

Extracting Valuable Information from HV Circuit Breaker Testing

Charles Sweetser - OMICRON

MIPSYCON 2014

5 November 2014

Agenda Topics

- SF6 and Oil Breaker Types (Info)
- Timing and Travel
- Power Factor
- Contact Resistance (Static and Dynamic)
- Minimum Pick-Up

Circuit Breaker Testing Protocol

Performance Characteristics

Timing and Travel Command Coil Analysis Motor Current Analysis

Insulation Components

Gas, Oil, and Vacuum

- <u>Contact Resistance</u>
- Supplies and Battery System
- Bushings
- CTs

Performance Characteristics

- Timing and Travel
 - ✓ O, C, TripFree CO, ReClose O-C, O-CO
- Command Coil Analysis
 - ✓ Current Signature
 - ✓ Minimum Pick-Up
- Motor Current Analysis

- Major Problems May Include:
 - ✓ Insulation Failure
 - ✓ Failure to Operate
 - ✓ Failure to Interrupt
 - ✓ Catastrophic Failure
- Other Problems May Include:
 - ✓ Slow Close
 - ✓ Slow Open

Types of Breakers

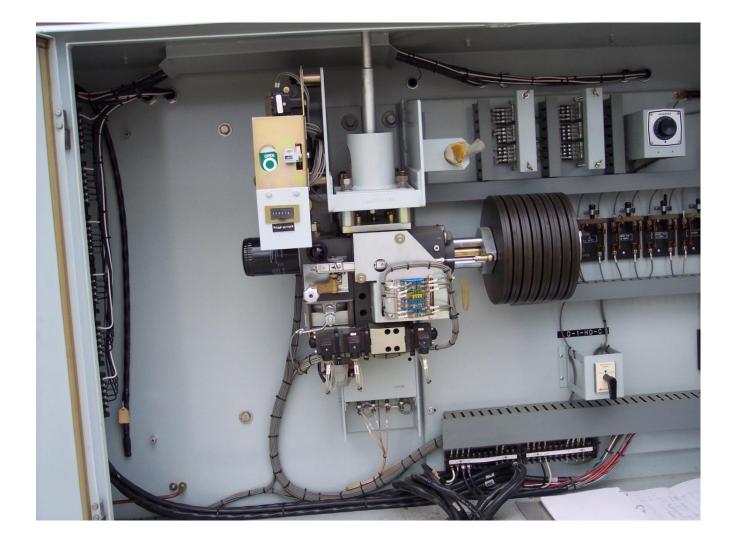
- ✓ Oil
- ✓ SF6 Gas
- ✓ Air: Blast or Magnetic
- ✓ Vacuum

Common Components

- ✓ Contacts
- ✓ Mechanism
- ✓ Insulation
- ✓ Arc Mitigation
- ✓ Control Cabinet

Circuit Breaker Types

Live Tank vs Dead Tank

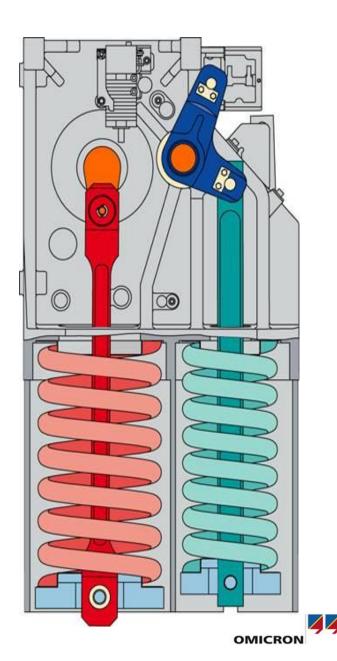


Typical Breaker Components

- Mechanism
 - ✓ Springs
 - ✓ Hydraulic
 - ✓ Pneumatic
 - ✓ Magnetic Actuator
- Contacts
 - ✓ Moving
 - ✓ Stationary

