Extracting Common Sentiments From Reviews

A large and growing body of user-generated reviews is available on the Internet, from
product reviews at sites like Amazon.com to restaurant reviews at sites like Yelp.com. For
users making a purchasing or dining decision, the opinions of others can be an important
factor. Although some aggregate information -- like average star ratings -- for multiple
reviews is sometimes available, in general the only way to get a sense of the overall
sentiment among users is by reading through many reviews. As the number of reviews for a
single product or restaurant becomes large (on the order of hundreds or even thousands), it
becomes increasingly impractical to read every review.

We view the goal of reading multiple reviews as finding widely-held opinions and weighing
the positive against the negative, and we wish to automate this sort of task using NLP and
machine-learning techniques. The problem can be broken down into three major
components: sentence-level sentiment classification; sentiment clustering and ranking; and
summarization. Sentiment-classification involves labeling every sentence in every review for
a particular restaurant as either Subjective-Positive, Subjective-Negative, or Objective. A
range of literature exists on this problem. Pang et al. describe the successful use of
traditional machine-learning techniques, such as Naive-Bayes, for the sentiment
classification of entire movie reviews. [1] Hu and Liu propose a system to solve a very
similar problem to the one we pose. [2] Instead of simple classification, they approach the
problem by first extracting opinion words from each sentence and then predicting the
polarity of the sentence by the dominant polarity of its constituents. They grow sets of
positive and negative opinion words using seed words in WordNet. Given the success of
Pang et al. with simple classification techniques, we plan to take this approach, exploring
various feature sets and classifiers. After isolating subjective sentences from objective
sentences, we will cluster those subjective sentences that are closely-related using a simple
K-means algorithm and rank the resulting clusters using a cluster-quality metric that
rewards large, cohesive clusters.

In the remainder of this paper we will present our proposed system, justify various design
decisions, and discuss the performance of the final system.

Proposed System

The figure below illustrates the multiple stages of processing that result in a ranked-list of
closely-related opinions expressed in a set of reviews.

i Paztive- Camman

. Cubjact
R;:w R v Eef._ew“: Subjactive Paziive
nk=noss Eevewms Favews

il p i]
. , - . . s " - . B
ﬂ'
®&

Hegatie- Camman
Eevaws Subjedive Negative
Eevews Eevews

Data

We use two sets of data in this project. First, for training our subjectivity and polarity
classifiers, we take advantage of publicly available movie review data [3]. Specifically we
use the "Subjectivity dataset V 1.0" [4] and the "Sentence Polarity dataset V 1.0" [5]. The
subjectivity dataset consists of 5,000 objective and 5,000 subjective sentences. The
subjective sentences come from Rotten Tomatoes [6] reviews, while the objective sentences
come from IMDB [7] plot summary snippets. The training data are not perfect: Plot
summaries may contain subjective opinions, and sometimes reviews contain objective
information (though the latter is less likely). The objectivty dataset consists of 5,331
positive and 5,331 negative sentences. The sentences come from Rotten Tomatoes "Fresh"
and "Rotten" reviews respectively.

The data we wish to extract opinions from were collected from Yelp.com. In total there are
1731 reviews of 6 restaurants, with each review containing an average of 11 sentences.

Classifiers and Features

We experimented with both Naive Bayes and SVM classifiers, using a number of different
features. The following shows how we carefully chose the best combinations through
multiple design iterations with intermediate error analysis.

Generation 0: Bag of Words and a Naive Classifier

Our initial approach is to treat each sentence as a bag of words. We represent a sentence
using a vector whose entries correspond to the TF-IDF-weighted frequency of each of the
words in the vocabulary. We use TF-IDF weighting to get a better representation of the
importance of each word. It also obviates the need for the use of stopwords, which might
have been detrimental to the performance of the classifier. To keep the dimensionality of
the resulting vectors manageable we limit our vocabulary to the N most-frequently-
occurring words.

Our initial classifier is Naive Bayes (NB). Its performance is decent for subjectivity
classification but rather poor for polarity classification. We present our initial results below.

