
Extreme Programming: A Gentle Introduction.

Extreme Programming:
A gentle introduction.

The goal of this site is to provide an
introduction and overview of Extreme Programming
(XP). For a guided tour of XP follow the trail of little

buttons, starting here. Returning visitors can
jump to recent changes to see what's new.

Let's begin with a simple question:
What is XP? As you will see, it is a deliberate and
disciplined approach to software development.

Next we might wonder when to use XP.
Risky projects with dynamic requirements are
perfect for XP. These projects will experience
greater success and developer productivity.

But do we need yet another software
methodology? Actually we do. XP is a refreshing
new approach. XP is successful because it
emphasizes customer involvement and promotes
team work.

So how could this possibly work? The most
surprising aspect of XP is its simple rules and
practices. They seem awkward and perhaps even
naive at first, but soon become a welcome change.
Customers enjoy being partners in the software
process and developers actively contribute regardless
of experience level.

The rules and practices must support each
other. The XP Map shows how they work together to
form a development methodology. Unproductive
activities have been trimmed to reduce costs and
frustration.

I want to try XP how do I start? Add a little
to your current methodology or try it all at once.
There is much here of benefit to any project. What
have other projects already learned about XP? Some
important lessons learned.

Where can I get more information? There are
classes, conferences, books, and web sites. The XP
Agile Universe conference will be held in New
Orleans August 10-13, 2003.

A Chinese Translation is available.

What has changed here? | XP Practices and Rules | This site zipped | Email the webmaster
Last modified January 26, 2003. See recent changes.

Copyright (c) 1999, 2000, 2001 Don Wells. All Rights reserved.

http://www.extremeprogramming.org/ [10/17/2003 1:56:24 PM]

http://www.xpuniverse.com/
http://www.xpuniverse.com/
http://www.agilechina.org/extremeprogramming/index.html
http://www.extremeprogramming.org/extremeprogrammingorg.zip
mailto:webmaster@extremeprogramming.org

Extreme Programming Lessons Learned

What We Have Learned
About Extreme Programming

Release Planning
 The Team owns the schedule.

Simplicity
 Simplicity is easier to maintain.
 You aren't going to need it.

System Metaphor
 A metaphor can simplify the design.

Pair Programming
 The whole is greater than the parts.
 Some rules of thumb.
 Rein in the Cowboy Coders.
 Pairing reduces indecision.
 Make no mistake, pairing is hard work.
 Experimental evidence for pairing.
 Code reviews considered hurtful.

Integrate Often
 XP and Databases.
 Integration can be reduced to seconds.

Optimize Last
 It may not be as slow as you think.

Unit Tests
 Well worth the investment.
 Could have saved us some time.
 Testing first makes the code testable.

Acceptance Tests
 They give a feeling of stability.
 Create a tool to maintain them.

If you have been using Extreme
Programming (XP) or a component practice tell us
what you have learned! If you have a story to tell
about something that saved you time please send it
in. If you have a story about what doesn't work send
that too. Please write a lesson learned about an XP
practice and send it to the webmaster.

ExtremeProgramming.org home | XP Rules and Practices | Email the webmaster

Copyright 1999 Don Wells all rights reserved

http://www.extremeprogramming.org/lessons.html [10/17/2003 1:56:27 PM]

mailto:webmaster@extremeprogramming.org
mailto:webmaster@extremeprogramming.org
mailto:webmaster@extremeprogramming.org

Lessons Learned

The Team Owns the Schedule

The right team can accomplish goals
beyond one's wildest dreams! These teams are
also known as highly performing learning
organizations; they elicit effective project
management practices through team ownership of
the plan, and they demand software development
projects to be managed in two segments: a project
deliverables schedule (release plan) and an
iteration plan of programming (engineering)
tasks.

These two are not the same; most project
managers fail to let the engineering team work to
the beat of the engineering plan, instead they

assign work and force teams to use a project plan
focused only on customer deliverables.

In fact, we all know this erroneous
practice is contradictory to good object thinking,
let alone reusable frameworks, testing,
refactoring, Extreme Programming (XP), and so
on. Thus, we achieved our successes when we used
extreme schedule negotiation [a.k.a release
planning].

ExtremeProgramming.org home | XP Lessons Learned | Release Planning | Email the webmaster
Copyright 1998 Jeanine De Guzman. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/planninggame.html [10/17/2003 1:56:28 PM]

mailto:webmaster@extremeprogramming.org

Commitment Schedule

Release Plan

After user stories have been written you
can use a release planning meeting to create a
release plan. The release plan specifies exactly
which user stories are going to be implemented
for each system release and dates for those
releases. This gives a set of user stories for
customers to choose from during the iteration
planning meeting to be implemented during the
next iteration. These selected stories are then
translated into individual programming tasks to
be implemented during the iteration to complete
the stories.

Stories are also translated into acceptance
tests during the iteration. These acceptance tests
are run during this iteration, and subsequent
iterations to verify when the stories are finished
correctly and continue to work correctly.

When the project velocity changes
dramatically for a couple iterations or in any case
after several iterations go ahead and schedule a
release planning meeting with your customers
and create a new release plan.

The release plan used to be called the
commitment schedule. The name was changed to
more accurately describe its purpose and be more
consistent with iteration plan.

ExtremeProgramming.org home | Release Planning | Small Releases | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/commit.html [10/17/2003 1:56:29 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Release Planning

A release planning meeting is used to
create a release plan, which lays out the overall
project. The release plan is then used to create
iteration plans for each individual iteration.

It is important for technical people to
make the technical decisions and business people
to make the business decisions. Release planning
has a set of rules that allows everyone involved
with the project to make their own decisions. The
rules define a method to negotiate a schedule
everyone can commit to.

