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5.1 Extrema and the Mean Value Theorem 

Learning Objectives 

A student will be able to:  

 Solve problems that involve extrema.  

 Study Rolle’s Theorem.  

 Use the Mean Value Theorem to solve problems.  

Introduction 

In this lesson we will discuss a second application of derivatives, as a means to study extreme (maximum and minimum) 

values of functions. We will learn how the maximum and minimum values of functions relate to derivatives.  

Let’s start our discussion with some formal working definitions of the maximum and minimum values of a function.  

Here is an example of a function that has a maximum at and a minimum at :  

Definition 

A function has a maximum at if for all in the domain of Similarly, has a minimum 

at if for all in the domain of The values of the function for these values are called 

extreme values or extrema. 

 

Let’s recall the Min-Max Theorem that we discussed in lesson on Continuity.  

Observe the graph at . While we do not have a minimum at , we note that for all 

near We say that the function has a local minimum at Similarly, we say that the function has a local 

maximum at since for some contained in open intervals of  

Min-Max Theorem: If a function is continuous in a closed interval then has both a maximum value and a 

minimum value in In order to understand the proof for the Min-Max Theorem conceptually, attempt to draw a function 
on a closed interval (including the endpoints) so that no point is at the highest part of the graph. No matter how the 

function is sketched, there will be at least one point that is highest.  

We can now relate extreme values to derivatives in the following Theorem by the French mathematician Fermat.  

Theorem: If is an extreme value of for some open interval of and if exists, then  

Proof: The theorem states that if we have a local max or local min, and if exists, then we must have  

Suppose that has a local max at Then we have for some open interval with  
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So  

Consider .  

Since , we have  

Since exists, we have , and so  

If we take the left-hand limit, we get  

Hence and it must be that  

If is a local minimum, the same argument follows.  

We can now state the Extreme Value Theorem.  
Definition 

We will call a critical value in if or does not exist, or if is an endpoint of the 
interval. 

Extreme Value Theorem: If a function is continuous in a closed interval , with the maximum of at 

and the minimum of at then and are critical values of  

Proof: The proof follows from Fermat’s theorem and is left as an exercise for the student. 

Example 1: 

Let’s observe that the converse of the last theorem is not necessarily true: If we consider and its graph, then 

we see that while at is not an extreme point of the function.  

 

Rolle’s Theorem: If is continuous and differentiable on a closed interval and if then has at least 

one value in the open interval such that .  

The proof of Rolle's Theorem can be found at http://en.wikipedia.org/wiki/Rolle's_theorem.  

Mean Value Theorem: If is a continuous function on a closed interval and if contains the open interval in 

its domain, then there exists a number in the interval such that  

http://en.wikipedia.org/wiki/Rolle's_theorem
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Proof: Consider the graph of and secant line  as indicated in the figure. 

 

By the Point-Slope form of line  we have  

and  

For each in the interval let be the vertical distance from line to the graph of Then we have  

for every in  

Note that Since is continuous in and exists in then Rolle’s Theorem applies. Hence 

there exists in with  

So for every in  

In particular,  

 and  

 

The proof is complete.  

Example 2: 

Verify that the Mean Value Theorem applies for the function on the interval  

Solution: 

We need to find in the interval such that  

Note that and Hence, we must solve the following equation:  

 

By substitution, we have  
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Since we need to have  in the interval the positive root is the solution, .  

Lesson Summary 

1. We learned to solve problems that involve extrema.  
2. We learned about Rolle’s Theorem.  

3. We used the Mean Value Theorem to solve problems.  

Multimedia Links 

For a video presentation of Rolle's Theorem (8.0), see Math Video Tutorials by James Sousa, Rolle's Theorem 

(7:54) . 

For more information about the Mean Value Theorem (8.0), see Math Video Tutorials by James Sousa, Mean Value 

Theorem (9:52) . 

http://www.youtube.com/watch?v=2_FCYzch8ww
http://www.youtube.com/watch?v=RHQvYvL679o
http://www.youtube.com/watch?v=RHQvYvL679o
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For an introduction to L’Hôpital’s Rule (8.0), see Khan Academy, L’Hôpital’s Rule 

(8:51) . 

For a well-done, but unorthodox, student presentation of the Extreme Value Theorem and Related Rates (3.0)(12.0), 

see Extreme Value Theorem (10:00) . 

Review Questions 

In problems #1–3, find the coordinates of all absolute and relative extrema. (Units on the axes indicate 1 unit).  

1. Continuous on    

 

2. Continuous on    

http://www.youtube.com/watch?v=PdSzruR5OeE
http://www.youtube.com/watch?v=9YIKOLlnRYo
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3. Continuous on [0, 4) U (4, 9)  

In problems #4–6, find the absolute extrema on the closed interval indicated, and sketch the graph. 

4.     

5.     

6. 
2

2

4
( )f x x

x
  ,    

7. Verify Rolle’s Theorem for 
3( ) 3 12f x x x   by finding values of x for which ( ) 0f x   and ( ) 0f x  . 

8. Verify Rolle’s Theorem for 
2 2

( )
1

f x x
x

 


. 

9. Verify that the Mean Value Theorem works for 
2

( )
x

f x
x


  on the interval [1, 2].  

10. Prove that the equation  has a positive root at x = r, and that the equation 

 has a positive root less than r. 

 

Review Answers 

1. Absolute maximum (7, 7); absolute minimum (4, -1); relative maximum (2, 5) and (7, 7); relative minimum 

(0, 4), (4, -1), and (9, 3). 