Principle of Operating Mechanisms

Principle of Operating Mechanisms



Spring Mechanism

 Close spring is bigger than Open spring

• While closing open spring must be fully charged

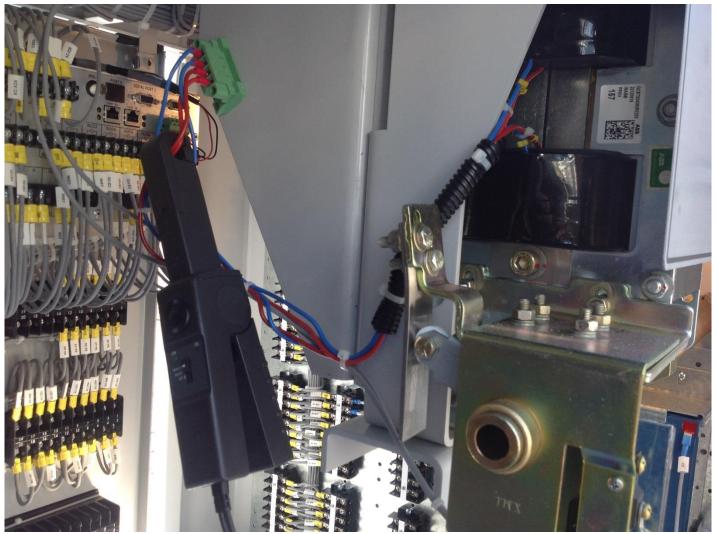
Spring Mechanism

 Close spring is bigger than Open spring

Hydraulic Mechanism

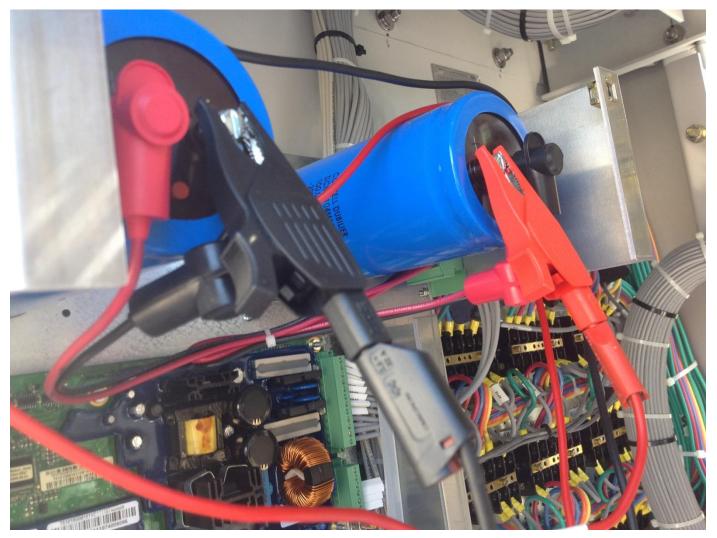
Magnetic Actuator

MA – Field Prep



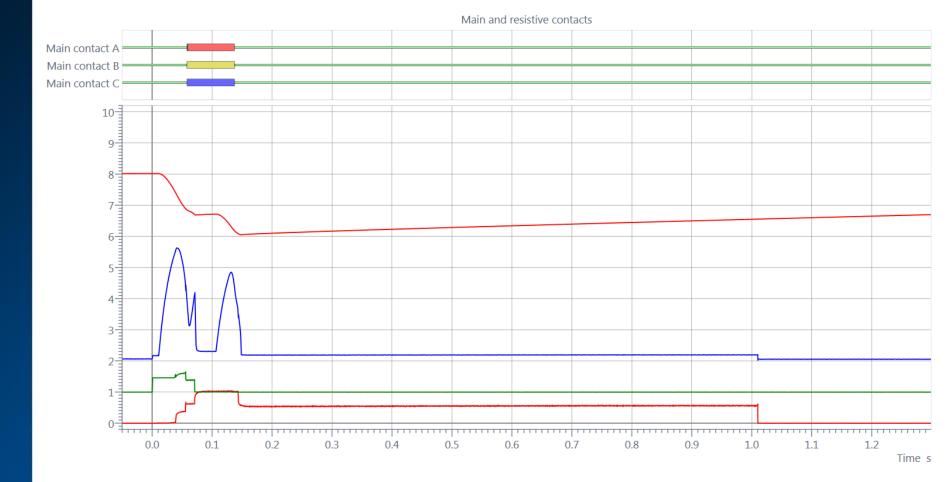
MA Testing – Advanced Tests Recommended

- 1. Main Contact Timing (O, C, CO, O-C)
- 2. Contact Resistance
- 3. Monitoring (USP)
 - Magnetic Actuator Function
 - Storage Capacitor Function
 - Capacitor Charger Function