The essence of the release planning
meeting is for the development team to estimate
each user story in terms of ideal programming
weeks. An ideal week is how long you imagine it
would take to implement that story if you had
absolutely nothing else to do. No dependencies, no
extra work, but do include tests. The customer
then decides what story is the most important or
has the highest priority to be completed.

User stories are printed or written on
cards. Together developers and customers move
the cards around on a large table to create a set

of stories to be implemented as the first (or next)
release. A useable, testable system that makes
good business sense delivered early is desired.

You may plan by time or by scope. The
project velocity is used to determine either how
many stories can be implemented before a given
date (time) or how long a set of stories will take to
finish (scope). When planning by time multiply
the number of iterations by the project velocity to
determine how many user stories can be
completed. When planning by scope divide the
total weeks of estimated user stories by the
project velocity to determine how many iterations
till the release is ready.

Continued on page 2

ExtremeProgramming.org home | XP Rules | Release Plan | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/planninggame.html [10/17/2003 1:56:29 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Iterative Development

Iterative Development adds agility to the
development process. Divide your development
schedule into about a dozen iterations of 1 to 3
weeks in length. Keep the iteration length
constant through out the project. This is the heart
beat of your project. It is this constant that makes
measuring progress and planning simple and
reliable in XP.

Don't schedule your programming tasks
in advance. Instead have an iteration planning
meeting at the beginning of each iteration to plan
out what will be done. Just-in-time planning is an
easy way to stay on top of changing user
requirements.

It is also against the rules to look ahead
and try to implement anything that it is not
scheduled for this iteration. There will be plenty
of time to implement that functionality when it
becomes the most important story in the release
plan.

Take your iteration deadlines seriously!
Track your progress during an iteration. If it
looks like you will not finish all of your tasks then
call another iteration planning meeting, re-
estimate, and remove some of the tasks.

Concentrate your effort on completing the most
important tasks as chosen by your customer,
instead of having several unfinished tasks chosen
by the developers.

It may seem silly if your iterations are
only one week long to make a new plan, but it
pays off in the end. By planning out each iteration
as if it was your last you will be setting yourself
up for an on-time delivery of your product. Keep
your projects heart beating loud and clear.

ExtremeProgramming.org home | XP Rules | Iteration Planning | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/iterative.html [10/17/2003 1:56:30 PM]

http://c2.com/cgi/wiki?IncrementalDelivery
http://www.xprogramming.com/Practices/PracIterations.html
mailto:webmaster@extremeprogramming.org

Extreme Rules

Load Factor

The load factor was how a project was
tracked before project velocity became more
popular. The load factor equals actual calendar
days to complete a task divided by the developer's
estimated "ideal" days to do it. That is, think of a
task that would take you one day if you could
focus completely on it. Now picture yourself
trying to get it done in the real world. The
number of days it actually takes is the load factor.

Load factors from 2 to 5 are normal. If
you need to guess at a load factor to get started
you should consider people's experience and the
technology being used. A 2 is optimistic, a 3 is
typical, while a 4 and 5 are for projects using
unfamiliar technology. Ron Jeffries recommends
just simply using a 3 as an initial guess for new
projects.

After making an initial guess you must
then measure and track either the load factor, or
better yet, the project velocity throughout the
project.

The load factor can not be used to
compare two projects. Each project and team is
unique and will have different load factors for
different reasons.

Use a release planning meeting to re-
estimate and re-negotiate the release plan if the
load factor changes dramatically. Expect the load
factor to change again when the system is put into
production due to maintenance tasks.

ExtremeProgramming.org home | XP Rules | Back to Project Velocity | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/loadfactor.html [10/17/2003 1:56:31 PM]

http://c2.com/cgi/wiki?LoadFactor
http://www.xprogramming.com/xpmag/task_estimation.htm
http://c2.com/cgi/wiki?ProjectVelocity
mailto:webmaster@extremeprogramming.org

Extreme Rules

Project Velocity

The project velocity (or just velocity) is a
measure of how much work is getting done on
your project. To measure the project velocity you
simply add up the estimates of the user stories
that were finished during the iteration. It's just
that simple. You also total up the estimates for the
tasks finished during the iteration. Both of these
measurements are used for iteration planning.

During the iteration planning meeting
customers are allowed to choose the same number
of user stories equal to the project velocity
measured in the previous iteration. Those stories
are broken down into technical tasks and the
team is allowed to sign up for the same number of
tasks equal to the previous iteration's project
velocity.

This simple mechanism allows developers
to recover and clean up after a difficult iteration
and averages out estimates. Your project velocity
goes up by allowing developers to ask the
customers for another story when their work is
completed early and no clean up tasks remain.

A few ups and downs in project velocity
are expected. You should use a release planning
meeting to re-estimate and re-negotiate the
release plan if your project velocity changes
dramatically for more than one iteration. Expect
the project velocity to change again when the
system is put into production due to maintenance
tasks.

Project velocity is about as detailed a
measure as you can make that will be accurate.
Don't bother dividing the project velocity by the
length of the iteration or the number of people.
This number isn't any good to compare two
project's productivity. Each project team will
have a different bias to estimating stories and
tasks, some estimate high, some estimate low. It
doesn't matter in the long run. Tracking the total
amount of work done during each iteration is the
key to keeping the project moving at a steady
predictable pace.

The problem with any project is the initial
estimate. Collecting lots of details does not make
your initial estimate anything other than a guess.
Worry about estimating the overall scope of the
project and get that right instead of creating large
documents. Consider spending the time you
would have invested into creating a detailed
specification on actually doing a couple iterations
of development. Measure the project velocity
during these initial explorations and make a much
better guess at the project's total size.