  

2. Absolute maximum (7, 9); absolute minimum (9, 0); relative maximum (0, 6) and (7, 9); relative minimum 

(3, 1.5) and (9, 0). 
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3. Absolute minimum (0, 1); relative minimum (0, 1); there is no max since the function is not continuous on a 

closed interval.  

 

4. Absolute maximum (-3, 13); absolute minimum (1, -3) 

 

5. Absolute maximum 3 3
4 4

( , ( ) .1055)f  , absolute minimum (2, -8) 

 

6. Absolute minimum at ( 2,4)  

 

7.  at .   by Rolle’s Theorem, there is a critical value in each of the 

intervals (-2, 0) and (0, 2), and we found those to be 2x   . 

8.  at .   at ; by Rolle’s Theorem, there is a critical value in the interval 

(-1, 0) and we found it to be  

9. Need to find  such that  

10. Let 
3 2

1 2( )f x x a x a x   .  Observe that ( ) ( ) 0f x f r  .  By Rolle’s Theorem, there must exist (0, )c r  

such that (0) 0f   . 
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Rolle’s and MVT Practice 

 

Determine whether Rolle’s Theorem can be applied to f on the interval ,a b .  If Rolle’s Theorem can be 

applied, find all values of c in the interval  ,a b  such that '( ) 0f c  . 

1.   2( ) 2 , 0,2f x x x     2.       ( ) 1 2 3 , 1,3f x x x x      

3.   
2

3( ) 1, 8,8f x x      4.   
2 2 3

( ) , 1,3
2

x x
f x

x

 
 


 

5.   ( ) sin , 0,2f x x     6.   ( ) tan , 0,f x x    7.  ( ) sin , 0,
2

f x x
 

  
 

 

Determine whether the Mean Value Theorem can be applied to f on the interval  ,a b .  If MVT can be 

applied, find all values of c in  ,a b  such that 
( ) ( )

'( )
f b f a

f c
b a





. 

8.   2( ) , 2,1f x x      9.   
2

3( ) , 0,1f x x  

10.   ( ) 2 , 7,2f x x      11.   ( ) sin , 0,f x x    12.   
1

( ) , 1,1f x
x

   

 

Getting at the Concept: 

13.  Let f  be continuous on  ,a b  and differentiable on  ,a b .  If there exists c  in  ,a b  such that 

'( ) 0f c  , does it follow that ( ) ( )?f a f b   Explain. 

 

14.  When an object is removed from a furnace and placed in an environment with a constant temperature of 

90ºF, its core temperature is 1500ºF.  Five hours later the core temperature is 390ºF.  Explain why there must 

exist a time in the interval when the temperature is decreasing at a rate of 222ºF per hour. 

 

Answers: 

1.  1c       2.  
6 3

3
c


  

3.  Rolle’s Theorem cannot be applied to f  since f  is not differentiable at 0x   which is on  8,8  

4.  2 5c        5.  
3

,
2 2

c
 

  

6.  Rolle’s Theorem cannot be applied since f  is not continuous at 
2

x


  which is on  0, . 

7.  Rolle’s Thrm cannot be applied since (0)
2

f f
 

  
 

 

8.  
1

2
c


  9. 

8

27
c   10.  

1

4
c


  11.  

2
c


   

12.  MVT cannot be applied since f  is not continuous @ 0x   which is on  1,1  

13.  No.  Ex:   2( ) , 2,3 '(0) 0 ( 2) (3)f x x f but f f         

14.  MVT,   
390 1500

'( ) 222
5 0

f c


  

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Rolle’s Theorem & Mean Value Theorem HW 

 

Determine if Rolle’s Theorem can be applied to ( )f x  on [a, b].  If it can, then find all values of ( , )c a b  such 

that ( ) 0f c  . 

 

1.) 2( ) 2 , [0,2]f x x x       2.) ( ) ( 1)( 2)( 3), [1,3]f x x x x      

 

 

 

 

 

 

 

 

3.) 
2
3( ) 1, [ 8,8]f x x        4.)  

2 2 3
( ) , 1,3

2

x x
f x

x

 
 


 

 

 

 

 

 

 

 

 

Determine if the MVT can be applied to ( )f x  on [a, b].  If it can, then find all values of ( , )c a b  such that 

( ) ( )
( )

f b f a
f c

b a


 


. 

 

5.)  2( ) , 2,1f x x        6.)  
2
3( ) , 0,1f x x  

 

 

 

 

 

 

 

 

7.) ( ) 2 , [ 7,2]f x x    

 

 

 

 

 

 

Answers! 1.) x = 1 2.) 
6 3

1.423,2.577
3

x


    3.) Cannot apply Rolle’s Thm. (not diff.) 

4.) 2 5 .236x      5.) 1
2

x       6.) 8
27

x    7.) 1
4

x    
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5.2 The First Derivative Test 

Learning Objectives 

A student will be able to:  

 Find intervals where a function is increasing and decreasing.  

 Apply the First Derivative Test to find extrema and sketch graphs.  

Introduction 

In this lesson we will discuss increasing and decreasing properties of functions, and introduce a method with which to 

study these phenomena, the First Derivative Test. This method will enable us to identify precisely the intervals where a 
function is either increasing or decreasing, and also help us to sketch the graph. Note on notation: The symbol and are 

equivalent and denote that a particular element is contained within a particular set.  

We saw several examples in the Lesson on Extreme and the Mean Value Theorem of functions that had these 

properties.  

