
Page 1 of 12

EXTREME PROGRAMMING

2.1 Extreme programming (XP) is a software development methodology which

is intended to improve software quality and responsiveness to changing customer

requirements. As a type of agile software development,[1][2][3] it advocates frequent

"releases" in short development cycles, which is intended to improve productivity

and introduce checkpoints at which new customer requirements can be adopted.

Other elements of extreme programming include: programming in pairs or doing

extensive code review, unit testing of all code, avoiding programming of features

until they are actually needed, a flat management structure, simplicity and clarity

in code, expecting changes in the customer's requirements as time passes and the

problem is better understood, and frequent communication with the customer and

among programmers.[2][3][4] The methodology takes its name from the idea that the

beneficial elements of traditional software engineering practices are taken to

"extreme" levels. As an example, Code reviews are considered a beneficial

practice; taken to the extreme, code can be reviewed continuously, i.e. the practice

of Pair programming.

Critics have noted several potential drawbacks,[5] including problems with unstable

requirements, no documented compromises of user conflicts, and a lack of an

overall design specification or document.

2.2 History

Extreme Programming was created by Kent Beck during his work on the Chrysler

Comprehensive Compensation System (C3) payroll project.[5] Beck became the C3

project leader in March 1996 and began to refine the development methodology

used in the project and wrote a book on the methodology (in October 1999,

Extreme Programming Explained was published).[5] Chrysler cancelled the C3

project in February 2000, after seven years, when the company was acquired by

Daimler-Benz.[6]

Although extreme programming itself is relatively new, many of its practices have

been around for some time; the methodology, after all, takes "best practices" to

extreme levels. For example, the "practice of test-first development, planning and

writing tests before each micro-increment" was used as early as NASA's Project

Mercury, in the early 1960s (Larman 2003). To shorten the total development time,

some formal test documents (such as for acceptance testing) have been developed

in parallel (or shortly before) the software is ready for testing. A NASA

http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Informatics85-1
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Informatics85-1
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-USFCA601-3
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-UPenn49-2
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-UPenn49-2
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-MASD-4
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-SR-6
http://en.wikipedia.org/wiki/Best_practices
http://en.wikipedia.org/wiki/Project_Mercury
http://en.wikipedia.org/wiki/Project_Mercury
http://en.wikipedia.org/wiki/Extreme_programming#CITEREFLarman2003
http://en.wikipedia.org/wiki/Acceptance_testing

Page 2 of 12

independent test group can write the test procedures, based on formal requirements

and logical limits, before the software has been written and integrated with the

hardware. In XP, this concept is taken to the extreme level by writing automated

tests (perhaps inside of software modules) which validate the operation of even

small sections of software coding, rather than only testing the larger features.

Origins

Software development in the 1990s was shaped by two major influences:

internally, object-oriented programming replaced procedural programming as the

programming paradigm favored by some in the industry; externally, the rise of the

Internet and the dot-com boom emphasized speed-to-market and company growth

as competitive business factors. Rapidly changing requirements demanded shorter

product life-cycles, and were often incompatible with traditional methods of

software development.

The Chrysler Comprehensive Compensation System (C3) was started in order to

determine the best way to use object technologies, using the payroll systems at

Chrysler as the object of research, with Smalltalk as the language and GemStone as

the data access layer. They brought in Kent Beck,[5] a prominent Smalltalk

practitioner, to do performance tuning on the system, but his role expanded as he

noted several problems they were having with their development process. He took

this opportunity to propose and implement some changes in their practices based

on his work with his frequent collaborator, Ward Cunningham.

Current state

XP generated significant interest among software communities in the late 1990s

and early 2000s, seeing adoption in a number of environments radically different

from its origins.

The high discipline required by the original practices often went by the wayside,

causing some of these practices, such as those thought too rigid, to be deprecated

or reduced, or even left unfinished, on individual sites. For example, the practice of

end-of-day integration tests for a particular project could be changed to an end-of-

week schedule, or simply reduced to mutually agreed dates. Such a more relaxed

schedule could avoid people feeling rushed to generate artificial stubs just to pass

the end-of-day testing. A less-rigid schedule allows, instead, for some complex

features to be more fully developed over a several-day period. However, some

level of periodic integration testing can detect groups of people working in non-

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Dot-com_boom
http://en.wikipedia.org/wiki/Product_life_cycle_management
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Gemstone_Database_Management_System
http://en.wikipedia.org/wiki/Data_access_layer
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5
http://en.wikipedia.org/wiki/Performance_tuning
http://en.wikipedia.org/wiki/Ward_Cunningham
http://en.wikipedia.org/wiki/Integration_test

Page 3 of 12

compatible, tangent efforts before too much work is invested in divergent, wrong

directions.