ExtremeProgramming.org home | XP Rules | Iterative Development | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/velocity.html [10/17/2003 1:56:31 PM]

http://c2.com/cgi/wiki?ProjectVelocity
http://c2.com/cgi/wiki?VelocityVsLoadFactor
mailto:webmaster@extremeprogramming.org

User Stories

User Stories

User stories serve the same purpose as use
cases but are not the same. They are used to create
time estimates for the release planning meeting.
They are also used instead of a large requirements
document. User Stories are written by the customers
as things that the system needs to do for them. They
are similar to usage scenarios, except that they are
not limited to describing a user interface. They are in
the format of about three sentences of text written by
the customer in the customers terminology without
techno-syntax.

User stories also drive the creation of the
acceptance tests. One or more automated acceptance
tests must be created to verify the user story has been
correctly implemented.

One of the biggest misunderstandings with
user stories is how they differ from traditional
requirements specifications. The biggest
difference is in the level of detail. User stories should
only provide enough detail to make a reasonably low
risk estimate of how long the story will take to
implement. When the time comes to implement the
story developers will go to the customer and receive
a detailed description of the requirements face to
face.

Developers estimate how long the stories
might take to implement. Each story will get a 1, 2 or
3 week estimate in "ideal development time". This
ideal development time is how long it would take to
implement the story in code if there were no
distractions, no other assignments, and you knew
exactly what to do. Longer than 3 weeks means you
need to break the story down further. Less than 1
week and you are at too detailed a level, combine
some stories. About 80 user stories plus or minus 20
is a perfect number to create a release plan during
release planning.

Another difference between stories and a
requirements document is a focus on user needs. You
should try to avoid details of specific technology,
data base layout, and algorithms. You should try to
keep stories focused on user needs and benefits as
opposed to specifying GUI layouts.

ExtremeProgramming.org home | XP Rules | Release Planning | Email the webmaster
Copyright 1999 Don Wells all rights reserved

http://www.extremeprogramming.org/rules/userstories.html [10/17/2003 1:56:33 PM]

http://c2.com/cgi/wiki?UserStory
http://www.xprogramming.com/xpmag/story_and_task_cards.htm
http://www.xp123.com/xplor/xp0002g/index.shtml
http://www.xpdeveloper.com/cgi-bin/wiki.cgi?DoingGoodUserStories
mailto:webmaster@extremeprogramming.org

Extreme Rules

The Customer is Always Available

One of the few requirements of extreme
programming (XP) is to have the customer
available. Not only to help the development team,
but to be a part of it as well. All phases of an XP
project require communication with the
customer, preferably face to face, on site. It's best
to simply assign one or more customers to the
development team. Beware though, this seems like
a long time to keep the customer hanging and the
customer's department is liable to try passing off
a trainee as an expert. You need the expert.

User Stories are written by the customer,
with developers helping, to allow time estimates,
and assign priority. The customers help make
sure most of the system's desired functionality is
covered by stories.

During the release planning meeting the
customer will need to negotiate a selection of user

stories to be included in each scheduled release.
The timing of the release may need to be
negotiated as well. The customers must make the
decisions that affect their business goals. A release
planning meeting is used to define small
incremental releases to allow functionality to be
released to the customer early. This allows the
customers to try the system earlier and give the
developers feedback sooner.

Continued on page 2.

ExtremeProgramming.org home | XP Rules | Coding Standards | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved. Any resemblance to actual customers is purely coincidental.

http://www.extremeprogramming.org/rules/customer.html [10/17/2003 1:56:34 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Make frequent small releases

The development team needs to release
iterative versions of the system to the customers
often. The release planning meeting is used to
discover small units of functionality that make
good business sense and can be released into the
customer's environment early in the project. This
is critical to getting valuable feedback in time to
have an impact on the system's development. The
longer you wait to introduce an important feature
to the system's users the less time you will have to
fix it.

ExtremeProgramming.org home | XP Rules | Project Velocity | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/releaseoften.html [10/17/2003 1:56:35 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

The Rules and Practices
of Extreme Programming.

Planning

 User stories are written.
 Release planning creates the schedule.
 Make frequent small releases.
 The Project Velocity is measured.
 The project is divided into iterations.
 Iteration planning starts each iteration.
 Move people around.
 A stand-up meeting starts each day.
 Fix XP when it breaks.

Designing

 Simplicity.
 Choose a system metaphor.
 Use CRC cards for design sessions.
 Create spike solutions to reduce risk.
 No functionality is added early.
 Refactor whenever and wherever possible.

Coding

 The customer is always available.
 Code must be written to agreed standards.
 Code the unit test first.
 All production code is pair programmed.
 Only one pair integrates code at a time.
 Integrate often.
 Use collective code ownership.
 Leave optimization till last.
 No overtime.

Testing

 All code must have unit tests.
 All code must pass all unit tests before it
can be released.

 When a bug is found tests are created.
 Acceptance tests are run often and the score
is published.

ExtremeProgramming.org home | XP Map | Email the webmaster

Copyright 1999 Don Wells all rights reserved

http://www.extremeprogramming.org/rules.html [10/17/2003 1:56:36 PM]

mailto:webmaster@extremeprogramming.org

XP flow Chart

ExtremeProgramming.org home | Zoom in on Iteration. | Starting with XP | Email the webmaster

Copyright 2000 Don Wells all rights reserved

http://www.extremeprogramming.org/map/project.html [10/17/2003 1:56:36 PM]

mailto:webmaster@extremeprogramming.org
http://www.xp123.com/xplor/xp0202/xp-one-page.PDF
http://c2.com/cgi/wiki?ExtremeProgrammingSummary
http://www.xprogramming.com/xpmag/whatisxp.htm

Extreme Rules

Choose a System Metaphor

Choose a system metaphor to keep the
team on the same page by naming classes and
methods consistently. What you name your
objects is very important for understanding the
overall design of the system and code reuse as
well. Being able to guess at what something might
be named if it already existed and being right is a
real time saver. Choose a system of names for
your objects that everyone can relate to without
specific, hard to earn knowledge about the
system.

