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E x t e r i o r  a l g e b r a  r e p r e s e n t a t i o n s  o f  commutat ive  Moufang l o o p s  

By 

g. D. H. S~rr~ 

1. Introduction. Exterior algebra or assoeiator calculus ? The main theorem on com- 
mutative Moufang loops is that  of Bruck-Slaby [2, Theorem VIII.10.1] stating the 
free commutative Moufang loop on a finite number n of generators is nflpotent of 
class k (n), with the positive integer k (n) strictly less than n. Bruck gave the following 
example [2, VIII . l ] ,  [4, 1.10.5], [5, 10.3] to show that  k(n) ~ 1 + [n/2]: letting V 
be an infinite-dimensional vector space over the 3-element Galois field _F, A V its 
exterior algebra and EB = V • A V, define the composition o on EB by 

(1.1) ( a , x ) o ( b , y ) ~ - ( a + b , x + y + ( x - - y ) a b ) .  

(Throughout this paper, the wedge-product nab in A V  is simply denoted ab.) 
(EB, o) becomes a commutative Moufang loop, and for a linearly independent subset 
( a l , . . . , a n }  of V (n > 2) the n-element subset {(al, 1) . . . . .  (an, 1)} of EB gen- 
erates a nilpotent subloop of (EB, o) of class 1 ~- [n/2]. 

Bruck's proof of the Bruck-Slaby Theorem involved a complex triple induction 
process working in what has since become known as the .Bruck associator calculus, 
which defines repeated associators and deals with relationships between them. In 
the example (EB, o) the associator calculus becomes much simpler, because the 
associator/2 there [2, VIII.7] reduces to zero, i.e. ]2(x, y, z; a, b) = 1 is identically 
satisfied. In  [1] Bruck showed that  ff this identi ty were satisfied by all commutative 
Moufang loops then k (n) ---- 1 + [n/2] for n > 3 and the full intricacies of the as- 
sociator calculus in the theory of commutative Moufang loops would be superfluous, 
in particular for the proof of the Bruck-Slaby Theorem, the theory essentially 
reducing to the exterior algebra of (EB, o). I t  thus became interesting to decide the 
exact value of k(n), at the very least for n ~ 5. This was the "open question" 
raised in [1]. 

Two methods of answering this open question were published in 1978. The author 
[6], [7] applied the Macdonald-Wamsley technique of nilpotent group theory to the 
multiplication group of a commutative Moufang loop by making long calculations 
in the Bruck assoeiator calculus. Quite independently Malbos [3] produced a wonderful 
exterior algebra construction: with V as above, take A* V to be the odd part 

r  

G A 2~+1 V of the exterior algebra AV,  and set • M  ~ AS V X A* V. Define a pro- 
k = 0  
duct o o n  EM by 
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(1.2) (a,b) o ( c , d ) = ( a + c - - a c ( b - - d ) , b - f - d - - ( a d + b c ) ( b - - d ) ) .  

(EM, o) becomes a commutat ive Moufang loop, and for a linearly independent subset 
{al . . . . .  an, bl . . . .  , bn} of V (n > 1) the n-element subset {(az, 51) . . . . .  (an, bn)} of 
EM generates a nilpotent subloop of (EM, o) of ClaSS n - -  1. 

Malbos's example raises afresh the question as to whether the Bruck associator 
calculus is superfluous: does the theory of commutative Moufang loops reduce to 
exterior algebra, now tha t  of (EM, o) ? The third section of the current note aims 
to indicate how one can deduce from the work of [7] tha t  this is not the case. To 
this end the next  section streamlines Malbos's construction into the notation ad- 
umbrated  under [6, (6.12)]. 

2. The wedge-dash notation. For an element x = (a, b) of Malbos's F-algebra EM, 
define 

(2.1) x'  : ( --  b, a).  

One readily checks 

(2.2) ': -EM"--> EM is linear, 

(2.3) x " =  --  x, 

and for x, y, z in EM 

(2.4) (xyz) '  = x' y ' z ' ,  

indeed for xl . . . . .  x2r+l in EM 

(2 .5)  (x l  . . .  z2r+l ) '  = x ~ . . .  x2r+l'. 

The surprising feature of this dash-mapping is that  it suffices for the definition of 
Malbos's commutat ive Moufang loop product  on EM: (1.2) becomes 

(2.6) x o y = x + y --? x y y '  "i- y x x ' .  

The commuta t iv i ty  of o is of course immediate from this, and the commutat ive 
Moufang loop law follows by  checking tha t  both (x o x) o (y o z) and (x o y) r (x o z) 
reduce to 

(2.7) --  x + y + z + y x x '  + zxx '  + y z z '  + zyy '  

--  x y y ' - -  x z z ' - -  x y z ' - -  x z y ' - -  x y y '  zz'  + yzz '  xx '  + zyy '  xx ' .  

The dash mapping is an automorphism of (EM, o). Now (2.3) and the fact tha t  - -  1 
is not a square in • imply tha t  the dash-mapping has no eigenvectors, so tha t  

(2.8) x x ' = O  implies x ~ - 0 .  