Actuator Current via OMICRON Current Probe

Capacitor Connections


Main Contact Connections

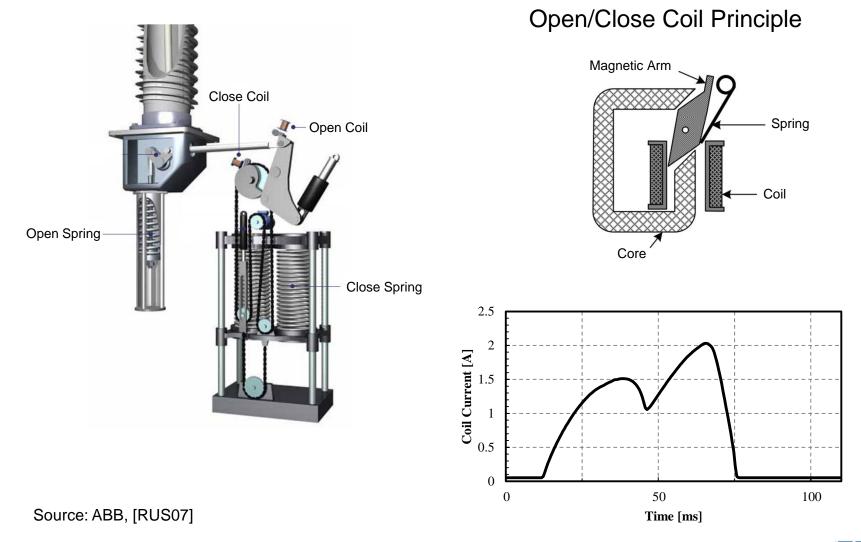
© OMICRON

OMICRON

Analyzing the Measurement

© OMICRON

Circuit Breaker Summary


BREAKER TYPES

Dead Tank Breaker (OCB) Dead Tank Breaker SF6 Live Tank Air Blast Live Tank SF6 Vacuum Breakers Air Magnetic Low Voltage Air Blast Reclosers Circuit Switchers Sectionalizers

MECHANISM TYPES		
Hydraulic		
Pneumatic		
Spring		
Magnetic Actuator		
INSULATION SYSTEMS		
Oil		
SF6		
Air		
Vacuum		