Meanwhile, other agile development practices have not stood still, and XP is still

evolving, assimilating more lessons from experiences in the field, to use other

practices. In the second edition of Extreme Programming Explained (November

2004), five years after the first edition, Beck added more values and practices and

differentiated between primary and corollary practices.

Concept

Goals

Extreme Programming Explained describes extreme programming as a software-

development discipline that organizes people to produce higher-quality software

more productively.

XP attempts to reduce the cost of changes in requirements by having multiple short

development cycles, rather than a long one. In this doctrine, changes are a natural,

inescapable and desirable aspect of software-development projects, and should be

planned for, instead of attempting to define a stable set of requirements.

Extreme programming also introduces a number of basic values, principles and

practices on top of the agile programming framework.

Activities

XP describes four basic activities that are performed within the software

development process: coding, testing, listening, and designing. Each of those

activities is described below.

Coding

The advocates of XP argue that the only truly important product of the system

development process is code – software instructions that a computer can interpret.

Without code, there is no working product.

Coding can also be used to figure out the most suitable solution. Coding can also

help to communicate thoughts about programming problems. A programmer

dealing with a complex programming problem, or finding it hard to explain the

solution to fellow programmers, might code it in a simplified manner and use the

Page 4 of 12

code to demonstrate what he or she means. Code, say the proponents of this

position, is always clear and concise and cannot be interpreted in more than one

way. Other programmers can give feedback on this code by also coding their

thoughts.

Testing

Extreme programming's approach is that if a little testing can eliminate a few

flaws, a lot of testing can eliminate many more flaws.

 Unit tests determine whether a given feature works as intended. A

programmer writes as many automated tests as they can think of that might

"break" the code; if all tests run successfully, then the coding is complete.

Every piece of code that is written is tested before moving on to the next

feature.

 Acceptance tests verify that the requirements as understood by the

programmers satisfy the customer's actual requirements.

System-wide integration testing was encouraged, initially, as a daily end-of-day

activity, for early detection of incompatible interfaces, to reconnect before the

separate sections diverged widely from coherent functionality. However, system-

wide integration testing has been reduced, to weekly, or less often, depending on

the stability of the overall interfaces in the system.

Listening

Programmers must listen to what the customers need the system to do, what

"business logic" is needed. They must understand these needs well enough to give

the customer feedback about the technical aspects of how the problem might be

solved, or cannot be solved. Communication between the customer and

programmer is further addressed in the planning game.

Designing

From the point of view of simplicity, of course one could say that system

development doesn't need more than coding, testing and listening. If those

activities are performed well, the result should always be a system that works. In

practice, this will not work. One can come a long way without designing but at a

given time one will get stuck. The system becomes too complex and the

dependencies within the system cease to be clear. One can avoid this by creating a

design structure that organizes the logic in the system. Good design will avoid lots

http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Acceptance_test
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Business_logic
http://en.wikipedia.org/wiki/Planning_game

Page 5 of 12

of dependencies within a system; this means that changing one part of the system

will not affect other parts of the system.

Values

Extreme programming initially recognized four values in 1999: communication,

simplicity, feedback, and courage. A new value, respect, was added in the second

edition of Extreme Programming Explained. Those five values are described

below.

Communication

Building software systems requires communicating system requirements to the

developers of the system. In formal software development methodologies, this task

is accomplished through documentation. Extreme programming techniques can be

viewed as methods for rapidly building and disseminating institutional knowledge

among members of a development team. The goal is to give all developers a shared

view of the system which matches the view held by the users of the system. To this

end, extreme programming favors simple designs, common metaphors,

collaboration of users and programmers, frequent verbal communication, and

feedback.

Simplicity

Extreme programming encourages starting with the simplest solution. Extra

functionality can then be added later. The difference between this approach and

more conventional system development methods is the focus on designing and

coding for the needs of today instead of those of tomorrow, next week, or next

month. This is sometimes summed up as the "You aren't gonna need it" (YAGNI)

approach.[8] Proponents of XP acknowledge the disadvantage that this can

sometimes entail more effort tomorrow to change the system; their claim is that

this is more than compensated for by the advantage of not investing in possible

future requirements that might change before they become relevant. Coding and

designing for uncertain future requirements implies the risk of spending resources

on something that might not be needed, while perhaps delaying crucial features.