I t  is this proper ty  tha t  gives the wedge-dash notation its power for checking com- 
muta t ive  Moufang loop identities. 
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B y  ( 2 . 6 ) ,  x o x ---- - -  x a n d  x o ( - -  x )  = 0 ,  so inverses in (EM, -[-) and (EM, o) 
coincide, and  (EM, o) has exponen t  3. Replacing x in (2.7) with - - x  yields 

(2.9) x o ( y c z )  = x - - ~ y  § z 

--~ x y y '  ~ y z z '  -~ z x x '  

-~ x z z '  + y x x '  "t- z y y '  

x y y '  zz '  --~ yzz" x x '  Jr z y y ' x x '  

+ x y z '  + x z y ' .  

The only  pa r t  of this expression no t  cyclically symmet r ic  in x, y, z is x y z '  -J- x z y ' .  
Now the  assoeiator  (x, y, z) is defined [2, I .(2.1)] by  

(2.10) (x, y, z) ~-- (z o (x o y)) o (x o (y o z))-I  

and thus  here 

(2.11) ( x , y , z ) - ~  - - x ' y z - - x y ' z - - x y z ' .  

This formula  for (x, y, z) m a y  be ex tended  b y  induct ion to  an  explicit  fo rmula  
for the  general  associator  ]p (notat ion as in [6]) in the  wedge-dash notat ion.  Some 
p repa ra t ion  is necessary.  Le t  2 ~ denote  the  k-th direct power  of  the par t ia l ly  ordered 
group 2----((0 ~ 1},-J-), e lements  of  2 ~ being denoted as concatenat ions  of  com- 
ponents  such as 0~-~10 ---- 0 . . .  010 or b - - - - b l . . ,  b~. Le t  [b[ denote  the  sum 
bl ~- -"  -~ b~ as a na tu ra l  number ,  and  b the  complement  (1 - -  bl) . . .  (1 - -  bit) of  b, 
so in par t icular  ]61 ---- k - -  I bl. For  z, x, y in EM, define 

(zxy)O = z ' x y  --~ zx '  y + z x y ' ,  

( zxy ) l  = z' x'  y ~- z' x y '  + zx '  y ' ,  
(2.12) (xy) ~176 ~-- (xy) 11 -~ x" y ~ x y ' ,  

(xy) 1~ ---- x y ,  

(xy) ~ ---- x '  y ' .  

For  b in 2 t;, z, x~, Yi in EM, define 

(2.13) /b(z, x l ,  Yl!  x2, Y2! �9 ..! xk ,  y~;) ---- (--  1)Ibl(zxlYl) b~ ~--I (XiY~) b'-lb'" 
l< i~_k  

The r ight  hand  side of  (2.13) expands  under  the  d is t r ibut iv i ty  of  the wedge p roduc t  
t * �9 over  addi t ion  in EM to a sum of  products  of  z, x l ,  Yl . . . . .  xk, y~, z ,  xl . . . . .  Yk. 

A s t ra igh t forward  induct ion over  k shows tha t  the  n u m b e r  of  dashed  factors  in 
such a p roduc t  is k -~- bk. I n  part icular ,  using (2.12): 

(2.14) for b~ ---- 0 ,  /b(z, x l ,  yl ! ) '  ----/~(z, x l ,  Yl!) 

since (--1)1~1 _--(--1)~-Ib! ~ - - ( - -1 )~ (_ l ) lb i  and  the  effect of  the k dashed  fac tors  
in each t e r m  of  the  expression of the  left hand  side is to  contr ibute  a si~oaa change 
of  ( - -  1) k on appl icat ion of  the  dash  mapp ing  (by v i r tue  of  (2.3)). 
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The general associator/p in the wedge-dash notation may now be presented as 

(2.15) ]p(z, x l ,  Yl; a11, . . . ,  al~l! ...! xk, y~; a~l . . . . .  akp~) 
= ( - - 1 )  allalz . . .a~p~akp ~ ~.. /b(z, x l , y l !  ~x~,y~).  

The verification of this formula takes two stages. Assume firstly that  it holds for 
an associator ]p without symmetric arguments, i.e. 

/P(z, x l , y z ! ! x ~ , y k ) = ( - - 1 )  ~ ~. /b(z, x l ,Yz!!x~; ,Y~) .  