Spring Type Operating Mechanism

© OMICRON

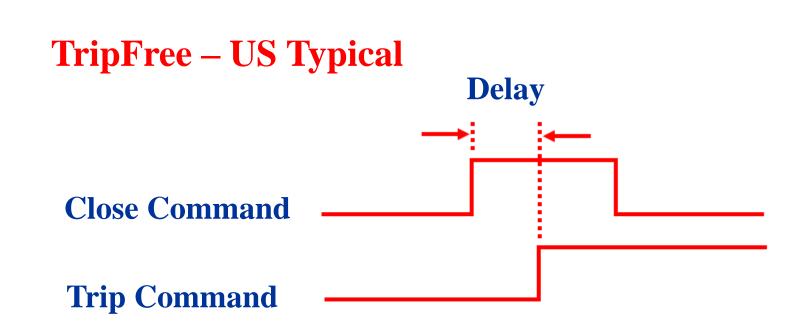
OMICRON

Trip Command – US Typical

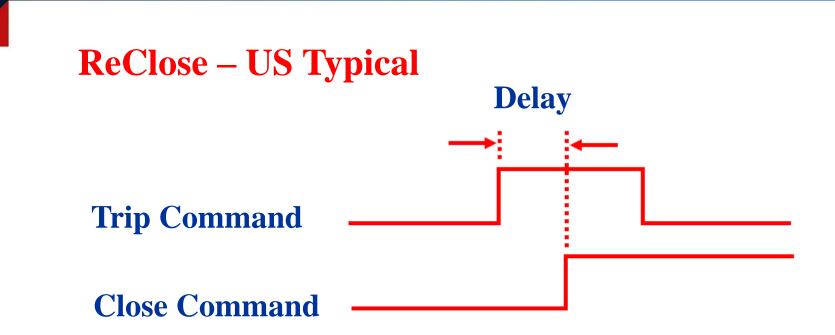
Trip Command

Duration - 66.6 ms

	Trip Coil	Close Coil	Delay
OPEN (O)	66.6 ms (4 cycles)		
CLOSE (C)	133.3 ms (8 cycles)		
TRIPFREE (CO)	Standing	133.3 ms (8 cycles)	8.3 ms (1/2 cycle)
RECLOSE (OC)	66.6 ms (4 cycles)	Standing	300.0 ms



Close Command



Duration – 133.3 ms

	Trip Coil	Close Coil	Delay
OPEN (O)	66.6 ms (4 cycles)		
CLOSE (C)	133.3 ms (8 cycles)		
TRIPFREE (CO)	Standing	133.3 ms (8 cycles)	8.3 ms (1/2 cycle)
RECLOSE (OC)	66.6 ms (4 cycles)	Standing	300.0 ms

Close Duration – 133.3 ms Trip Duration – Standing Delay – ½ Cycle or 8.3 ms

Trip Duration – 66.6 ms Close Duration – Standing Sometimes > 300 ms

32 OMICRON

© OMICRON

Circuit Breaker Timing and Travel

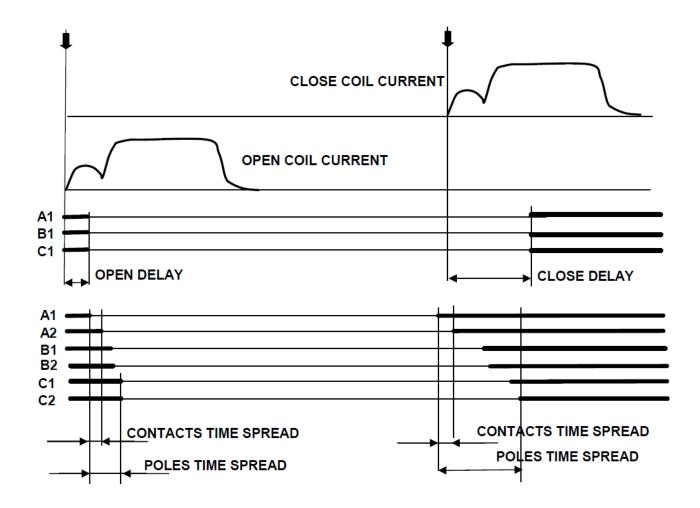
- Perform a Measurement
 - -Contacts, Coils, Mechanism, Aux Switches
- Interpret performance characteristics
- Consult manufacturers specifications (Pass or Fail) ,unlike power factor testing

Timing and Travel

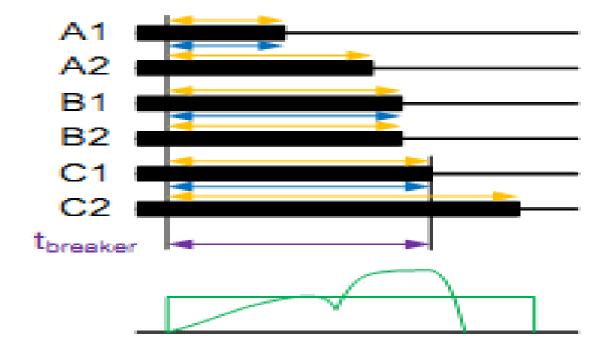
What Can be Measured ?