If whenever for all then we say that is strictly increasing on 

If whenever for all then we say that is strictly decreasing on 

 
Definition 

A function is said to be increasing on contained in the domain of if whenever 

for all A function is said to be decreasing on contained in the domain of if 

whenever for all  

Example 1: 

The function is strictly increasing on :  

 

Example 2: 

The function indicated here is strictly increasing on and and strictly decreasing on and  
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We can now state the theorems that relate derivatives of functions to the increasing/decreasing properties of functions.  

Theorem: If is continuous on interval then: 

1. If for every then is strictly increasing in  

2. If for every then is strictly decreasing in  

Proof: We will prove the first statement. A similar method can be used to prove the second statement and is left as an 
exercise to the student. 

Consider with By the Mean Value Theorem, there exists such that  

 

By assumption, for every ; hence Also, note that  

Hence and  

We can observe the consequences of this theorem by observing the tangent lines of the following graph. Note the 

tangent lines to the graph, one in each of the intervals  

 

Note first that we have a relative maximum at and a relative minimum at The slopes of the tangent lines 

change from positive for to negative for and then back to positive for . From this we 
example infer the following theorem:  

First Derivative Test 

Suppose that is a continuous function and that is a critical value of Then:  

1. If changes from positive to negative at then has a local maximum at  

2. If changes from negative to positive at then has a local minimum at  

3. If does not change sign at then has neither a local maximum nor minimum at  

Proof of these three conclusions is left to the reader.  

Example 3: 

Our previous example showed a graph that had both a local maximum and minimum. Let’s reconsider and 

observe the graph around What happens to the first derivative near this value?  
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Example 4: 

Let's consider the function and observe the graph around What happens to the first 

derivative near this value?  

 

We observe that the slopes of the tangent lines to the graph change from negative to positive at The first 

derivative test verifies this fact. Note that the slopes of the tangent lines to the graph are negative for 

and positive for  

Lesson Summary 

1. We found intervals where a function is increasing and decreasing.  

2. We applied the First Derivative Test to find extrema and sketch graphs.  

Multimedia Links 

For more examples on determining whether a function is increasing or decreasing (9.0), see Math Video Tutorials by 

James Sousa, Determining where a function is increasing and decreasing using the first derivative 

(10:05) . 

http://www.youtube.com/watch?v=6YM3TrudIzQ
http://www.youtube.com/watch?v=6YM3TrudIzQ
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For a video presentation of increasing and decreasing trigonometric functions and relative extrema (9.0), see Math Video 

Tutorials by James Sousa, Increasing and decreasing trig functions, relative extrema 

(6:02) . 

For more information on finding relative extrema using the first derivative (9.0), see Math Video Tutorials by James 

Sousa, Finding relative extrema using the first derivative (6:18) . 

Review Questions 

In problems #1–2, identify the intervals where the function is increasing, decreasing, or is constant. (Units on the axes 
indicate single units).  

1.  

2.  
3. Give the sign of the following quantities for the graph in #2.  

a.  

b.  

c.  

d.  

For problems #4–6, determine the intervals in which the function is increasing and those in which it is decreasing. Sketch 
the graph.  

4.  

http://www.youtube.com/watch?v=NThmBPzQLjU
http://www.youtube.com/watch?v=NThmBPzQLjU
http://www.youtube.com/watch?v=Oc6P7p7wyCs
http://www.youtube.com/watch?v=Oc6P7p7wyCs
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5.  

6.  

For problems #7–10, do the following:  

a. Use the First Derivative Test to find the intervals where the function increases and/or decreases  

b. Identify all absolute and relative max and mins 
c. Sketch the graph 

7.  

8.  

9.  

10.  

Review Answers 

1. Increasing on (0, 3), decreasing on (3, 6), constant on (6, ∞). 

2. Increasing on (-∞, 0) and (3, 7), decreasing on (0, 3).  

3.  

4. Relative minimum at 
3 0.5x   ; increasing on 3( 0.5,0)  and (0, ) , decreasing on 3( , 0.5)  . 

 

5. Absolute minimum at ; decreasing on    , 1 1,0    , increasing on    0,1 1,   

 

6. Absolute minimum at ; relative maximum at ; decreasing on  increasing on 
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7. Absolute maximum at ; increasing on  decreasing on  

 

8. Relative maximum at ; relative minimum at ; increasing on 

 and  decreasing on  

 

9. Relative maximum at x = 0, f(0) = 0; relative minimum at  
2
3 32, (2) 3 2 3 4x f     , increasing on 

( ,0)  and (2, ) , decreasing on (0, 2).  

 

10. There are no maxima or minima; no relative maxima or minima.  
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5.3 The Second Derivative Test 

Learning Objectives 

A student will be able to:  

 Find intervals where a function is concave upward or downward.  

 Apply the Second Derivative Test to determine concavity and sketch graphs.  

Introduction  

In this lesson we will discuss a property about the shapes of graphs called concavity, and introduce a method with which 

to study this phenomenon, the Second Derivative Test. This method will enable us to identify precisely the intervals 
where a function is either increasing or decreasing, and also help us to sketch the graph.  

Here is an example that illustrates these properties.  
Definition 

A function is said to be concave upward on contained in the domain of if is an increasing function 

on and concave downward on if is a decreasing function on  

Example 1: 

Consider the function :  

 

The function has zeros at and has a relative maximum at and a relative minimum at . Note 

that the graph appears to be concave down for all intervals in and concave up for all intervals in . 

Where do you think the concavity of the graph changed from concave down to concave up? If you answered at 

you would be correct. In general, we wish to identify both the extrema of a function and also points, the graph changes 
concavity. The following definition provides a formal characterization of such points.  

The example above had only one inflection point. But we can easily come up with examples of functions where 

there are more than one point of inflection.  