Related to the "communication" value, simplicity in design and coding should

improve the quality of communication. A simple design with very simple code

could be easily understood by most programmers in the team.

Feedback

http://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-tr-8

Page 6 of 12

Within extreme programming, feedback relates to different dimensions of the

system development:

 Feedback from the system: by writing unit tests,[5] or running periodic

integration tests, the programmers have direct feedback from the state of the

system after implementing changes.

 Feedback from the customer: The functional tests (aka acceptance tests) are

written by the customer and the testers. They will get concrete feedback

about the current state of their system. This review is planned once in every

two or three weeks so the customer can easily steer the development.

 Feedback from the team: When customers come up with new requirements

in the planning game the team directly gives an estimation of the time that it

will take to implement.

Feedback is closely related to communication and simplicity. Flaws in the system

are easily communicated by writing a unit test that proves a certain piece of code

will break. The direct feedback from the system tells programmers to recode this

part. A customer is able to test the system periodically according to the functional

requirements, known as user stories.[5] To quote Kent Beck, "Optimism is an

occupational hazard of programming. Feedback is the treatment."[9]

Courage

Several practices embody courage. One is the commandment to always design and

code for today and not for tomorrow. This is an effort to avoid getting bogged

down in design and requiring a lot of effort to implement anything else. Courage

enables developers to feel comfortable with refactoring their code when

necessary.[5] This means reviewing the existing system and modifying it so that

future changes can be implemented more easily. Another example of courage is

knowing when to throw code away: courage to remove source code that is

obsolete, no matter how much effort was used to create that source code. Also,

courage means persistence: A programmer might be stuck on a complex problem

for an entire day, then solve the problem quickly the next day, but only if they are

persistent.

Respect

The respect value includes respect for others as well as self-respect. Programmers

should never commit changes that break compilation, that make existing unit-tests

fail, or that otherwise delay the work of their peers. Members respect their own

http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5
http://en.wikipedia.org/wiki/Acceptance_tests
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Beck99-9
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5

Page 7 of 12

work by always striving for high quality and seeking for the best design for the

solution at hand through refactoring.

Adopting the four earlier values leads to respect gained from others in the team.

Nobody on the team should feel unappreciated or ignored. This ensures a high

level of motivation and encourages loyalty toward the team and toward the goal of

the project. This value is very dependent upon the other values, and is very much

oriented toward people in a team.

Rules

The first version of rules for XP was published in 1999 by Don Wells[10] at the XP

website. 29 rules are given in the categories of planning, managing, designing,

coding, and testing. Planning, managing and designing are called out explicitly to

counter claims that XP doesn't support those activities.

Another version of XP rules was proposed by Ken Auer[11] in XP/Agile Universe

2003. He felt XP was defined by its rules, not its practices (which are subject to

more variation and ambiguity). He defined two categories: "Rules of Engagement"

which dictate the environment in which software development can take place

effectively, and "Rules of Play" which define the minute-by-minute activities and

rules within the framework of the Rules of Engagement.

Principles

The principles that form the basis of XP are based on the values just described and

are intended to foster decisions in a system development project. The principles are

intended to be more concrete than the values and more easily translated to

guidance in a practical situation.

Feedback

Extreme programming sees feedback as most useful if it is done frequently and

promptly. It stresses that minimal delay between an action and its feedback is

critical to learning and making changes. Unlike traditional system development

methods, contact with the customer occurs in more frequent iterations. The

customer has clear insight into the system that is being developed, and can give

feedback and steer the development as needed. With frequent feedback from the

customer, a mistaken design decision made by the developer will be noticed and

corrected quickly, before the developer spends much time implementing it.

http://en.wikipedia.org/wiki/Extreme_programming#cite_note-10
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-11

Page 8 of 12

Unit tests contribute to the rapid feedback principle. When writing code, running

the unit test provides direct feedback as to how the system reacts to the changes

made. This includes running not only the unit tests that test the developer's code,

but running in addition all unit tests against all the software, using an automated

process that can be initiated by a single command. That way, if the developer's

changes cause a failure in some other portion of the system that the developer

knows little or nothing about, the automated all-unit-test suite will reveal the

failure immediately, alerting the developer of the incompatibility of his change

with other parts of the system, and the necessity of removing or modifying his

change. Under traditional development practices, the absence of an automated,

comprehensive unit-test suite meant that such a code change, assumed harmless by

the developer, would have been left in place, appearing only during integration

testing – or worse, only in production; and determining which code change caused

the problem, among all the changes made by all the developers during the weeks or

even months previous to integration testing, was a formidable task.

