, x_{1}, y_{1}!\right)^{\prime}=f^{\bar{b}}\left(z, x_{1}, y_{1}!\right) \tag{2.14}
\end{equation*}
$$

since $(-1)^{|\bar{b}|}=(-1)^{k-|b|}=(-1)^{k}(-1)^{|b|}$ and the effect of the k dashed factors in each term of the expression of the left hand side is to contribute a sign change of $(-1)^{k}$ on application of the dash mapping (by virtue of (2.3)).

The general associator f_{P} in the wedge-dash notation may now be presented as

$$
\begin{align*}
& f_{P}\left(z, x_{1}, y_{1} ; a_{11}, \ldots, a_{1 p_{1}}!\ldots!x_{k}, y_{k} ; a_{k 1}, \ldots, a_{k p_{k}}\right) \tag{2.15}\\
& =(-1)^{k} a_{11} a_{11}^{\prime} \ldots a_{k p_{k}} a_{k p_{k}}^{\prime} \sum_{0^{k} \leqq b \leqq 1^{k-1}} f^{b}\left(z, x_{1}, y_{1}!\ldots!x_{k}, y_{k}\right) .
\end{align*}
$$

The verification of this formula takes two stages. Assume firstly that it holds for an associator f_{P} without symmetric arguments, i.e.

$$
f_{P}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}\right)=(-1)_{0^{k} \leqq b \leqq 1^{k-1} 0} f_{b}^{b}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}\right) .
$$

Then by (2.11), (2.12), (2.14), and (2.13),

$$
\begin{aligned}
& f_{P, 0}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}!x_{k+1}, y_{k+1}\right) \\
& =-f_{P}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}\right)^{\prime}\left(x_{k+1} y_{k+1}\right)^{10} \\
& -f_{P}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}\right)\left(x_{k+1} y_{k+1}\right)^{00} \\
& =(-1)^{k+1} \sum_{0^{k} \leqq b \leq 1^{k-10}} f^{b}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}\right)^{\prime}\left(x_{k+1} y_{k+1}\right)^{10} \\
& +(-1)^{k+1} \sum_{0^{k} \leqq b \leqq 1^{k-1} 0} f^{b}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}\right)\left(x_{k+1} y_{k+1}\right)^{00} \\
& =(-1)^{k+1} \sum_{0^{k-1}}^{\sum \leq \tilde{b} \leq 1^{k}} f^{k}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}\right)\left(x_{k+1} y_{k+1}\right)^{10} \\
& +(-1)^{k+1} \sum_{0^{k} \leqq b \leqq 1} f^{b-1}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}\right)\left(x_{k+1} y_{k+1}\right)^{00} \\
& =(-1)^{k+1} \sum_{0^{k+1} \leqq b \leqq 11^{k 0}} f^{b}\left(z, x_{1}, y_{1}!!x_{k}, y_{k}!x_{k+1}, y_{k+1}\right),
\end{aligned}
$$

so that the formula also holds for $f_{P, 0}$. It holds in the somewhat degenerate form $f_{0}(z, x, y)=-f^{0}(z, x, y)$ for $k=1$, and thus by induction for all associators without symmetric arguments. The second stage of the verification of (2.15), for general associators, follows immediately by an induction with the remark that

$$
\begin{equation*}
f_{1}(z, x, y ; a)=-a a^{\prime} f^{0}(z, x, y) \tag{2.16}
\end{equation*}
$$

a direct consequence of (2.15) for $P=(0,0)$.
3. Limitations of the wedge-dash notation. In this section the notation of $[6, \S \S 4,5]$ will be used: let $X=\{a, b, c, d, e\}$, let L be the free commutative Moufang loop (under the Triple Argument Hypothesis) on $X \cup\{f\}$, and A, B the abelian subloops of L generated respectively by ($a, b, c!d, e$), ($a, b, c ; f!d, e$) as $F X!$-modules. A was shown in $[6, \S 4]$ to be a four-dimensional F-space. It follows from [6] and [7] that B is a five-dimensional F-space, for by applying the multiplication formulae of $[6, \S 10]$ to the identity $1=(d, e b, a c ; f!e b, a c)$ one deduces

$$
\begin{equation*}
(a, b, d ; f!c, e)=(b, c, d ; f!e, a)^{-1}(c, d, e ; f!a, b)(d, e, a ; f!b, c)^{-1} \tag{3.1}
\end{equation*}
$$

so that B is spanned by the five images of ($a, b, c ; f!d, e$) under the cyclic subgroup $\langle(a, b, c, d, e)\rangle$ of $X!$ On the other hand all the relevant requirements of the Bruck associator calculus, in particular those of $[6, \S 5]$ (such as $a b c \mid d e$) and $[6, \S 10]$, are satisfied if one takes these five images of $(a, b, c ; f!d, e)$ as a basis for B in the sense of [7, §2], and the argument of [7] then shows that B is indeed of dimension 5 .