Definition 

A point on a graph of a function where the concavity changes is called an inflection point. 

Example 2: 

Consider the function  
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We can see that the graph has two relative minimums, one relative maximum, and two inflection points (as indicated by 

arrows).  

In general we can use the following two tests for concavity and determining where we have relative maximums, 

minimums, and inflection points.  

Test for Concavity 

Suppose that is continuous on and that is some open interval in the domain of  

1. If for all then the graph of is concave upward on  

2. If for all then the graph of is concave downward on  

A consequence of this concavity test is the following test to identify extreme values of  

Second Derivative Test for Extrema 

Suppose that is a continuous function near and that is a critical value of Then  

1. If then has a relative maximum at  

2. If then has a relative minimum at  

3. If then the test is inconclusive and may be a point of inflection.  

Recall the graph We observed that and that there was neither a maximum nor minimum. The Second 

Derivative Test cautions us that this may be the case since at at  

So now we wish to use all that we have learned from the First and Second Derivative Tests to sketch graphs of functions. 
The following table provides a summary of the tests and can be a useful guide in sketching graphs.  

Signs of first and second derivatives  Information from applying First and Second Derivative Tests  Shape of the graphs  

 

 

is increasing  

is concave upward  
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Signs of first and second derivatives  Information from applying First and Second Derivative Tests  Shape of the graphs  

 

 

is increasing  

is concave downward  

 

 

 

is decreasing  

is concave upward   

 

 

is decreasing  

is concave downward   

Lets’ look at an example where we can use both the First and Second Derivative Tests to find out information that will 
enable us to sketch the graph.  

Example 3: 

Let’s examine the function  

1. Find the critical values for which  

or  

at  

Note that when  

2. Apply the First and Second Derivative Tests to determine extrema and points of inflection.  

We can note the signs of and in the intervals partitioned by  

Key intervals   Shape of graph 

   Increasing, concave down  

   Decreasing, concave down  

   Decreasing, concave up  

   Increasing, concave up  

Also note that By the Second Derivative Test we have a relative maximum at  or the 

point  
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In addition, By the Second Derivative Test we have a relative minimum at or the point 

Now we can sketch the graph.  

 

Lesson Summary 

1. We learned to identify intervals where a function is concave upward or downward.  
2. We applied the First and Second Derivative Tests to determine concavity and sketch graphs.  

Multimedia Links 

For a video presentation of the second derivative test to determine relative extrema (9.0), see Math Video Tutorials by 

James Sousa, Introduction to Limits (8:46) . 

Review Questions 

1. Find all extrema using the Second Derivative Test.  

2. Consider  with  
a. Determine  and  so that  is a critical value of the function f. 

b. Is the point (1, 3) a maximum, a minimum, or neither? 

In problems #3–6, find all extrema and inflection points. Sketch the graph.  

3.  

4.  

5.  

6.  

7. Use your graphing calculator to examine the graph of  (Hint: you will need to change the y 

range in the viewing window)  

a. Discuss the concavity of the graph in the interval .  
b. Use your calculator to find the minimum value of the function in that interval. 

http://www.youtube.com/watch?v=2tmRPytHBuk
http://www.youtube.com/watch?v=2tmRPytHBuk
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8. True or False:  has a relative minimum at  and a relative maximum at . 

9. If possible, provide an example of a non-polynomial function that has exactly one relative minimum. 
10. If possible, provide an example of a non-polynomial function that is concave downward everywhere in its 

domain. 

Review Answers 

1. There is a relative minimum at x = 2, and it is located at (2, 3).  

2. f(1) = 3 suggests that 2a b   and (1) 0 2f a    ; solving this system we have that a = -2 and b = 4.  The 

point (1, 3) is an absolute min of f. 

3. Relative maximum at 
2

3
x  , relative minimum at x = 0; the relative maximum is located at 

2
,0.15

3

 
 
 

; the 

relative minimum is located at (0, 0).  There is a point of inflection at 
1

,0.07
3

 
 
 

.  

 

4. Relative maximum at , located at ; relative minimum at , located at 

.  There are no inflection points.  

 

5. Relative maximum at x = -2; relative minimum at x = 2; the relative maximum is located at ; the 

relative minimum is located at   There is a point of inflection at  

 

6. Relative maxima at  relative minimum at ; the relative maxima are located at and ; 

the relative minimum is located at   There are two inflection points, located at  and  
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7.  

a. The graph is concave up in the interval. 

b. There is a relative minimum at  

8. False: there are inflection points at  and .  There is a relative minimum at  

 

9.  

 

10.  on  

 

Also,  
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Second Derivative Test Practice 

 

State the intervals on which the function is concave up and concave down and state all points of inflection. 

 

1.) 2( ) 2f x x x    

 

2.) 
2

24
( )

12
f x

x



 

 

3.) 3 2( ) 9 24 18f x x x x     

 

4.) 4 3 2( ) 2 8 12 12f x x x x x     

 

5.) 3( ) ( 1) ( 5)f x x x    

 

6.) 4 2( ) 18 5f x x x     

 

7.) 3 2( ) 4 8 32f x x x     

 

 

Answers: 

 

 1 2 3 4 5 6 7 

CU  ,   ( , 2) (2, )     (3, )     ,1 1,    ( ,1) (3, )    ( 3, 3)  
2
3

( , )   

CD nowhere ( 2,2)  ( ,3)  nowhere (1,3)  ( , 3) ( 3, )     
2
3

( , )   

POI none 3 3
2 2

(2, ), ( 2, )  (3, 0) none (1,0),(3, 16)  ( 3,40),( 3,40)  
8002

3 27
( , )  
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Concavity HW 

 

Determine intervals where each function is concave up and concave down, and find all inflection points for each 

function. 