- 1. Displacement (Travel&Velocity)
- 2. Breaker State (O:R:C)
- 3. Coil Current
- 4. Battery Voltage Level
- 5. Auxiliary Contact State

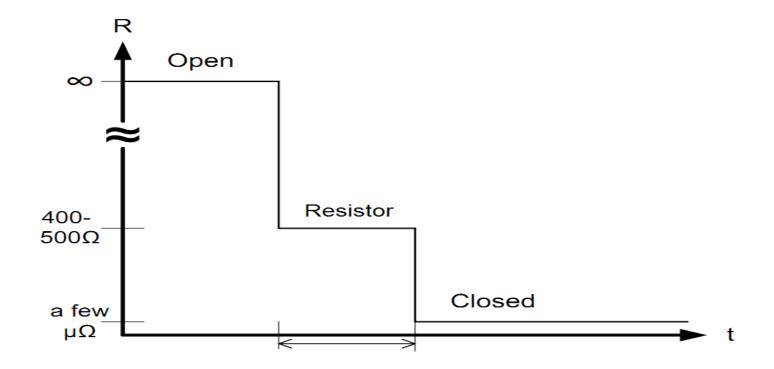
Performance Characteristics


- 1. Main Contact Timing
- 2. Resistor Switch Timing
- 3. Delta Timing
- 4. Velocity
- 5. Total Travel
- 6. Over Travel
- 7. Rebound
- 8. Stroke
- 9. Contact Wipe
- 10. Dwell Time (TripFree CO)
- 11. Dead Time (ReClose OC)

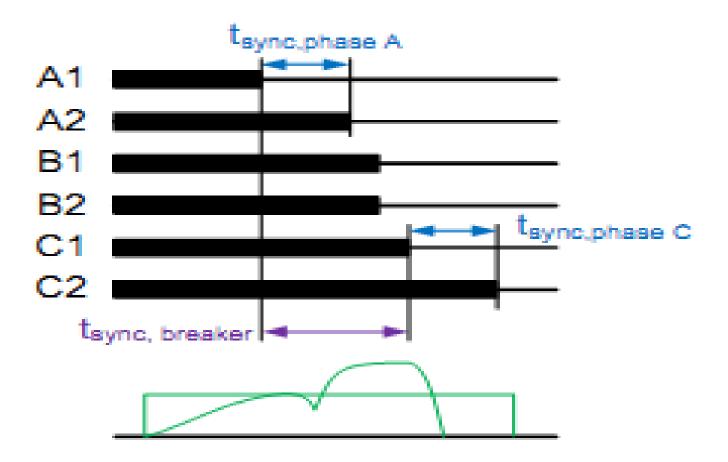
Specification Example


Identification	CB1
Control Circuit Open	70-140 VDC / 6.0 A
Control Circuit Close	90-140 VDC / 6.0 A
Opening Time	17-30 ms
Opening Velocity	3.8 m/s minimum
Pole Spread Open	2.7 ms
Closing Time	50-85 ms
Closing Velocity	1.7 to 2.3 m/s
Pole Spread Close	2.7 ms
Overtravel	4.0 mm maximum
Rebound	6.5 mm maximum
Stroke	113 mm maximum
Dwell Time	20-38 ms
Reclose Time (Dead Time)	300 ms minimum