Results| Classifier: NB. Features: Bag of words. Vocabulary size (N):
Approximately 1000 per class.

e - . Accuracy (%)
0,
Classification Task |Train Accuracy (%) [5-fold CV]
Subjectivity 82.08 81.65
Polarity 63.9655 62.9244

Generation 1: Stems of Words and a Sophisticated Classifier

We reason that using stems instead of words should have a two-fold beneficial role to our
problem. First, it will decrease the sparseness in the data, since there are fewer distinct
stems compared to distinct words. Second, it should be able to capture and group better
semantic information. To that end we employ the Snowball [8] algorithm and generate bags
of stems instead of bags of words. We still use TF-IDF when constructing stem vectors.

Moving from words to stems increases subjectivity classification accuracy by 1 full
percentage point (to 82.62%) and polarity classification accuracy by 1.5 percentage points
(to 64.4251).

We also proceed by training more sophisticated classifiers than NB. Specifically we
investigate several members of the Support Vector Machine (SVM) family with different
Kernels. Our results are presented below.

Results | Features: Bag of stems. Vocabulary size (N) : Approximately 1000 per

class.
ip as . Accuracy
%Zf(s'f'catw“ Classifier|Kernel I,f/i")“ Accuracy | oy
[5-fold CV]
Subjectivity NB N/A 82.93 82.62
Subjectivity SVM Linear 97.32 85.67
Subjectivity SVM Sigmoid 91.86 89.73
Subjectivity SVM Radial Basis 92.89 90.12
Function
Polarity SVM Radial Basis 81.767 75.9426
Function

It is apparent that use of sophisticated classifiers results to a sizeable improvement in
performance. Specifically, switching to an SVM with a Radial Basis Function (RBF) Kernel [
exp(-gamma*|u-v|~2)] increases accuracy by approximately 8 percentage points for
subjectivity to an impressive 90.12%, and by approximately 11 percentage points for
polarity to an acceptable 75%.

It is notable that the Linear Kernel [u'*v] showed considerable over-fitting, though it still
outperformed NB. The Sigmoid Kernel [tanh(gamma*u'*v + coef0)] performed almost at
par with the RBF Kernel, but we chose the latter for the remainder of our analysis.

Generation 2: Increasing the Vocabulary Size (N)

In this generation we attempt to investigate the effect of the Vocabulary size (N) in our
classifier's performance. So far we have been limiting N to approximately 1000 words per
class (eg Subjective vs Objective). By doing so we decrease the dimensionality of the
problem but we could be neglecting low-frequence stems that have highly valuable semantic
information. We therefore experiment with different vocabulary sizes in order to determine
the optimal size. Experimentation shows that N=2500 seems to be a sweet spot, with
N=1000 leading to underfitting and N=5000 leading to overfitting. As a rule of thumb using
N = 0.25 * NumberOfTrainingSentences gives good results. The results are clearly depicted
in the following figure.

Effects of Vocabulary Size (N)

W subjectivity Train M subjecvitivy -fold G I Palarity Train M Folarity 5-fold G
85
gQ — =\
&
= 25
m
]
=
a0
75 =
1,000 2,000 3,000 4,000 5,000

Approximate Yocabulary Size (Per Class)

Using our best classifier from Generation 1 and using N = 2500 we get a moderate increase

(clost to half a percentage point) in accuracy for both subjectivity and polarity classification.
Our results at the end of Generation 2 are summarized below.

Results| Classifier: SVM-RFB. Features: Bag of stems. Vocabulary size (N):
Approximately 2500 per class.

i s . Accuracy (%)
0,

Classification Task |Train Accuracy (%) [5-fold CV]

Subjectivity 93.22 90.55

Polarity 83.2114 76.5616

We investigate the confusion matrices for the two classification tasks.

=== Subjectivity ===

a b <-- classified as
4674 326 | a = Subjective

619 4381 | b = Objective

=== Polarity ===

a b <-- classified as
4029 1302 | a = Positive
1197 4134 | b = Negative

Almost twice as many objective sentences are misclassified as opposed to subjective.
Misclassification rates are relatively similar between positive and negative sentences. We
therefore need novel features that will add predictive power to our classifiers.