Assuming simplicity

This is about treating every problem as if its solution were "extremely simple".

Traditional system development methods say to plan for the future and to code for

reusability. Extreme programming rejects these ideas.

The advocates of extreme programming say that making big changes all at once

does not work. Extreme programming applies incremental changes: for example, a

system might have small releases every three weeks. When many little steps are

made, the customer has more control over the development process and the system

that is being developed.

Embracing change

The principle of embracing change is about not working against changes but

embracing them. For instance, if at one of the iterative meetings it appears that the

customer's requirements have changed dramatically, programmers are to embrace

this and plan the new requirements for the next iteration.

Practices

Extreme programming has been described as having 12 practices, grouped into

four areas:

Fine-scale feedback

Page 9 of 12

 Pair programming[5]

 Planning game

 Test-driven development

 Whole team

Continuous process

 Continuous integration

 Refactoring or design improvement[5]

 Small releases

Shared understanding

 Coding standards

 Collective code ownership[5]

 Simple design[5]

 System metaphor

Programmer welfare

 Sustainable pace

Coding

 The customer is always available

 Code the unit test first

 Only one pair integrates code at a time

 Leave optimization until last

 No overtime

Testing

 All code must have unit tests

 All code must pass all unit tests before it can be released.

 When a bug is found tests are created before the bug is addressed (a bug is

not an error in logic, it is a test that was not written)

 Acceptance tests are run often and the results are published

Controversial aspects

http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Planning_game
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Extreme_programming_practices#Whole_team
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5
http://en.wikipedia.org/wiki/Extreme_programming_practices#Small_releases
http://en.wikipedia.org/wiki/Extreme_programming_practices#Coding_standard
http://en.wikipedia.org/wiki/Extreme_programming_practices#Collective_code_ownership
http://en.wikipedia.org/wiki/Extreme_programming_practices#Collective_code_ownership
http://en.wikipedia.org/wiki/Extreme_programming_practices#Simple_design
http://en.wikipedia.org/wiki/Extreme_programming_practices#Simple_design
http://en.wikipedia.org/wiki/Extreme_programming_practices#System_metaphor
http://en.wikipedia.org/wiki/Extreme_programming_practices#Sustainable_pace
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Program_optimization
http://en.wikipedia.org/wiki/Overtime
http://en.wikipedia.org/wiki/Unit_tests
http://en.wikipedia.org/wiki/Unit_tests
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Acceptance_tests

Page 10 of 12

The practices in XP have been heavily debated.[5] Proponents of extreme

programming claim that by having the on-site customer[5] request changes

informally, the process becomes flexible, and saves the cost of formal overhead.

Critics of XP claim this can lead to costly rework and project scope creep beyond

what was previously agreed or funded.

Change-control boards are a sign that there are potential conflicts in project

objectives and constraints between multiple users. XP's expedited methods are

somewhat dependent on programmers being able to assume a unified client

viewpoint so the programmer can concentrate on coding, rather than

documentation of compromise objectives and constraints. This also applies when

multiple programming organizations are involved, particularly organizations which

compete for shares of projects.[citation needed]

Other potentially controversial aspects of extreme programming include:

 Requirements are expressed as automated acceptance tests rather than

specification documents.

 Requirements are defined incrementally, rather than trying to get them all in

advance.

 Software developers are usually required to work in pairs.

 There is no Big Design Up Front. Most of the design activity takes place on

the fly and incrementally, starting with "the simplest thing that could

possibly work" and adding complexity only when it's required by failing

tests. Critics compare this to "debugging a system into appearance" and fear

this will result in more re-design effort than only re-designing when

requirements change.

 A customer representative is attached to the project. This role can become a

single-point-of-failure for the project, and some people have found it to be a

source of stress. Also, there is the danger of micro-management by a non-

technical representative trying to dictate the use of technical software

features and architecture.