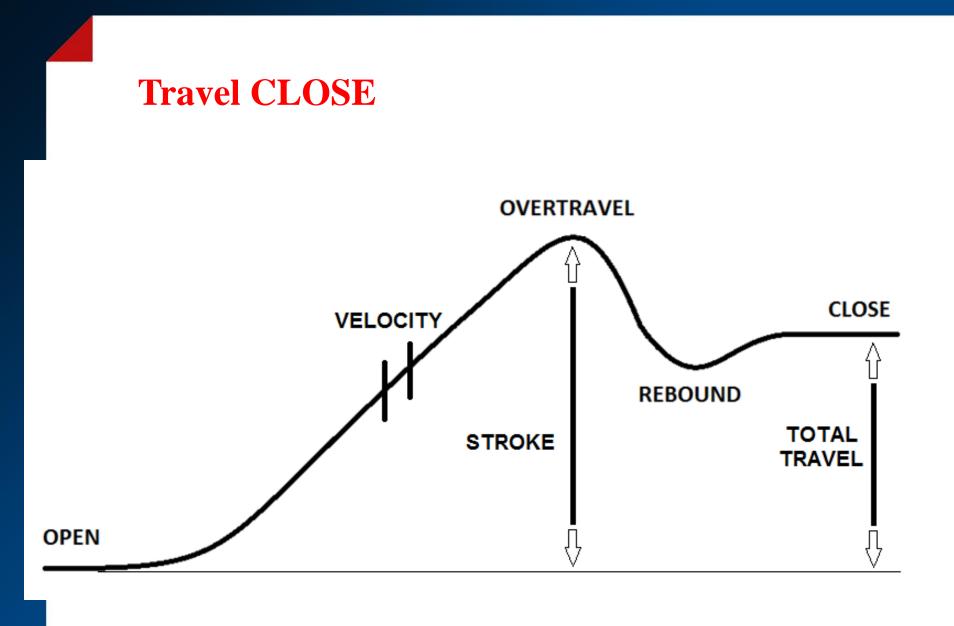
Measured Values



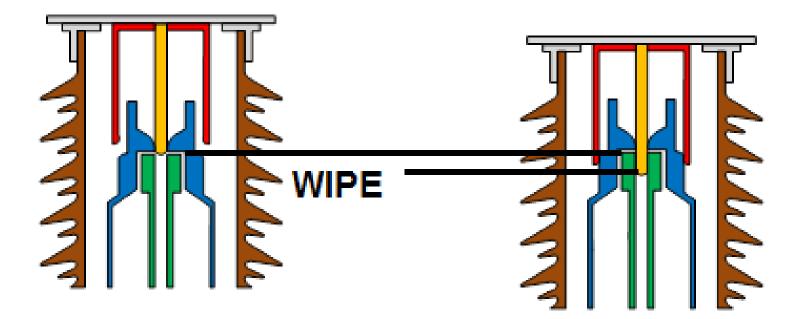
Main Contact Timing



Resistor Switch Timing



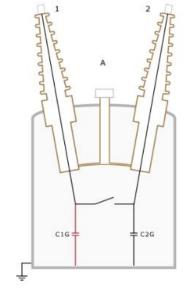
Pole Spread (Delta)

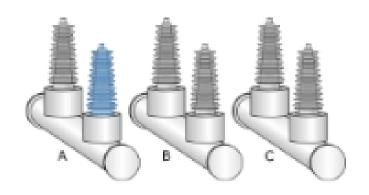


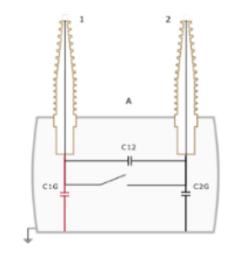
Contact Wipe: The distance the contacts move during a close operation from first make to the final resting position. This is an electrical measurement.

Insulation Components

• Overall Power Factor


-TLI Tank Loss Index (OCB)


- Insulation Resistance
- DGA and Oil Screen (OCB)
- SF6 Moisture, Density, and SO2



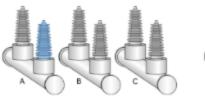
OCBs vs Dead Tank SF6

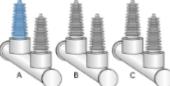
OCB Test Procedure

Test	Insulatio n Tested	Breaker Position	HV	IN A	IN B	Test Mode	
1	C _{1G}	Open	Bushing 1	-	-	GST	
2	C _{2G}	Open	Bushing 2	-	-	GST	
3	с _{зG}	Open	Bushing 3	-	-	GST	
4	C _{4G}	Open	Bushing 4	-	-	GST	
5	C _{5G}	Open	Bushing 5	-	-	GST	
6	C _{6G}	Open	Bushing 6	-	-	GST	
7	C _{1G} +C _{2G}	Closed	Bushing 1&2	-	-	GST	
8	C _{3G} +C _{4G}	Closed	Bushing 3&4	-	-	GST	
9	C _{5G} +C _{6G}	Closed	Bushing 5&6	-	-	GST	
NOTE: All unused bushing should be left floating							

Tank Loss Index (TLI)

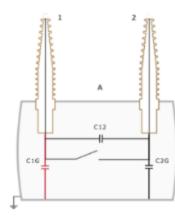
TLI = (closed breaker test in watts) – (sum of open breaker losses in watts)