Generation 3: Integrating Parser Features

We proceed by integrating Part-Of-Speach (POS) features in the classifier by using the
Stanford Parser. [9] The rational behind this is quite simple: in terms of subjectivity
classification we expect rather different sentence structure; subjective sentences should in
general have more adverbs and adjectives. To that end we add POS tags as features and
perform the same TF-IDF vectorization as we did with stems. In essence then, POS tags are
treated as stems themselves. The approach succesfully increases the subjectivity classifier's
accuracy but only marginally so.

Syntactic structure should not differ between positive and negative sentences. However we
can attempt to capture more of the semantic information by identifying stem bigrams in
order to improve our polarity classifier. To avoid sparsity issues we don't generate all
possible bigrams but only generate the ones that appear to be syntactically sound.
Technically speaking we only generate bigrams for subtrees of nodes that are pre-pre-
terminals. The approach successfully increases the objectivity classifier's accuracy by
slightly more than half a percentage point.

Our results for the best classifiers for each task are summarized below.

Results| Classifier: SVM-RFB. Features: Bag of stems. Vocabulary size (N):
Approximately 2500 per class.

Classification Features Train Accuracy Accuracy (%)
Task (%) [5-fold CV]
Subjectivity Bag of stems, pos 93.24 90.82

Polarity Bag of stems, syntactic-bigrams |83.5115 77.2369

Notably, for both the classifiers the 5-fold CV accuracy increased more than the train
accuracy, increasing our confidence in the quality of the new features.

Once again we investigate the confusion matrices in search of understanding.

=== Subjectivity ===
a b <-- classified as
4673 327 | a = Subjective
591 4409 | b = Objective

Indeed it seems that POS features helped in decreasing the Objective misclassification rate,
but do so less than we would have expected. We reasoned that perhaps the training data
are rather noisy and indeed, consider the following sentences that appear as objective
training data:

e but what exactly is good & what exactly is evil?

® cleven year old david wiseman is mad about cricket but no good at it.

e it will definitely keep you on the edge of your seat because of the
blood and gore or the good looking babes.

Each of this sentences could very well be interpreted as subjective by a human reader. The
presence of adverbs and adjectives does not help that much in their classification. We
reason then that our classifier has reached a sufficiently good performance and getting

higher than that might border the lines of over-fitting to the training corpus.

=== Polarity ===
a b <-- classified as
4064 1267 | a = Positive
1160 4171 | b = Negative

Polarity classification seems a more difficult task in general. The problem seems especially
difficult if a bag-of-items (stems,pos etc) is used because people tend to mix in their
reviews positive and negative opinions. Consider for example:

® Positive: "slow but clever"
® Negative: "clever but slow"

Our current approach cannot distinguish very well between the two (we would have said
"cannot distinguish at all", but the syntactic bigrams might have some effect, although they
suffer from data sparsity). Yet for people, the adjective after the "but" carries a greater
weight. Looking at our training data reveals that this "but" motif is quite prevalent in
reviews. Perhaps then a feature that would associate adjectives and adverbs with their
position relative to a present "but" would increase the ability to differentiate between
positive and negative. Similarly "very good" and "not very good" cary opposite semantic
meanings but the bag approach is not so good at capturing that. Use of syntactic
information from the parser could facilitate building of more semantic features. We propose
such an approach for future work.

Generations Summary

The best increase in performance came by choosing sophisticated classifiers (SVMs). Using
stems and parser features shows mild improvements in both classification tasks but more so
in the case of the objectivity task. The objectivity classification task is open for future
improvements.

Classifier Perfarmance

M subjectivity M Objectivity

[{=]
[he |

.

oo
=]

oo [{w]
()] (]
[]

‘

Ariracy [S-fokl CV]
L R |
th O A

(=)

=]
o=
Y
%]
Lad

Generations

Informative Features

To determine the significance of features we looked at the information gain of each feature
with respect to the class [InfoGain(Class,Attribute) = H(Class) - H(Class | Attribute)].