 

1.) 2( ) 2f x x x    

 

 

 

 

2.) 
2

24
( )

12
f x

x



 

 

 

 

 

3.) 3 2( ) 9 24 18f x x x x     

 

 

 

 

4.) 4 3 2( ) 2 8 12 12f x x x x x     

 

 

 

 

5.) 3( ) ( 1) ( 5)f x x x    

 

 

 

 

6.) 4 2( ) 18 5f x x x     

 

 

 

 

7.) 3 2( ) 4 8 32f x x x     

 

 

 

Answers! 

 

 1 2 3 4 5 6 7 

C.Up  ( , 2) (2, )    (3, )   ( ,1) (3, )   ( 3, 3)  
2
3

( , )   

C.Down nowhere ( 2,2)  ( ,3)  nowhere (1,3)  ( , 3) ( 3, )    
2
3

( , )   

IP none 3 3
2 2

(2, ), ( 2, )  (3, 0) none (1,0),(3, 16)  ( 3,40),( 3,40)  
8002

3 27
( , )  
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Curve Sketching Practice 
 

For each function, use the First and Second Derivative Tests to find the intervals where the function is 

increasing/decreasing/concave up/concave down, all extrema, and all points of inflection.  Then, use that 

information to sketch the graph, labeling the important points.  Feel free to use your calculator to check your 

sketches. 

 

1.) 4 21
4

( ) 2f x x x   

 

2.) 2( ) ( 2)( 1)f x x x    

 

3.) ( ) 3f x x x   

 

4.) 
2

4
( )

1
f x

x



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“Big Problem” HW 

 

For each function, find intervals of increasing / decreasing / concave up / concave down, all extrema, and all 

inflection points.  (Do this without using your calculator.)  Then, use that information to sketch the graph.  Feel 

free to use your calculator to check your sketches. 

 

1.) 4 21
4

( ) 2f x x x   

 

 

 

 

 

 

 

 

 

 

2.) 2( ) ( 2)( 1)f x x x    

 

 

 

 

 

 

 

 

 

 

3.) ( ) 3f x x x   

 

 

 

 

 

 

 

 

 

 

4.) 
2

4
( )

1
f x

x



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5.4 Limits at Infinity 

Learning Objectives  

A student will be able to:  

 Examine end behavior of functions on infinite intervals.  

 Determine horizontal asymptotes.  

 Examine indeterminate forms of limits of rational functions.  

 Apply L’Hospital’s Rule to find limits.  

 Examine infinite limits at infinity.  

Introduction  

In this lesson we will return to the topics of infinite limits and end behavior of functions and introduce a new method that 

we can use to determine limits that have indeterminate forms.  

Examine End Behavior of Functions on Infinite Intervals 

Suppose we are trying to analyze the end behavior of rational functions. In Lesson on Infinite Limits we looked at some 

rational functions such as and showed that and . We required 

an analysis of the end behavior of since computing the limit by direct substitution yielded the indeterminate form . 

Our approach to compute the infinite limit was to look at actual values of the function as approached . We 

interpreted the result graphically as the function having a horizontal asymptote at  

 

We were then able to find infinite limits of more complicated rational functions such as using 

the fact that . Similarly, we used such an approach to compute limits whenever direct 

substitution resulted in the indeterminate form , such as .  

Now let’s consider other functions of the form where we get the indeterminate forms and and determine 
an appropriate analytical method for computing the limits.  

Example 1: 

Consider the function and suppose we wish to find and We note the 

following:  
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1. Direct substitution leads to the indeterminate forms and  
2. The function in the numerator is not a polynomial function, so we cannot use our previous methods such as 

applying  

Let’s examine both the graph and values of the function for appropriate values, to see if they cluster around particular 
values. Here is a sketch of the graph and a table of extreme values.  

We first note that domain of the function is and is indicated in the graph as follows:  

 

So, appears to approach the value as the following table suggests.  

Note: Please see Differentiation and Integration of Logarithmic and Exponential Functions in Chapter 6 for more on 

derivatives of Logarithmic functions.  

 

 

So we infer that .  

For the infinite limit, , the inference of the limit is not as obvious. The function appears to approach 

the value  but does so very slowly, as the following table suggests.  
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This unpredictable situation will apply to many other functions of the form. Hence we need another method that will 

provide a different tool for analyzing functions of the form .  

L’Hospital’s Rule: Let functions and be differentiable at every number other than in some interval, with if 

If , or if and then:  

1. as long as this latter limit exists or is infinite.  

2. If and are differentiable at every number greater than some number , with then 

as long as this latter limit exists or is infinite.  

Let’s look at applying the rule to some examples.  

Example 2: 

We will start by reconsidering the previous example, and verify the following limits using L’Hospital’s 

Rule:  

 

Solution: 

Since , L’Hospital’s Rule applies and we have  

 

Likewise,  

 

Now let’s look at some more examples.  

Example 3: 

Evaluate  

Solution: 
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Since , L’Hospital’s Rule applies and we have  

 

Let’s look at an example with trigonometric functions.  

Example 4: 

Evaluate  

Solution: 

Since , L’Hospital’s Rule applies and we have  

 

Example 5: Evaluate  

Solution: 

Since , L’Hospital’s Rule applies and we have  

 

Here we observe that we still have the indeterminate form . So we apply L’Hospital’s Rule again to find the limit as 
follows:  

 

L'Hospital's Rule can be used repeatedly on functions like this. It is often useful because polynomial functions can be 

reduced to a constant.  