For example the Chrysler payroll system
was built as a production line. At another auto
manufacturer car sales were structured as a bill
of materials. There is also a metaphor known as
the naive metaphor which is based on your
domain itself. But don't choose the naive
metaphor unless it is simple enough.

ExtremeProgramming.org home | XP Rules | CRC Cards | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/metaphor.html [10/17/2003 1:56:37 PM]

http://c2.com/cgi/wiki?SystemMetaphor
http://www.xp123.com/xplor/xp0004/index.shtml
mailto:webmaster@extremeprogramming.org

Extreme Programming Lessons Learned

A System Metaphor can
Simplify the Design

When we rewrote the VCAPS system we
wanted to choose a system metaphor but found
that it was difficult. We had data from a variety
of sources that had no commonality it seemed.

A breakthrough was when we discovered
that all the data could be uniformly represented
as if it were a bill of material. So we chose bill of
material as our system metaphor. In the old
system it was often very difficult to find the right
data. In the new system it was obvious where it
would be.

From top to bottom our new model has
the same metaphor. After we had gotten down

the road with this new metaphor we measured
that this uniformity was going to save us 95% in
database size. Also, we now had one and only one
way of accessing data no mater where it came
from or what it represented.

This uniformity also simplified our
algorithms and reduced processing time. We went
from processing times averaging about 15
minutes to coming back immediately.

ExtremeProgramming.org home | XP Lessons Learned | System Metaphor | Email the webmaster
Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/metaphor.html [10/17/2003 1:56:37 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

CRC Cards

Use Class, Responsibilities, and
Collaboration (CRC) Cards to design the system
as a team. The biggest value of CRC cards is to
allow people to break away from the procedural
mode of thought and more fully appreciate object
technology. CRC Cards allow entire project
teams to contribute to the design. The more
people who can help design the system the greater
the number of good ideas incorporated.

Individual CRC Cards are used to
represent objects. The class of the object can be
written at the top of the card, responsibilities
listed down the left side, collaborating classes are
listed to the right of each responsibility. We say
"can be written" because once a CRC session is in
full swing participants usually only need a few
cards with the class name and virtually no cards
written out in full. A short example is shown as
part of the coffee maker problem.

A CRC session proceeds with someone
simulating the system by talking about which
objects send messages to other objects. By
stepping through the process weaknesses and
problems are easily uncovered. Design
alternatives can be explored quickly by
simulating the design being proposed.

If you find too many people speaking and
moving cards at once then simply limit the
number

of people standing and moving cards to two.
When one person sits down another may stand
up. This works for sessions that get out of hand,
which often happens as teams become rowdy
when a tough problem is finally solved.

One of the biggest criticisms of CRC
Cards is the lack of written design. This is usually
not needed as CRC Cards make the design seem
obvious. Should a more permanent record be
required, one card for each class can be written
out in full and retained as documentation. A
design, once envisioned as if it were already built
and running, stays with a person for some time.

ExtremeProgramming.org home | XP Rules | Spike Solution | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/crccards.html [10/17/2003 1:56:38 PM]

http://c2.com/cgi/wiki?CrcCards
http://www.xprogramming.com/Practices/PracCRC.html
mailto:webmaster@extremeprogramming.org

Extreme Rules

Collective Code Ownership

Collective Code Ownership encourages
everyone to contribute new ideas to all segments
of the project. Any developer can change any line
of code to add functionality, fix bugs, or refactor.
No one person becomes a bottle neck for changes.

This is hard to understand at first. It's
almost inconceivable that an entire team can be
responsible for the system's architecture. Not
having a single chief architect that keeps some
visionary flame alive seems like it couldn't
possibly work.

But it is not uncommon to ask a chief
architect a question and get an answer that is just
plain wrong. It is not a failing of your lead
programmers. Any non-trivial system can not be
held in one person's mind. Other programmers
are hard at work changing the system without
benefit of the architect's vision. Whether you
realize it or not your architecture is already
distributed among your team. If the entire team
already has some responsibility for architectural
decisions, shouldn't they receive the authority
as well?

The way this works is for each developer
to create unit tests for their code as it is
developed. All code that is released into the source
code repository includes unit tests. Code that is
added, bugs as they are fixed, and old

functionality as it is changed will be covered by
automated testing. Now you can rely on the test
suite to watch dog your entire code repository.
Before any code is released it must pass the entire
test suite at 100%.

Once this is in place anyone can make a
change to any method of any class and release it
to the code repository as needed. When combined
with frequent integration developers rarely even
notice a class has been extended or repaired.

In practice collective code ownership is
actually more reliable than putting a single
person in charge of watching specific classes.
Especially since a person may leave the project at
any time.

ExtremeProgramming.org home | XP Rules | Optimize Last | Email the webmaster
Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/collective.html [10/17/2003 1:56:39 PM]

http://c2.com/cgi/wiki?CollectiveCodeOwnership
http://www.xprogramming.com/Practices/PracOwnership.html
http://www.xp123.com/xplor/xp0002e/index.shtml
mailto:webmaster@extremeprogramming.org

Extreme Rules

When a Bug is Found

When a bug is found tests are created to
guard against it coming back. A bug in
production requires an acceptance test be written
to guard against it. Creating an acceptance test
first before debugging helps customers concisely
define the problem and communicate that
problem to the programmers. Programmers have
a failed test to focus their efforts and know when
the problem is fixed.

Given a failed acceptance test, developers
can create unit tests to show the defect from a
more source code specific point of view. Failing
unit tests give immediate feedback to the
development effort when the bug has been
repaired. When the unit tests run at 100% then
the failing acceptance test can be run again to
validate the bug is fixed.