With respect to subjectivity classification, some of the most important features are:

STEM it , STEM his , POS RB , STEM . , STEM movi , STEM he ,
STEM her , STEM film , STEM) , STEM (, POS JJ , POS NN ,
POS_. , STEM she , POS PR

Some of the features, such as pos_* should work well accross domains, however some of
the features are very domain specific and also very much tailored to the training data:
objective sentences come from plots and use lots of pronouns to refer to movie characters,
places and situations. On the other hand subjective sentences come from movie reviews
which often refer to the "movie" or "film" being reviewed (eg "the movie/film was not that
great"). Also movie reviews tend to use parenthesis much more than plots.

With respect to polarity classification, some of the most important features are:

STEM bad , STEM and , STEM too , STEM bore , STEM beauti ,

STEM dull , STEM perform , STEM of , STEM movi , STEM refresh ,
STEM no , STEM heart , SYNTACTIC BIGRAM the best , STEM just ,
STEM film

Not surprisingly, adjectives like "bad", "boring", "dull", "refreshing" are good indicators of
the polarity classification of the movie. Similarly "too" and "just" are most often (thought
not always) used in negative sentences. Some of the features are domain specific and some
are not.

Cross-Domain Applicability

We had hoped that classification power would extend to domains beyond the narrow area of
movie reviews but analysis of informative features suggests otherwise. We go ahead and
evaluate our classifiers on some hand-labeled subjectivity Yelp data (838 objective and 426
subjective sentences). The results are depressing. We get an accuracy of 43.038%. The
confusion matrix is presented below.

=== Confusion Matrix ===
a b <-- classified as
374 52 | a Subjective
668 170 | b = Objective

It is evident that the classifier performs very badly (worse than random guessing) when
applied across domains. The majority of the error comes from misclassification of sentences
as subjective. We investigate significant features in the hand-labeled Yelp subjectivity data
by once more using information gain. Some of the top features are:

STEM was , STEM great , STEM excel , STEM delici , STEM good ,

STEM veri , STEM atmospher , STEM is , STEM servic , STEM amaz ,
STEM the , STEM food , STEM realli , STEM got , STEM call

Not suprisingly, some of the most important features tend to be domain specific (e.g.
atmosphere, service, food, delicious). We expected performance to drop when moving
across domains, but the nearly worse-than-chance performance renders the classifier
unusable.

In an attempt to remove semantic biases we build a classifier that relies solely on pos_*

features. We expect it to be unbiased with respect to domains. The results are presented
here.

Results| Classifier: SVM-RFB. Features: Bag of POS.

e o . Accuracy (%) Test Accuracy (%)
0,
Classification Task |Train Accuracy (%) [5-fold CV] [On Yelp Data]
Subjectivity 93.22 90.55 50.9494

And the corresponding confusion matrix on the test set is:

=== Confusion Matrix ===

a b <-- classified as
329 97 | a = Subjective
523 315 | b = Objective

The classifier performs better than chance but only marginally so. The main problem still
seems to be misclassification of sentences as objective.

We hypothesize that the sentence form differs across review domains not only in a semantic
way but also in a syntactic one. To validate our hypothesis we train subjectivity classifiers
on the Yelp data and report the results.

Results| Subjectivity Classifier: SVM-RFB. Vocabulary size (N): Approximately 250

per class.
. Accuracy (%)
o,
Features Train Accuracy (%) [5-fold CV]
pos 69.7785 66.9304
stems, pos,syntactic-bigrams |81.4082 72.7057

The difference in syntactic structure between movie and Yelp data can be seen by
contrasting the 50.9% with the 66% accuracy of the differently trained classifiers. Perhaps a
larger training size for Yelp data would have given us better results. Perhaps better quality
data would have given us better results. Case in point:

e plouf is my unicorn, my elanor.
e *ploof* aaaand i'm gone!