Then by (2.11), (2.12), (2.14), and (2.13), 

/~, o (z, xz, yl  !! x~, y,~ ! xk+l, Y~+I) 
= - -  / p ( Z ,  X l ,  y1!1 x~, y~)' (xk+1 y~+l) 1~ 

--/~(z, xl ,  yl !! xk, y~) (x~+l y~+l) ~176 
= ( _  1)~+z ~ /b(z, x l ,  yl  !! xt:, y~:)' (xk+~ y~+~)~o 

0 ~ ~b _~ 1~-~0 

+ (-- 1) ~+~ ~, /~(z, Xl, y~!! x~, y~) (x~+~y~+l)~176 
0~_~b ~l~-x0 

= (--1)  ~+~ ~. ~(z ,x~,yl!!x~,y~)(x~+~y~+~) 1~ 
0~-~ 1 _ ~ 1 ~  

+ (-- 1)~+~ ~, /b(z, x l ,  yz!! x~, y~) (x~+zy~+~)O0 
0 e ~ b ~ l ~ - z 0  

= (-- 1) ~+~ ~. /~(z, x~, y~!! x~, y~!x~+z, y~+~), 
0 T M  ~b g l ~ 0  

so that  the formula also holds for ]p, 0. I t  holds in the somewhat degenerate form 
]0 (z, x, y) = - - / o  (z, x, y) for k ~ 1, and thus by induction for all associators without 
symmetric arguments. The second stage of the verification of (2.15), for general 
associators, follows immediately by an induction with the remark that  

(2.16) ]z (z ,x ,y ;a)  = - - a a ' / ~  

a direct consequence of (2.15) for P = (0, 0). 

3. Limitations of the wedge-dash notation. In  this section the notation of [6, w167 4, 5] 
will be used: let X = {a, b, c, d, e}, let L be the free commutative Moufang loop 
(under the Triple Argument Hypothesis) on X w {/}, and A, B the abelian sub- 
loops of L generated respectively by (a, b, c! d, e), (a, b, c ; / !  d, e) as FX!-modules. 
A was shown in [6, w 4] to be a four-dimensional F-space. I t  follows from [6] and [7] 
tha t  B is a five-dimensional F-space, for by applying the multiplication formulae 
of [6, w 10] to the identi ty 1 = (d, eb, a c ; / !  eb, ac) one deduces 

(3.1) ( a , b , d ; / ! c , e ) = ( b , c , d ; / ! e , a ) - l ( c , d , e ; / ! a , b ) ( d , e , a ; / ! b , c )  -1,  

so that  B is spanned by the five images of (a, b, c ; / !  d, e) under the cyclic subgroup 
<(a, b, c, d, e)) of X ! On the other hand all the relevant requirements of the Bruck 
associator calculus, in particular those of [6, w 5] (such as abc]de) and [6, w 10], 
are satisfied if one takes these five images of (a, b, c ; / !  d, e) as a basis for B in the 
sense of [7, w 2], and the argument of [7] then shows that  B is indeed of dimension 5. 
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In  the wedge-dash notation (i.e. in the loop (EM, o)), however, one has 

(3.2) (a, b, c ; / !  d, e) = ]/'(a, b, c! d, e) 

as a consequence of the formula (2.15). Let  (a, b, c, d, e,/~ here be a linearly inde- 
pendent  subset of EM: and let A, 2 be the subloops of (EM, o) corresponding to 
A and B in L. Then the mapping A--> 2 ;  x ~ / / ' x  is an isomorphism, so that  2 
is only of dimension 4. In  particular, the image g(a ,  b, c, d, e; ]) of (a, b, c ; / !  d, e) 
under ~ ((a, b, c, d, e)) vanishes in 2 ,  but  not  in B. This is the source of the limita. 
tions of the wedge-dash notation. One may  deduce from [6, (5.6)] tha t  

(3.3) ( a , b , c ! d , e ; / ) : ( a , b , c ; ] ! d , e ) ~ ( a , b , c , d , e ; ] )  

in L, and the vanishing of g (a, b, c, e; ]) in the wedge-dash notation is equivalent 
to the ]atter 's  inability (apparent from (2.15)) to distinguish between the associators 
/(1, 0) and/(0,1),  or more generally between all the various associators ]p for fixed 
parameters  p and ]c. 

In  conclusion, the current state of affairs suggests two problems. One should in 
passing remark tha t  the image of identi ty (3.1) under ~ ((a, b, c, d, e)) yields tha t  

(a, b, c, d, e ; / )  is skew-symmetric in (a, b, c, d, e}. 

P r o b l e m  1. Give a simplified proof for the Bruck-Slaby Theorem under the 
assumption tha t  g (a, b, c, d, e ; / )  ~ 1 holds identically. 

This problem is related to the example (EM, o) in the way that  [1, Theorem 1] is 
related to (EB, o). 

P r o b l e m  2. Develop a faithful exterior algebra representation for the free com- 
muta t ive  Moufang loop of exponent 3. 

Towards Problem 2 one may  remark tha t  in (EB, o) 

((a, x), (b, y), (c, z); (/, v)! (d, t), (e, u)) ---- (0, v/abcde)  (3.4) 

while 

(3.5) ((a, x), (b, y), (c, z)! (d, t), (e, u); (], v)) ---- (O, 0), 

so the direct product (EB, o) • (EM, o) of Bruek's  and Malbos's examples is capable 
both of distinguishing ](1, 0) from /(0,1) and of demonstrating tha t  lc (n) = n - -  1. 
Having constructed a putat ive faithful representation, one may  check its effective- 
ness with [7] in the way that  this section checked Malbos's example. 
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