ExtremeProgramming.org home | XP Rules | Acceptance Tests | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/bugs.html [10/17/2003 1:56:39 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Acceptance Tests

Acceptance tests are created from user
stories. During an iteration the user stories
selected during the iteration planning meeting
will be translated into acceptance tests. The
customer specifies scenarios to test when a user
story has been correctly implemented. A story can
have one or many acceptance tests, what ever it
takes to ensure the functionality works.

Acceptance tests are black box system
tests. Each acceptance test represents some
expected result from the system. Customers are
responsible for verifying the correctness of the
acceptance tests and reviewing test scores to
decide which failed tests are of highest priority.
Acceptance tests are also used as regression tests
prior to a production release.

A user story is not considered complete
until it has passed its acceptance tests. This means
that new acceptance tests must be created each
iteration or the development team will report zero
progress.

Quality assurance (QA) is an essential
part of the XP process. On some projects QA is
done by a separate group, while on others QA will
be an integrated into the development team

itself. In either case XP requires development to
have much closer relationship with QA.

Acceptance tests should be automated so
they can be run often. The acceptance test score is
published to the team. It is the team's
responsibility to schedule time each iteration to
fix any failed tests.

The name acceptance tests was changed
from functional tests. This better reflects the
intent, which is to guarantee that a customers
requirements have been met and the system is
acceptable.

ExtremeProgramming.org home | Starting with XP | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/functionaltests.html [10/17/2003 1:56:40 PM]

http://c2.com/cgi/wiki?FunctionalTests
http://www.xprogramming.com/Practices/PracFuncTest.html
mailto:webmaster@extremeprogramming.org

Extreme Programming Lessons Learned

Acceptance Tests Don't Just
Eliminate
Bugs They Add a Feeling of
Stability

When Extreme Programming (XP) was
first introduced to the VCAPS project there were
no automated acceptance tests. It took a while to
add coverage. We added tests for all new
functionality and old functionality as it required
changes. After about a year we had an estimated
40% covered by tests and the trouble ticket count
dropped by 40% as well. We don't consider this a
coincidence.

But the customers had noted a different
effect. By trapping bugs before they reached the
production environment there were far fewer
emergency production releases. Previously, it was
not uncommon to release to production a couple
times a day for a couple days due to bugs that

required an immediate fix. The acceptance tests
improved the quality of the system to a point
where a production release was rarely re-released
because an emergency fix was required.

The customers experienced this as a
system with a far greater feeling of stability. They
had more confidence in the system and us. The
customers also noticed that with fewer releases
there was a large drop in spurious bugs often
caused by quick and dirty fixes.

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/functionaltests.html [10/17/2003 1:56:41 PM]

mailto:webmaster@extremeprogramming.org

Extreme Programming Lessons Learned

Acceptance Tests Need
to be Easy to Update

The VCAPS project used the unit test
framework for both unit tests and acceptance
tests. At the time it seemed like the simplest thing
that could possibly work. But in order to use the
more generic unit test framework we had to hand
code large amounts of data. That is, our database
was created with := (assignment) statements. The
result was that it required someone familiar with
the acceptance test data to update it or add new
data and tests.

I had noticed that it was difficult. But
continued on anyway. That was my mistake, we
needed to create a tool to maintain our tests. A
custom made, domain specific tool that would aid
us and our customers in creating acceptance tests.
My excuse was that there was never enough time
to create it. We probably spent even more time
creating test data the hard way.

Now a couple years later VCAPS has
entered the maintenance part of it's life cycle. The
acceptance tests are still being used to find
integration bugs, but no new tests are being
added. What the maintenance people are finding
is that it is nearly impossible to add new
acceptance tests and hard to maintain the ones
that exist without some sort of tool designed to
make all that data easy to handle.

The best thing we could have done for our
project was to just go ahead and create the tool
early on. In retrospect it would have been far
simpler to have such a tool. Creating the tool
would have helped us and saved us time over the
entire life cycle of the project.

ExtremeProgramming.org home | XP Lessons Learned | Acceptance Tests | Email the webmaster
Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/functionaltests2.html [10/17/2003 1:56:41 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Unit Tests

Unit tests are one of the corner stones of
Extreme Programming (XP). But unit tests XP
style is a little different. First you should create or
download a unit test framework to be able to
create automated unit tests suites. Second you
should test all classes in the system. Trivial getter
and setter methods are usually omitted. And last
you should try to create your tests first, before the
code.

Unit tests are released into the code
repository along with the code they test. Code
without tests may not be released. If a unit test is
discovered to be missing it must be created at that
time.

The biggest resistance to dedicating this
amount of time to unit tests is a fast approaching
deadline. But during the life of a project an
automated test can save you a hundred times the
cost to create it by finding and guarding against
bugs. The harder the test is to write the more you
need it because the greater your savings will be.
Automated unit tests offer a pay back far greater
than the cost of creation.

Another common misconception is that
unit tests can be written in the last three months
of

the project. Unfortunately, without the unit tests
development drags on and eats up those last three
months and then some. Even if the time is
available good unit test suites take time to evolve.
Discovering all the problems that can occur takes
time. In order to have a complete unit test suite
when you need it you must begin creating the tests
today when you don't.

Unit tests enable collective code
ownership. When you create unit tests you guard
your functionality from being accidentally
harmed. Requiring all code to pass all unit tests
before it can be released ensures all functionality
always works. Code ownership is not required if
all classes are guarded by unit tests.