Lesson Summary 

1. We learned to examine end behavior of functions on infinite intervals.  

2. We determined horizontal asymptotes of rational functions.  
3. We examined indeterminate forms of limits of rational functions.  

4. We applied L’Hospital’s Rule to find limits of rational functions.  

5. We examined infinite limits at infinity.  

Review Questions 

1. Use your graphing calculator to estimate  

2. Use your graphing calculator to estimate  

In problems #3–10, use L’Hospital’s Rule to compute the limits, if they exist.  
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3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

Review Answers 

1.  

2.  

3.  

4.  

5.  

6.  

7.   Hint: Let 

1
1

ln(1 )(1 )
x

x xx e   , so 

1 1
1

0
lim ln(1 )

ln(1 )

0 0
lim(1 ) lim

x x
x x

x
x

x x
x e e 




 
    

8.  

9.  

10.  
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Asymptote & Limits Review HW 

 

For each function, find all requested info, if possible. 

 

1.) 
2

2

1
( )

x
f x

x


   

 

Roots: 

 

Holes: 

 

VA: 

 

y-int:  

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 
 

2.) 
2

2

2
( )

2

x
f x

x x




 
 

 

Roots: 

 

Holes: 

 

VA: 

 

y-int:  

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 
 

3.) 
2

2

1
( )

2 8

x
f x

x





  

 

Roots: 

 

Holes: 

 

VA: 

 

y-int:  

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 
 

4.) 
2

2

12
( )

9

x x
f x

x

 



 

 

Roots: 

 

Holes: 

 

VA: 

 

y-int:  

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 
 

5.) 
2

3
( )

4 1

x
f x

x



  

 

Roots: 

 

Holes: 

 

VA: 

 

y-int:  

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 
 

6.) 
2

1
( )

( 2)
f x

x



 

 

Roots: 

 

Holes: 

 

VA: 

 

y-int:  

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 
 

 

Answers: 

 Roots Holes VA y-int lim ( )
x

f x


  
VA

lim ( )
x

f x


  
VA

lim ( )
x

f x


  

1.) none none x = 0 none 1     
2.) ( 2,0)  none x = 2, x = -1 (0, 1) 1 2:  ; -1:   2:  ; -1:   

3.) ( 1,0)  none 2x    1
8

(0, )  1
2

 2:  ; -2:   2:  ; -2:   

4.) (4, 0) 7
6

( 3, )  x = 3 4
3

(0, )  1     

5.) (0, 0) none 1
2

x    (0, 0) 0 1 1
2 2

: ; :    1 1
2 2

: ; :    

6.) none none x = –2 1
4

(0, )  0     
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5.5 Analyzing the Graph of a Function 

Learning Objectives 

A student will be able to:  

 Summarize the properties of function including intercepts, domain, range, continuity, asymptotes, relative 

extreme, concavity, points of inflection, limits at infinity.  

 Apply the First and Second Derivative Tests to sketch graphs.  

Introduction 

In this lesson we summarize what we have learned about using derivatives to analyze the graphs of functions. We will 
demonstrate how these various methods can be applied to help us examine a function’s behavior and sketch its graph. 

Since we have already discussed the various techniques, this lesson will provide examples of using the techniques to 
analyze the examples of representative functions we introduced in the Lesson on Relations and Functions, particularly 

rational, polynomial, radical, and trigonometric functions. Before we begin our work on these examples, it may be useful 

to summarize the kind of information about functions we now can generate based on our previous discussions. Let's 
summarize our results in a table like the one shown because it provides a useful template with which to organize our 

findings.  

Table Summary 

 Analysis  

Domain and Range   

Intercepts and Zeros   

Asymptotes and limits at infinity   

Differentiability   

Intervals where is increasing   

Intervals where is decreasing   

Relative extrema   

Concavity   

Inflection points   

Example 1: Analyzing Rational Functions 

Consider the function  

General Properties: The function appears to have zeros at However, once we factor the expression we see 
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Hence, the function has a zero at there is a hole in the graph at the domain is 

and the intercept is at  

Asymptotes and Limits at Infinity 

Given the domain, we note that there is a vertical asymptote at To determine other asymptotes, we examine the 

limit of as and . We have  

 

Similarly, we see that . We also note that since  

Hence we have a horizontal asymptote at  

Differentiability 

. Hence the function is differentiable at every point of its domain, and since 

on its domain, then is decreasing on its domain, .  

 

in the domain of Hence there are no relative extrema and no inflection points.  

So when Hence the graph is concave up for  

Similarly, when Hence the graph is concave down for  

Let’s summarize our results in the table before we sketch the graph.  

Table Summary 

 
Analysis 

Domain and Range  
 

Intercepts and Zeros 
zero at intercept at  

Asymptotes and limits at infinity VA at HA at hole in the graph at  

Differentiability differentiable at every point of its domain  

Intervals where is increasing nowhere  

Intervals where is decreasing  



 34 

Table Summary 

 
Analysis 

Relative extrema none  

Concavity concave up in concave down in  

Inflection points none  

Finally, we sketch the graph as follows:  

 

Let’s look at examples of the other representative functions we introduced in Lesson 1.2.  

Example 2: 

Analyzing Polynomial Functions 

Consider the function  

General Properties 

The domain of is and the intercept at  

The function can be factored  

 

and thus has zeros at  
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Asymptotes and limits at infinity 

Given the domain, we note that there are no vertical asymptotes. We note that and 

 

Differentiability 

if . These are the critical values. We note that the function is 

differentiable at every point of its domain.  

on and ; hence the function is increasing in these intervals.  