In the wedge-dash notation (i.e. in the loop ($\boldsymbol{E}_{M}, \circ$), however, one has

$$
\begin{equation*}
(a, b, c ; f!d, e)=f f^{\prime}(a, b, c!d, e) \tag{3.2}
\end{equation*}
$$

as a consequence of the formula (2.15). Let $\{a, b, c, d, e, f\}$ here be a linearly independent subset of E_{M}, and let \bar{A}, \bar{B} be the subloops of ($E_{M}, 0$) corresponding to A and B in L. Then the mapping $\bar{A} \rightarrow \bar{B} ; x \mapsto f f^{\prime} x$ is an isomorphism, so that \bar{B} is only of dimension 4. In particular, the image $\pi(a, b, c, d, e ; f)$ of ($a, b, c ; f!d, e$) under $\sum\langle(a, b, c, d, e)\rangle$ vanishes in \bar{B}, but not in B. This is the source of the limitations of the wedge-dash notation. One may deduce from [6, (5.6)] that

$$
\begin{equation*}
(a, b, c!d, e ; f)=(a, b, c ; f!d, e) \pi(a, b, c, d, e ; f) \tag{3.3}
\end{equation*}
$$

in L, and the vanishing of $\pi(a, b, c, e ; f)$ in the wedge-dash notation is equivalent to the latter's inability (apparent from (2.15)) to distinguish between the associators $f_{(1,0)}$ and $f_{(0,1)}$, or more generally between all the various associators f_{P} for fixed parameters p and k.

In conclusion, the current state of affairs suggests two problems. One should in passing remark that the image of identity (3.1) under $\sum\langle(a, b, c, d, e)\rangle$ yields that $\pi(a, b, c, d, e ; f)$ is skew-symmetric in $\{a, b, c, d, e\}$.

Problem 1. Give a simplified proof for the Bruck-Slaby Theorem under the assumption that $\pi(a, b, c, d, e ; f)=1$ holds identically.

This problem is related to the example ($E_{M}, 0$) in the way that [1 , Theorem 1] is related to ($E_{B}, 0$).

Problem 2. Develop a faithful exterior algebra representation for the free commutative Moufang loop of exponent 3.

Towards Problem 2 one may remark that in ($E_{B}, 0$)

$$
\begin{equation*}
((a, x),(b, y),(c, z) ;(f, v)!(d, t),(e, u))=(0, v f a b c d e) \tag{3.4}
\end{equation*}
$$

while

$$
\begin{equation*}
((a, x),(b, y),(c, z)!(d, t),(e, u) ;(f, v))=(0,0) \tag{3.5}
\end{equation*}
$$

so the direct product $\left(E_{B}, 0\right) \times\left(E_{M}, \circ\right)$ of Bruck's and Malbos's examples is capable both of distinguishing $f_{(1,0)}$ from $f_{(0,1)}$ and of demonstrating that $k(n)=n-1$. Having constructed a putative faithful representation, one may check its effectiveness with [7] in the way that this section checked Malbos's example.

References

[1] R. H. Bruck, An open question concerning Moufang loops. Arch. Math. 10, 419-421 (1959).
[2] R. H. Bruck, A Survey of Binary Systems. Berlin 1971.
[3] J.-P. Malbos, Sur la classe de nilpotence des boucles commutatives de Moufang et des espaces médiaux. C. R. Acad. Sci. Paris Ser. A 287, 691-693 (1978).
[4] JU. I. Manin, Kubičeskie Formy. Moskva 1972.
[5] Ju. I. Manin (trans. M. Hazewinkel), Cubic Forms. Amsterdam 1974.
[6] J. D. H. Smuth, A second grammar of associators. Math. Proc. Cambridge Phil. Soc. 84, 405-415 (1978).
[7] J. D. H. Smith, On the nilpotence class of commutative Moufang loops. Math. Proc. Cambridge Phil. Soc. 84, 387-404 (1978).

Eingegangen am 23. 1. 1979
Anschrift des Autors:
J. D. H. Smith

Fachbereich Mathematik
Technische Hochschule Darmstadt
Schloßgartenstr. 7
D-6100 Darmstadt