Continued on page 2

ExtremeProgramming.org home | XP Rules | Download a Unit Test Framework | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/unittests.html [10/17/2003 1:56:42 PM]

mailto:webmaster@extremeprogramming.org

Extreme Programming Lessons Learned

Unit Tests Are Worth the
Investment

Over a year ago we stumbled upon the XP
web page and applied two of the concepts
espoused at that time: pair programming and
automated unit testing. We were drawn initially
to try the automated unit testing. I would like to
report that the unit testing effort has returned
huge dividends. We implemented Kent Beck's
Simple Smalltalk Testing: With Patterns
approach and implemented a "killer" user
interface to organize, initiate tests and collect
results. The initial effort

and learning curve was well worth the time
investment. We have a dramatic increase in
quality and an associated decrease in the overall
test, find & fix intervals.

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1999 Mark Bradac. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/unittests2.html [10/17/2003 1:56:44 PM]

mailto:webmaster@extremeprogramming.org

Extreme Programming Lessons Learned

Unit Tests Could Have Saved Us
Time

During the VCAPS project we introduced
automated unit testing. It became the rule to
include unit tests with any new functionality or
modification, but in one instance a manager
complained that a deadline would be missed if
testing were required. In this case special
dispensation was granted. After releasing the code
about 32 developer hours were spent tracking
down a problem that cost untold

customer delays. It was discovered that the errant
development team had based their work on
obsolete versions. For our own sake the unit tests
were undertaken after the problem was found.
Adapting existing unit tests to the new code took
one hour.

ExtremeProgramming.org home | XP Lessons Learned | Unit Tests | Email the webmaster
Copyright 1998, 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/unittests.html [10/17/2003 1:56:44 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Unit Testing Framework

The most common misconception about
unit testing frameworks is that they are only
testing tools. They are development tools same as
your editor and compiler. Don't keep this
powerful development tool in reserve until the last
month of the project, use it through out. Your
unit testing framework can help you formalize
requirements, clarify architecture, write code,
debug code, integrate code, release, optimize, and
of course test.

Unit testing frameworks are not hard to
create from scratch. It is worth the effort to
create your own because you will understand it
better and be able to tailor it to your own needs.
A simple change to the unit testing framework
can often save you large amounts of development
time. But to realize this savings you must feel
comfortable and confident about extending your
framework.

Most languages already have a unit testing
framework available for download from
XProgramming.com. Use this free version as a
starting point. See how it works, then create your
own. The team must claim ownership of the unit
testing framework and be able to change any part
of it. JUnit is quickly becoming the standard for
unit testing in Java. At the very least refactor
JUnit to make it your own and understand how to
extend it.

ExtremeProgramming.org home | XP Rules | A Bug is Found | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/unittestframework.html [10/17/2003 1:56:45 PM]

http://www.xprogramming.com/software.htm
http://www.junit.org/
http://www.xprogramming.com/software.htm
http://c2.com/cgi/wiki?SimpleJavaUnitTestFramework
http://www.junit.org/
mailto:webmaster@extremeprogramming.org

Extreme Rules

Code the Unit Test First

When you create your tests first, before
the code, you will find it much easier and faster to
create your code. The combined time it takes to
create a unit test and create some code to make it
pass is about the same as just coding it up straight
away. But, if you already have the unit tests you
don't need to create them after the code saving
you some time now and lots later.

Creating a unit test helps a developer to
really consider what needs to be done.
Requirements are nailed down firmly by tests.
There can be no misunderstanding a specification
written in the form of executable code.

You also have immediate feedback while
you work. It is often not clear when a developer
has finished all the necessary functionality. Scope
creep can occur as extensions and error
conditions are considered. If we create our unit
tests first then we know when we are done; the
unit tests all run.

There is also a benefit to system design. It
is often very difficult to unit test some software
systems. These systems are typically built code
first and testing second, often by a different team
entirely. By creating tests first your design will be
influenced by a desire to test everything of value
to your customer. Your design will reflect this by
being easier to test.

There is a rhythm to developing software
unit test first. You create one test to define some
small aspect of the problem at hand. Then you
create the simplest code that will make that test
pass. Then you create a second test. Now you add
to the code you just created to make this new test
pass, but no more! Not until you have yet a third
test. You continue until there is nothing left to
test. The coffee maker problem shows an example
written in Java.

The code you will create is simple and
concise, implementing only the features you
wanted. Other developers can see how to use this
new code by browsing the tests. Input whose
results are undefined will be conspicuously absent
from the test suite.

ExtremeProgramming.org home | XP Rules | Pair Programming | Email the webmaster

Copyright 2000 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/testfirst.html [10/17/2003 1:56:46 PM]

http://c2.com/cgi/wiki?CodeUnitTestFirst
http://www.xprogramming.com/xpmag/test_first_intro.htm
http://www.xp123.com/xplor/xp0002/index.shtml
mailto:webmaster@extremeprogramming.org

XP Lessons Learned

Testing First Makes the Code
Testable

Massimo Arnoldi and I were working on
booking payments for a life insurance policy. The
requirements and the code were difficult to grasp
because of all the special cases- what if they pay
too much, what if they pay late, what if they pay
for two months at once, etc.

We spent half a day trying to come up
with the tests and code for this situation, without
success. Every time we got one test working, we
discovered the need for three others.

Cheese and oregano pizza and a couple of
espressos later, we decided to solve a simpler
problem. Could we just test and code the part
that decided whether booking a payment was
possible at all? Sure- if the amount matched, we
could book. Otherwise we had to ask for human
intervention. We made a couple of tests and an
object that passed them. Elapsed time, 15
minutes.

Next, could we correctly book a payment?
Given that the first test passed correctly, we could
assume that the source account had the correct
balance. Testing and coding was trivial- one test,
one object, one method, done. Elapsed time, 5
minutes.