 Dependence upon all other aspects of XP: "XP is like a ring of poisonous

snakes, daisy-chained together. All it takes is for one of them to wriggle

loose, and you've got a very angry, poisonous snake heading your way."[12]

Scalability

Historically, XP only works on teams of twelve or fewer people. One way to

circumvent this limitation is to break up the project into smaller pieces and the

http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Cworld92-5
http://en.wikipedia.org/wiki/Scope_creep
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Big_Design_Up_Front
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Customer_representative
http://en.wikipedia.org/wiki/Micro-management
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-12

Page 11 of 12

team into smaller groups. It has been claimed that XP has been used successfully

on teams of over a hundred developers.[citation needed] ThoughtWorks has claimed

reasonable success on distributed XP projects with up to sixty people.[citation needed]

In 2004, industrial extreme programming (IXP)[13] was introduced as an evolution

of XP. It is intended to bring the ability to work in large and distributed teams. It

now has 23 practices and flexible values. As it is a new member of the Agile

family, there is not enough data to prove its usability; however it claims to be an

answer to what it sees as XP's imperfections.

Severability and responses

In 2003, Matt Stephens and Doug Rosenberg published Extreme Programming

Refactored: The Case Against XP, which questioned the value of the XP process

and suggested ways in which it could be improved.[6] This triggered a lengthy

debate in articles, Internet newsgroups, and web-site chat areas. The core argument

of the book is that XP's practices are interdependent but that few practical

organizations are willing/able to adopt all the practices; therefore the entire process

fails. The book also makes other criticisms, and it draws a likeness of XP's

"collective ownership" model to socialism in a negative manner.

Certain aspects of XP have changed since the publication of Extreme

Programming Refactored; in particular, XP now accommodates modifications to

the practices as long as the required objectives are still met. XP also uses

increasingly generic terms for processes. Some argue that these changes invalidate

previous criticisms; others claim that this is simply watering the process down.

Other authors have tried to reconcile XP with the older methodologies in order to

form a unified methodology. Some of these XP sought to replace, such as the

waterfall methodology; example: Project Lifecycles: Waterfall, Rapid Application

Development, and All That. JPMorgan Chase & Co. tried combining XP with the

computer programming methods of capability maturity model integration (CMMI),

and Six Sigma. They found that the three systems reinforced each other well,

leading to better development, and did not mutually contradict.[14]

Criticism

Extreme programming's initial buzz and controversial tenets, such as pair

programming and continuous design, have attracted particular criticisms, such as

the ones coming from McBreen[15] and Boehm and Turner.,[16] Matt Stephens and

http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/ThoughtWorks
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-13
http://en.wikipedia.org/wiki/Category:Agile_software_development
http://en.wikipedia.org/wiki/Matt_Stephens
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-SR-6
http://en.wikipedia.org/wiki/Waterfall_model
http://www.lux-seattle.com/resources/whitepapers/waterfall.htm
http://www.lux-seattle.com/resources/whitepapers/waterfall.htm
http://en.wikipedia.org/wiki/JPMorgan_Chase_%26_Co.
http://en.wikipedia.org/wiki/Capability_maturity_model_integration
http://en.wikipedia.org/wiki/Six_Sigma
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-14
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Continuous_design
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-mcbreen-15
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-boehm2004-16

Page 12 of 12

Doug Rosenberg.[17] Many of the criticisms, however, are believed by Agile

practitioners to be misunderstandings of agile development.[18]

In particular, extreme programming has been reviewed and critiqued by Matt

Stephens's and Doug Rosenberg's Extreme Programming Refactored.[6][19]

Criticisms include:

 a methodology is only as effective as the people involved, Agile does not

solve this

 often used as a means to bleed money from customers through lack of

defining a deliverable product

 lack of structure and necessary documentation

 only works with senior-level developers

 incorporates insufficient software design

 requires meetings at frequent intervals at enormous expense to customers

 requires too much cultural change to adopt

 can lead to more difficult contractual negotiations

 can be very inefficient; if the requirements for one area of code change

through various iterations, the same programming may need to be done

several times over. Whereas if a plan were there to be followed, a single area

of code is expected to be written once.

 impossible to develop realistic estimates of work effort needed to provide a

quote, because at the beginning of the project no one knows the entire

scope/requirements

 can increase the risk of scope creep due to the lack of detailed requirements

documentation

 Agile is feature-driven; non-functional quality attributes are hard to be

placed as user stories.

http://en.wikipedia.org/wiki/Extreme_programming#cite_note-stephens2004-17
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-sdmagazine1811-18
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-SR-6
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-SR-6
http://en.wikipedia.org/wiki/Scope_creep
http://en.wikipedia.org/wiki/User_story