We conclude that training a classifier for a specific domain, even with a small amount of
data is a better choice than building a cross-domain classifier. The option of training a

generic classifier with training data from multiple domains has not been investigated in this
paper and remains open.

Clustering

Given two subsets of review sentences from the full review set that have been classified as
Subjective-Positive and Subjective-Negative, respectively, we need to group the sentences
together into clusters of commonly-expressed opinions. To do so, we need to choose a
clustering algorithm, extract features from each sentence, and find the number of clusters,
K, that maximizes cluster quality.

Design Considerations

The WEKA library provides us with several clustering algorithms, from simple K-means to
EM. As we will discuss in the cluster quality section below, in addition to clustering our
application requires a method to measure the quality of individual clusters against an
application-specific metric, both for choosing an optimal number of clusters and for ranking
the resulting clusters. Unfortunately, it proved impractical to get this kind of information
from WEKA. We attempted to use a feature of the EM clusterer that optimized the number
of clusters, K, by maximizing the probability of generating them, but it tended to pick K
much too small, resulting in extremely large clusters of mostly unrelated opinions.

Instead, we chose to implement a custom K-means clustering algorithm in MATLAB that
allowed us to evaluate individual cluster quality with a custom metric. Our goal for
clustering has been stated as finding widespread, common opinions. Two cluster properties
help formalize this notion. A cluster is more likely to contain sentences about the same
thing if the distance between sentences is small, and we can measure this with the residual
sum of squares (RSS). Further, the more widespread an opinion is, the larger its cluster will
be. Individually, neither measure helps us determine the quality of a cluster, because RSS
goes to zero as K gets large and average cluster size increases as K goes to zero. But we
can combine the two measures into a cluster quality measure, Q, which simultaneously
penalizes clusters that are large but diffuse or dense but small. The quality of a particular
cluster, j, is given by:

QL)) = 1

afl+ sizej) + J?IJFRI—E’&J

The values of g and B affect the relative contribution of each component to the quality
measure, and their choice is a design consideration. One simple way to choose them, and
the method we used, was to run clustering with a guessed value of K, find qualitatively good
clusters in the results, and then choose coefficient values that reward them. Using this
method, we chose @g=0.01 and B=1. We use this quality measure for two purposes. First, we
can choose an optimal value of K by maximizing average cluster quality over a reasonable
search space. Second, given an optimal K, we rank each cluster by its internal quality
measure so that the best clusters are likely to be first in an ordered list, which we can then
use for summarization.

The feature set for clustering is fundamentally different than for subjectivity and polarity
classification. For example, to distinguish a subjective sentence from an objective sentence,
we are looking for features that correlate with sentiment, like adjectives, but we don't care

what noun the adjective is modifying. In fact, we would ideally like to ignore the noun being
modified, as it could potentially diminish classifier performance. However, when clustering
we already have a set of sentences classified as subjective, and we would like to find what a
subjective sentence is expressing an opinion about. So we care more about the noun in this
case. Also when clustering, we need to pay attention to word frequency, since high-
frequency words can easily lead to undesirable clusters of sentences that all contain, for
instance, the word the.

Feature Analysis

In order to determine what features result in the best clusters, we experimented with a
number of combinations, including individual words, stemmed words, and stemmed words
with syntactic bigrams. The parser and feature extractor from classification were reused.
During vectorization, a stop list was used to eliminate high-frequency words like the and I,
and the ith element of a sentence vector contained the count of feature /.

The simplest feature set, individual words, was quite effective and produced many good
clusters. For example, here's a portion of a high-ranking cluster from the restaurant Evvia,
found with word features:

e we had the lamb chops again but this time it wasn't served as hot

® cvvia has hands down the best lamb i've ever ordered

e but overall the lamb that was on the prefix menu was more than decent
e the lamb shank was to die for

e friends had lamb and chicken

® for our entrees we had the lamb chops and the goat stew

e lamb chops were great as expected

Clearly, the strong feature shared by all sentences is the word /lamb. Note that because bi-
grams are not used as features, there is no distinction between the lamb chops dish and the
lamb shank dish. Also, some of the sentences are not opinion, which is an artifact of the
poor classifier performance. Unfortunately, using word features can just as easily form
clusters of sentences that are similar but don't express common opinion:

e this is a great place for a romantic date
e holy cow this place is amazing

e this place is loud

e overall, this place is just ok for me

All of the opinions are talking about this place, but the opinions vary widely, in part due to
poor classifier performance. But beyond this, it's clear that the words that define the cluster
simply have little to do with a specific opinion.