Similarly, on and thus is decreasing there.  

if where there is an inflection point.  

In addition, . Hence the graph has a relative maximum at and located at the point 

 

We note that for . The graph is concave down in  

And we have ; hence the graph has a relative minimum at and located at the point 

 

We note that for The graph is concave up in  

Table Summary  

 Analysis 

Domain and Range  

Intercepts and Zeros zeros at intercept at  

Asymptotes and limits at infinity no asymptotes  

Differentiability differentiable at every point of it’s domain  

Intervals where is increasing 
and  

Intervals where is decreasing 
 

Relative extrema relative maximum at and located at the point ;  
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Table Summary  

 Analysis 

relative minimum at and located at the point  

Concavity 

concave up in .  

concave down in .  

Inflection points 
, located at the point  

Here is a sketch of the graph:  

 

Example 3: Analyzing Radical Functions 

Consider the function  

General Properties 

The domain of is , and it has a zero at  

Asymptotes and Limits at Infinity 

Given the domain, we note that there are no vertical asymptotes. We note that .  

Differentiability 

for the entire domain of Hence is increasing everywhere in its domain. is not defined at 

, so is a critical value.  

everywhere in . Hence is concave down in is not defined at , 

so is an absolute minimum.  

Table Summary 

 Analysis 

Domain and Range 
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Table Summary 

 Analysis 

Intercepts and Zeros zeros at , no intercept  

Asymptotes and limits at infinity no asymptotes  

Differentiability 
differentiable in  

Intervals where is increasing everywhere in  

Intervals where is decreasing nowhere  

Relative extrema 

none  

absolute minimum at , located at  

Concavity 
concave down in  

Inflection points none  

Here is a sketch of the graph:  

 

Example 4: Analyzing Trigonometric Functions 

We will see that while trigonometric functions can be analyzed using what we know about derivatives, they will provide 

some interesting challenges that we will need to address. Consider the function on the interval 

 

General Properties 

We note that is a continuous function and thus attains an absolute maximum and minimum in Its domain is 

and its range is  

Differentiability 

at .  

Note that on and ; therefore the function is increasing in and .  
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Note that on ; therefore the function is decreasing in .  

if Hence the critical values are at  

hence there is a relative minimum at  

; hence there is a relative maximum at  

on and on Hence the graph is concave up and decreasing on and concave 

down on There is an inflection point at located at the point  

Finally, there is absolute minimum at located at and an absolute maximum at located at 

 

Table Summary 

 Analysis 

Domain and Range  

Intercepts and Zeros  

Asymptotes and limits at infinity no asymptotes  

Differentiability differentiable in  

Intervals where is increasing and  

Intervals where is decreasing  

Relative extrema 

relative maximum at  

relative minimum at  

absolute maximum at  

absolute minimum at , located at  

Concavity concave up in  

Inflection points located at the point  
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Lesson Summary 

1. We summarized the properties of function, including intercepts, domain, range, continuity, asymptotes, relative 
extreme, concavity, points of inflection, and limits at infinity.  

2. We applied the First and Second Derivative Tests to sketch graphs.  

Multimedia Links 

Each of the problems above started with a function and then we analyzed its zeros, derivative, and concavity. Even 

without the function definition it is possible to sketch the graph if you know some key pieces of information. In the 
following video the narrator illustrates how to use information about the derivative of a function and given points on the 

function graph to sketch the function. Khan Academy Graphing with Calculus (9:43) .  

Another approach to this analysis is to look at a function, its derivative, and its second derivative on the same set of axes. 

This interactive applet called Curve Analysis allows you to trace function points on a graph and its first and second 

derivative. You can also enter new functions (including the ones from the examples above) to analyze the functions and 
their derivatives.  

For more information about computing derivatives of higher orders (7.0), see Math Video Tutorials by James Sousa, 

Higher-Order Derivatives: Part 1 of 2 (7:34)   

http://www.youtube.com/watch?v=ojcp0GJKluM
http://calculusapplets.com/curveanalysisbasic.html
http://www.youtube.com/watch?v=_-_VkzdNok4
http://www.youtube.com/watch?v=_-_VkzdNok4
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and Math Video Tutorials by James Sousa, Higher-Order Derivatives: Part 2 of 2 

(5:21) . 

For a presentation of higher order partial derivatives (7.0), see Calculus, Higher Order Derivatives (8:09) 

. 

Review Questions 

Summarize each of the following functions by filling out the table. Use the information to sketch a graph of the function.  

 Analysis 

Domain and Range   

Intercepts and Zeros   

Asymptotes and limits at infinity   

Differentiability   

Intervals where is increasing   

Intervals where is decreasing   

Relative extrema   

Concavity   

Inflection points   

1.  

2.  

http://www.youtube.com/watch?v=SdQXLxr0P0A
http://www.youtube.com/watch?v=AWrXr9ozeOU
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3.  

4.  

5.  

6.  

7.  on [-, ] 

Review Answers 

1. 

 Analysis 

Domain and Range  

Intercepts and Zeros zeros at  y-intercept at  

Asymptotes and limits at infinity no asymptotes  

Differentiability differentiable at every point of its domain  

Intervals where is increasing 
and  

Intervals where is decreasing 
 

Relative extrema 

relative maximum at  located at the point ;  

relative minimum at  located at the point  

Concavity 

concave up in  

concave down in  

Inflection points  located at the point  

2. 