We wouldn't have created two objects if
we hadn't been coding test first. The second
object would have been god awful complicated if
we couldn't rely on the first test passing. Net
result of test-first (once we pulled our heads out)-
cleaner design, correct behavior, simple tests, and
simple code.

I now try to apply this strategy to all of
the difficult problems I encounter. "What are the
pieces, the combination of which I will have
confidence in assuming that the pieces all work?"
I don't always find the pieces right away.
Sometimes it's months or years. In the meantime I
have lots of tests for my less-than-optimal design.
When insight rears its ugly head, I have all the
resources I need to retrofit it.

ExtremeProgramming.org home | XP Lessons Learned | Test First | Email the webmaster
Copyright (c) 2000, First Class Software, All rights reserved. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/testfirst.html [10/17/2003 1:56:47 PM]

mailto:webmaster@extremeprogramming.org

XP flow chart

ExtremeProgramming.org home | Zoom out to Development | Starting with XP | Email the webmaster
Copyright 1999 Don Wells all rights reserved

http://www.extremeprogramming.org/map/code.html [10/17/2003 1:56:48 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Simplicity is the Key

A simple design always takes less time to
finish than a complex one. So always do the
simplest thing that could possibly work. If you
find something that is complex replace it with
something simple. It's always faster and cheaper
to replace complex code now, before you waste a
lot more time on it. Keep things as simple as
possible as long as possible by never adding
functionality before it is scheduled. Beware
though, keeping a design simple is hard work.

ExtremeProgramming.org home | XP Rules | System Metaphor | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/simple.html [10/17/2003 1:56:48 PM]

http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork
http://www.xprogramming.com/Practices/PracSimplest.html
http://c2.com/cgi/wiki?WaitingForSimpleIdeas
mailto:webmaster@extremeprogramming.org

Extreme Programming Lessons Learned

A Simple Design is Easier to
Maintain

We had to rebuild the VCAPS system.
The original system was using an unsupported
version of GemStone for a database. There was no
way to upgrade to the new version directly
because the system was too complex.

We created what we called the Replicator
to move our data from the old system to the new.
Months were invested in it's construction. But the
Replicator had a great deal of flexibility and was
built as a framework.

As the new system was being implemented
we often had to change the Replicator. But it was
so complex that making changes was hard and
slowed us down. We had to have someone on the
Replicator full time just to maintain it. When ever
any team member needed a Replicator change
they have to wait until the Replicator guy (a.k.a.
Repli-Gator) could do it.

The only thing to do was get the team
together to design a better solution. As we

worked through various ideas we came up with a
couple good ones. We did spike solutions to see
which would work the best.

We then wrote automated unit tests as we
were creating the new Replicator so that we could
refactor out complexity when ever possible. When
we finished the new design in a few weeks and we
had about 1/6th as much code.

This new system didn't have a framework
like base. It just did what it needed to do and no
more. We found it to be much easier to maintain
and much easier to add just what we needed as we
needed it. We found that we could collectively
own it as well. Now anyone could quickly change
it themselves as needed.

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1998, 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/simple.html [10/17/2003 1:56:50 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Create a Spike Solution

Create spike solutions to figure out
answers to tough technical or design problems. A
spike solution is a very simple program to explore
potential solutions. Build a system which only
addresses the problem under examination and
ignore all other concerns. Most spikes are not
good enough to keep, so expect to throw it away.
The goal is reducing the risk of a technical
problem or increase the reliability of a user
story's estimate.

When a technical difficulty threatens to
hold up the system's development put a pair of
developers on the problem for a week or two and
reduce the potential risk.

ExtremeProgramming.org home | XP Rules | No Early Functionality | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/spike.html [10/17/2003 1:56:50 PM]

http://c2.com/cgi/wiki?SpikeSolution
http://www.extremeprogramming.org/rules/ http://www.xp123.com/xplor/xp0010/index.shtml
mailto:webmaster@extremeprogramming.org

Extreme Rules

Never Add Functionality Early.

Keep the system uncluttered with extra
stuff you guess will be used later. Only 10% of
that extra stuff will ever get used, so you are
wasting 90% of your time. We are all tempted to
add functionality now rather than later because
we see exactly how to add it or because it would
make the system so much better. It seems like it
would be faster to add it now. But we need to
constantly remind our selves that we are not
going to actually need it. Extra functionality will
always slow us down and squander our resources.
Turn a blind eye towards future requirements
and extra flexibility. Concentrate on what is
scheduled for today only.

ExtremeProgramming.org home | XP Rules | Refactor Mercilessly | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/early.html [10/17/2003 1:56:51 PM]

http://c2.com/cgi/wiki?YouArentGonnaNeedIt
http://www.xprogramming.com/Practices/PracNotNeed.html
mailto:webmaster@extremeprogramming.org

Refactor Mercilessly

Refactor Mercilessly

We computer programmers hold onto our
software designs long after they have become
unwieldy. We continue to use and reuse code that
is no longer maintainable because it still works in
some way and we are afraid to modify it. But is it
really cost effective to do so? Extreme
Programming (XP) takes the stance that it is not.
When we remove redundancy, eliminate unused
functionality, and rejuvenate obsolete designs we
are refactoring. Refactoring throughout the entire
project life cycle saves time and increases quality.

Refactor mercilessly to keep the design
simple as you go and to avoid needless clutter and
complexity. Keep your code clean and concise so
it is easier to understand, modify, and extend.
Make sure everything is expressed once and only
once. In the end it takes less time to produce a
system that is well groomed.

There is a certain amount of Zen to
refactoring. It is hard at first because you must be

able to let go of that perfect design you have
envisioned and accept the design that was
serendipitously discovered for you by refactoring.
You must realize that the design you envisioned
was a good guide post, but is now obsolete.