In order to reduce sensitivity to word form, we also experimented with stemming, which
generally improved clustering results. Here's an example of a cluster whose formation was
aided by stemming the words pricey, price, and prices:

e pricey, but well worth it.
e definitely on the pricey side but the food, service and experience is
truly worth it.

® the prices were a little high, but it was worth it and sometimes you
just have to do it.

e totally worth the $23 price tag.

e it's a little pricey ($15 for a lamb gyro) but worth it

Adding syntactic POS tags to the feature set substantially reduced cluster quality both
quantitatively and qualitatively, as expected. This is likely because it's equivalent to adding
high-frequency words to the sentence vectors, making it easier for unrelated opinions to
become related on the basis of their part-of-speech composition. Adding syntactic bi-grams
had little impact on performance, probably because the clustering algorithm was already
able to group sentences in which certain words frequently occurred together, like Palo Alto.

Cluster Quality Optimization

Because we don't know a priori how many clusters exist in the data, we need a method for
finding the optimal value. We experimented with choosing K on the basis of average cluster
quality, using the quality metric previously discussed. The graph below shows how the
quality varies as a function of K, with vectors of stemmed-word counts.

Average Cluster Quality (Q) vs. Number of Clusters (K)

M tamarine plouf M cortez
M coi | EWE Mpesce

35
3.0 F
25
20

1.5

Auerage Cluster Quiality (2)

1.0

05 10 20 40 B0 80 100 120 140 160 180 200

Mumber of Clusters (k)

For the reviews of most restaurants, there is a clear peak in quality, suggesting that the
clustering algorithm is actually finding structure in the data. As expected, quality tends to
start out low, with only a few, low-quality clusters, and as K gets large and approaches the
total number of sentences, cluster quality correspondingly goes down as good clusters begin
to fragment.

We've previously observed that adding POS tags to the feature set hurts performance,
leading to less-meaningful clusters. Comparing quality curves helps to make this notion
more formal. In the figure below, we see that adding POS and bigram features substantially
reduces the peak quality for clusters from the restaurant Plouf. This suggests that the

features, while useful for classification purposes, in fact mask the inherent structure in the
data that leads to good clusters.

Effect of Features on Quality Curve

M plouf (stems) M plouf (stems POS higrams)

3.5

3.0

25

20

1.5

Auerage Cluster Quality Q1)

1.0

0.5
10 20 40 50 80 100 120 140 160 180 200

Mumber of Clusters (K]

Final Results And Future Work

Overall, we have shown that SVM classifiers perform well when classifying the subjectivity
of sentences within the same domain. They are also effective, though less so, at classifying
the polarity of subjective sentences in the same domain. Unfortunately, our key hypothesis
-- that we could train classifiers with movie-review data and transfer them to a different
domain -- proved incorrect. At 51% accuracy on Yelp test data, the subjectivity classifier
was completely unusable. The high accuracy we acheived with the classifier on movie-data
seems to have come at the cost of over-fitting to the data of a single domain. Looking at the
features with highest information gain gives some insight into why this is the case. Stems
like "movi" and "film" are unlikely to be informative in a restaurant-review domain.

One potential solution to this poor cross-domain performance is to do more work upfront to
extract the particular types of features that are informative of opinion. Something like the
approach of Hu and Liu -- extracting opinion words -- would seem to be appropriate.
Alternatively, combining training data from multiple domains would also potentially be
helpful.