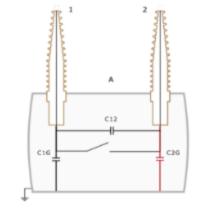

Negative TLI (-)	Positive TLI (+)		
Lift Rod Guide	Lift rod		
Interrupter	Oil		
Assembly			
	Tank Liner		

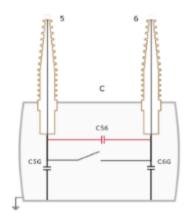


Dead Tank SF6 Test Procedure

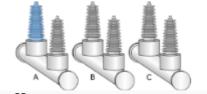
Test	Insulatio n Tested	Breaker Position	HV	IN A	IN B	Test Mode	
1	C _{1G}	Open	Bushing 1	-	-	GST	
2	C _{2G}	Open	Bushing 2	-	-	GST	
3	с _{зG}	Open	Bushing 3	-	-	GST	
4	C _{4G}	Open	Bushing 4	-	-	GST	
5	C _{5G}	Open	Bushing 5	-	-	GST	
6	C _{6G}	Open	Bushing 6	-	-	GST	
7	с ₁₂	Open	Bushing 1	Bushing 2	-	UST-A	
8	с ₃₄	Open	Bushing 3	Bushing 4	-	UST-A	
9	С ₅₆	Open	Bushing 5	Bushing 6	-	UST-A	
10	C _{1G} +C _{2G}	Closed	Bushing 1&2	-	-	GST	
11	C _{3G} +C _{4G}	Closed	Bushing 3&4	-	-	GST	
12	C _{5G} +C _{6G}	Closed	Bushing 5&6	-	-	GST	
NOTE: All unused bushing should be left floating							

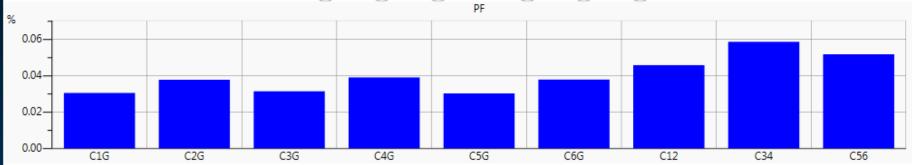

Power Factor



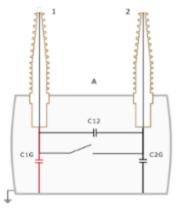


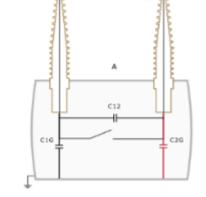
No.	Measurement	Breaker position	Test mode	Sweep	V test	Freq.	V out	I out	Watt losses	Cap. meas	PF meas
1	C1G	Open	GST	None	10.00 kV	60.00 Hz	10.00 kV	0.55 mA	1.68 mW	141.9 pF	0.0306 %
2	C2G	Open	GST	None	10.00 kV	60.00 Hz	10.00 kV	0.37 mA	1.40 mW	96.3 pF	0.0379 %
3	C3G	Open	GST	None	10.00 kV	60.00 Hz	10.01 kV	0.53 mA	1.67 mW	138.5 pF	0.0316 %
4	C4G	Open	GST	None	10.00 kV	60.00 Hz	10.00 kV	0.36 mA	1.41 mW	93.5 pF	0.0392 %
5	C5G	Open	GST	None	10.00 kV	60.00 Hz	10.01 kV	0.54 mA	1.64 mW	139.2 pF	0.0303 %
6	C6G	Open	GST	None	10.00 kV	60.00 Hz	10.01 kV	0.36 mA	1.37 mW	93.4 pF	0.0380 %
7	C12	Open	UST-A	None	10.00 kV	60.00 Hz	10.01 kV	0.01 mA	0.05 mW	3.4 pF	0.0459 %
8	C34	Open	UST-A	None	10.00 kV	60.00 Hz	10.01 kV	0.01 mA	0.06 mW	3.0 pF	0.0587 %
9	C56	Open	UST-A	None	10.00 kV	60.00 Hz	10.01 kV	0.01 mA	0.05 mW	3.0 pF	0.0519 %