 Analysis 

Domain and Range  

Intercepts and Zeros zeros at  y-intercept at  
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 Analysis 

Asymptotes and limits at 

infinity 
no asymptotes  

Differentiability differentiable at every point of its domain  

Intervals where is increasing  and  

Intervals where is decreasing  and  

Relative extrema 

relative maximum at , located at the point ; and at  located at the 

point  

relative minimum at , located at the point  

Concavity 

concave up in  

concave down in  and  

Inflection points 
, located at the points  and  

3. 

 
Analysis 

Domain and Range  

Intercepts and Zeros zeros at , no y-intercept  

Asymptotes and limits at infinity HA  

Differentiability differentiable at every point of its domain  

Intervals where is increasing  

Intervals where is decreasing  and  

Relative extrema relative maximum at  located at the point  

Concavity 

concave up in  

concave down in  and  

Inflection points  located at the point  

4.  
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Analysis 

Domain and Range  

Intercepts and Zeros zeros at  y-intercept at  

Asymptotes and limits at infinity no asymptotes  

Differentiability differentiable in  

Intervals where is increasing 
 and  

Intervals where is decreasing 
 

Relative extrema 

relative maximum at  located at the point  

relative minimum at  located at the point  

Concavity 

concave up in  

concave down in  

Inflection points  located at the point  

5.  

 Analysis 

Domain and Range  

Intercepts and Zeros zero at  no y-intercept  

Asymptotes and limits at infinity no asymptotes  

Differentiability differentiable in  

Intervals where is increasing nowhere  

Intervals where is decreasing everywhere in  

Relative extrema none absolute maximum at  located at  

Concavity concave up in  
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 Analysis 

Inflection points none  

6.  

 Analysis 

Domain and Range  

Intercepts and Zeros zero at  no y-intercept  

Asymptotes and limits at infinity no asymptotes  

Differentiability differentiable in  

Intervals where is increasing 
 

Intervals where is decreasing 
 

Relative extrema 
relative minimum at  located at the point  

Concavity concave up in  

Inflection points none  

7. 

 Analysis 

Domain and Range  

Intercepts and Zeros zeros at , y-intercept at  

Asymptotes and limits at infinity no asymptotes;  does not exist  

Differentiability differentiable at every point of its domain  

Intervals where is increasing  

Intervals where is decreasing  
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 Analysis 

Relative extrema 

absolute max at  located at the point  

absolute minimums at  located at the points and  

Concavity concave down in  

Inflection points 
, located at the points  and  
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Curve Sketching HW 1 

 

For each function, find all requested info, and sketch the graph.  Use your calculator to check your sketch. 

 

1.) 
2

( )
1

x
f x

x





 

 

INC: 

 

DEC: 

 

MAX: 

 

MIN: 

 

C. UP: 

 

C. DOWN: 

 

IP: 

 

Roots: 

 

Holes: 

 

VA: 

 

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 

y-int: 

 

Other point (if needed): 

 

 

 

2.) 
2

2
( )

16

x
f x

x



 

 

INC: 

 

DEC: 

 

MAX: 

 

MIN: 

 

C. UP: 

 

C. DOWN: 

 

IP: 

 

Roots: 

 

Holes: 

 

VA: 

 

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 

y-int: 

 

Other point (if needed): 
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3.) 
2

( )
1

x
f x

x



 

 

INC: 

 

DEC: 

 

MAX: 

 

MIN: 

 

C. UP: 

 

C. DOWN: 

 

IP: 

 

Roots: 

 

Holes: 

 

VA: 

 

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 

y-int: 

 

Other point (if needed): 

 

 

 

 

 

 

 

 

Hints: 

1.) 
2 3

3 6
( ) , ( )

(1 ) (1 )
f x f x

x x
  

 
 

2.) 
2

2 2 2 3

32 32(3 16)
( ) , ( )

( 16) ( 16)

x x
f x f x

x x


   

 
 

3.) 
2 3

2 4
( ) , ( )

(1 ) (1 )
f x f x

x x
  

 
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Curve Sketching HW 2 

 

For each function, find all requested info, and sketch the graph.  Use your calculator to check your sketch. 

 

1.) 
2

2
( )

9

x
f x

x



 

 

INC: 

 

DEC: 

 

MAX: 

 

MIN: 

 

C. UP: 

 

C. DOWN: 

 

IP: 

 

Roots: 

 

Holes: 

 

VA: 

 

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 

y-int: 

 

Other point (if needed): 

 

 

 

2.) 
2

2

3 3
( )

x
f x

x


  

 

INC: 

 

DEC: 

 

MAX: 

 

MIN: 

 

C. UP: 

 

C. DOWN: 

 

IP: 

 

Roots: 

 

Holes: 

 

VA: 

 

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 

y-int: 

 

Other point (if needed): 
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3.) 
2

2

2 6
( )

( 1)

x
f x

x





 

 

INC: 

 

DEC: 

 

MAX: 

 

MIN: 

 

C. UP: 

 

C. DOWN: 

 

IP: 

 

Roots: 

 

Holes: 

 

VA: 

 

lim ( )
x

f x


  

 

VA
lim ( )

x
f x


  

 

VA
lim ( )

x
f x


  

 

y-int: 

 

Other point (if needed): 

 

 

 

 

 

 

 

Hints: 

1.) 
2

2 2 2 3

18 54( 3)
( ) , ( )

( 9) ( 9)

x x
f x f x

x x


   

 
 

2.) 
3 4

6 18
( ) , ( )f x f x

x x
     

3.) 
3 4

4( 3) 8( 4)
( ) , ( )

( 1) ( 1)

x x
f x f x

x x

 
   

 
 