Despite the shortcomings of the classifier, clustering overall worked well, though it was
difficult to give any rigorous evaluation of the usefulness of the results. Indeed, developing
some way of having users rate the quality of top-ranking clusters would probably be a
useful next step to assessing the effectiveness of our approach. Nevertheless, we have
developed a framework for extracting common opinions from a review-sentence set in an
entirely unsupervised manner, with the proposed quality measure as an integral part of its
design.

The most difficult part of classification seems to be the proper selection of features. Its
apparent that the notion of an opinion is quite difficult to capture with simple features like
words, stems, or parts-of-speech. In fact, the subtly of opinion remains one of the most
challenging obstacles to true sentiment classification. The movie-review classifiers worked
as well as they did mainly because there was a substantial difference between the features
of movie plot summaries and movie reviews. These differences were far less significant
within Yelp reviews.

One common aspect of good clusters is that they seem to form around specific aspects of a
restaurant, like atmosphere, lamb falling off the bone, service, or wok pho noodles. Poorer,
but still high-scoring, clusters tend to form around high-frequency words that the stop-word
list did not remove. This suggests a slightly different approach to building feature-vectors
for each sentence. First, a pre-processing pass could build a list of words and phrases that
appear frequently in the review of a particular restaurant but are uncommon in the wider
corpus. This should find phrases like the name of a dish that many people are talking about.
Second, given the narrow domain of the problem, it should also be possible to hand-build a
list of common ideas a reader might want to know about, like service, food, and price.
Extracting these combined, specific features should lead to purpose-built vectors that form
clusters around relevant concepts.

References

[1] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using
machine learning techniques. In Proceedings of the 2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 79-86.

[2] M. Hu and B. Liu. Mining opinion features in customer reviews. In Proc. AAAI, 2004.

[3] http://www.cs.cornell.edu/People/pabo/movie-review-data/

[4] Bo Pang and Lillian Lee, A Sentimental Education: Sentiment Analysis Using Subjectivity
Summarization Based on Minimum Cuts, Proceedings of ACL 2004

[5] Bo Pang and Lillian Lee, Seeing stars: Exploiting class relationships for sentiment categorization with
respect to rating scales, Proceedings of ACL 2005.

[6] http://www.rottentomatoes.com/

[7] http://www.imdb.com/

[8] http://snowball.tartarus.org/

[9] http://nip.stanford.edu/software/lex-parser.shtml

http://www.rottentomatoes.com/
http://www.cs.cornell.edu/people/pabo
http://www.cs.cornell.edu/home/llee
http://www.cs.cornell.edu/home/llee/papers/cutsent.home.html
http://www.cs.cornell.edu/home/llee/papers/cutsent.home.html
http://www.cs.cornell.edu/people/pabo
http://www.cs.cornell.edu/home/llee
http://www.cs.cornell.edu/home/llee/papers/pang-lee-stars.home.html
http://www.cs.cornell.edu/home/llee/papers/pang-lee-stars.home.html
http://www.rottentomatoes.com/
http://www.imdb.com/
http://snowball.tartarus.org/
http://nlp.stanford.edu/software/lex-parser.shtml

	Extracting Common Sentiments From Reviews
	Proposed System
	Data
	Classifiers and Features
	Generation 0: Bag of Words and a Naive Classifier
	Generation 1: Stems of Words and a Sophisticated Classifier
	Generation 2: Increasing the Vocabulary Size (N)
	Generation 3: Integrating Parser Features
	Generations Summary
	Informative Features

	Cross-Domain Applicability
	Clustering
	Design Considerations
	The WEKA library provides us with several clustering algorithms, from simple K-means to EM. As we will discuss in the cluster quality section below, in addition to clustering our application requires a method to measure the quality of individual clusters against an application-specific metric, both for choosing an optimal number of clusters and for ranking the resulting clusters. Unfortunately, it proved impractical to get this kind of information from WEKA. We attempted to use a feature of the EM clusterer that optimized the number of clusters, K, by maximizing the probability of generating them, but it tended to pick K much too small, resulting in extremely large clusters of mostly unrelated opinions.
	Feature Analysis
	Cluster Quality Optimization

	Final Results And Future Work
	References