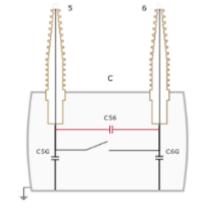




Power Factor

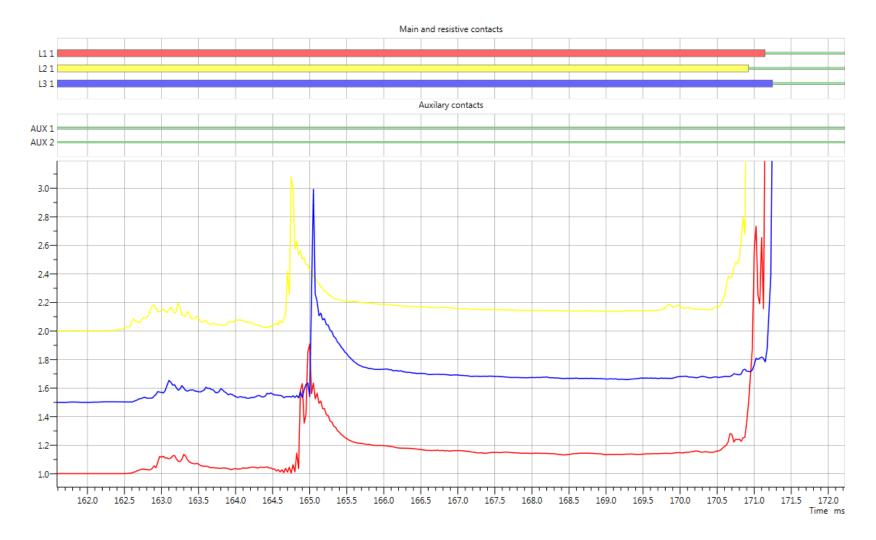






Contact Resistance

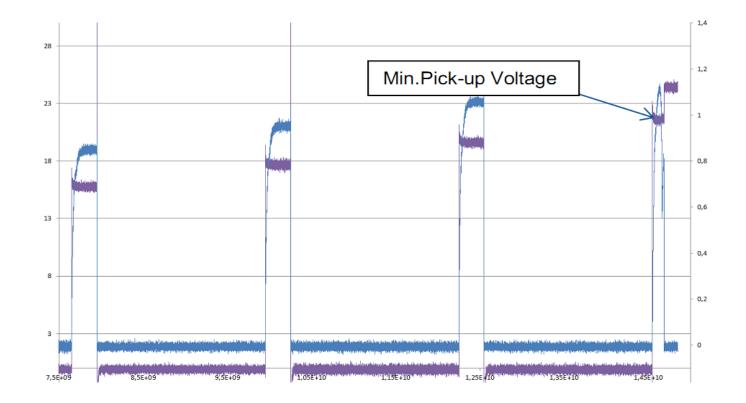
Static Contact Resistance


Current	CB1							
Level	PHASE A	PHASE B	PHASE C					
100 A	77.93 μΩ	78.39 μΩ	79.08 μ Ω					
200 A	77.93 μΩ	78.44 μΩ	79.15 μΩ					
300 A	78.00 μ Ω	78.43 μΩ	79.19 μ Ω					
400 A	78.00 μ Ω	78.46 μΩ	79.19 μΩ					

IEEE C37.09 - DC test current of 100 A minimum and not exceeding rated current

Dynamic Contact Resistance

Dynamic Contact Resistance



Minimum Pick-Up

- Determine the command coil parameters and ratings, AC or DC, and operating voltage.
- Determine a start and stop voltage for the command coil under test. Example, 125 VDC command coil, Start [10 VDC] – Stop [125 VDC]
- Determine pulse time: the pulse time should be limited so the command coil does not overheat, 300 ms is the default starting point.
- Determine dead time: this is the time that the command coil pauses between pulses. The dead time should be long enough to assist is cooling of the command coil. 2 seconds is a reasonable starting point.
- Determine the voltage step increment: This is the amount that the voltage is increased between command coil pulses: 5 VDC is a reasonable starting point.

Minimum Pick-Up

Other Terminology and Applications

- 1. First Trip
- 2. Slow Close
- 3. Minimum Pick-Up
- 4. Minimum Voltage