A caterpillar is perfectly designed to eat
vast amounts of foliage but he can't find a mate,
he must refactor himself into a butterfly before he
is designed to search the sky for others of his own
kind. Let go of your notions of what the system
should or should not be and try to see the the new
design as it emerges before you.

ExtremeProgramming.org home | XP Rules | Customer Availability | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved. Refactoring graphic Copyright 1999 Addison Wesley Longman, Inc.

http://www.extremeprogramming.org/rules/refactor.html [10/17/2003 1:56:52 PM]

http://www.refactoring.com/
http://c2.com/cgi/wiki?RefactorMercilessly
http://c2.com/cgi/wiki?OnlyWearOneOfFourHats
http://www.xp123.com/xplor/xp0002b/index.shtml
mailto:webmaster@extremeprogramming.org

Extreme Rules

Move People Around

Move people around to avoid serious
knowledge loss and coding bottle necks. If only
one person on your team can work in a given area
and that person leaves or you just have numerous
things waiting to be done in that section you will
find your project's progress reduced to a crawl.

Cross training is often an important
consideration in companies trying to avoid islands
of knowledge, which are so susceptible to loss.
Moving people around the code base in
combination with pair programming does your
cross training for you. Instead of one person who
knows everything about a given section of code,
everyone on the team knows much of the code in
each section.

A team is much more flexible if everyone
knows enough about every part of the system to
work on it. Instead of having a few people
overloaded with work while other team members
have little to do, the whole team can be
productive. Any number of developers can be
assigned to the hottest part of the system. Flexible
load balancing of this type is a manager's dream
come true.

Simply encourage everyone to try working
on a new section of the system at least part of each
iteration. Pair programming makes it possible
without losing productivity and ensures
continuity of thought. One person from a pair can
be swapped out while the other continues with a
new partner if desired.

ExtremeProgramming.org home | XP Rules | Stand Up Meeting | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/movepeople.html [10/17/2003 1:56:53 PM]

http://c2.com/cgi/wiki?MovingPeopleAround
http://www.xprogramming.com/Practices/PracSwitchTeams.html
mailto:webmaster@extremeprogramming.org

Extreme Rules

Iteration Planning

An iteration planning meeting is called at
the beginning of each iteration to produce that
iteration's plan of programming tasks. Each
iteration is 1 to 3 weeks long. User stories are
chosen for this iteration by the customer from the
release plan in order of the most valuable to the
customer first. Failed acceptance tests to be fixed
are also selected. The customer selects user stories
with estimates that total up to the project velocity
from the last iteration.

The user stories and failed tests are
broken down into the programming tasks that
will support them. Tasks are written down on
index cards like user stories. While user stories
are in the customer's language, tasks are in the
developer's language. Duplicate tasks can be
removed. These task cards will be the detailed
plan for the iteration.

Developers sign up to do the tasks and
then estimate how long their own tasks will take
to complete. It is important for the developer who
accepts a task to also be the one who estimates
how long it will take to finish. People are not
interchangeable and the person who is going to do
the task must estimate how long it will take.

Each task should be estimated as 1, 2, or 3
ideal programming days in duration. Ideal
programming days are how long it would take
you to complete the task if there were no
distractions. Tasks which are shorter than 1 day
can be grouped together. Tasks which are longer
than 3 days should be broken down farther.

Now the project velocity is used again to
determine if the iteration is over booked or not.
Total up the time estimates in ideal programming
days of the tasks, this must not exceed the project
velocity from the previous iteration. If the
iteration has too much then the customer must
choose user stories to be put off until a later
iteration (snow plowing).

If the iteration has too little then another
story can be accepted. The velocity in task days
(iteration planning) overrides the velocity in story
weeks (release planning) as it is more accurate.

It is often alarming to see user stories
being snow plowed. Don't panic. Remember the
importance of unit testing and refactoring. A debt
in either of these areas will slow you down. Avoid
adding any functionality before it is scheduled.
Just add what you need for today. Adding
anything extra will slow you down.

Don't be tempted into changing your task
and story estimates. The planning process relies
on the cold reality of consistent estimates, fudging
them to be a little lower creates more problems.

Keep an eye on your project velocity and
snow plowing. You may need to re-estimate all the
stories and re-negotiate the release plan every
three to five iterations, this is normal. So long as
you always implement the most valuable stories
first you will always be doing as much as possible
for your customers and management.

An iterative development style can add
agility to your development process. Try just in
time planning by not planning specific
programming tasks farther ahead than the
current iteration.

http://www.extremeprogramming.org/rules/iterationplanning.html (1 of 2) [10/17/2003 1:56:54 PM]

Extreme Rules

ExtremeProgramming.org home | XP Rules | Move People Around | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/iterationplanning.html (2 of 2) [10/17/2003 1:56:54 PM]

http://c2.com/cgi/wiki?IterationPlan
http://xprogramming.com/xpmag/task_estimation.htm
http://c2.com/cgi/wiki?EngineeringTask
http://www.xp123.com/xplor/xp0006b/index.shtml
mailto:webmaster@extremeprogramming.org

XP flow chart

ExtremeProgramming.org home | Development | Project | Starting XP | Email the webmaster

Copyright 1999 Don Wells all rights reserved

http://www.extremeprogramming.org/map/iteration.html [10/17/2003 1:56:54 PM]

mailto:webmaster@extremeprogramming.org

XP flow chart

ExtremeProgramming.org home | Collective Coding | Iteration | Starting with XP | Email the webmaster
Copyright 1999 Don Wells all rights reserved

http://www.extremeprogramming.org/map/development.html [10/17/2003 1:56:55 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Daily Stand Up Meeting

At a typical project meeting most
attendees do not contribute, but attend just to
hear the outcome. A large amount of developer
time is wasted to gain a trivial amount of
communication. Having many people attend
every meeting drains resources from the project
and also creates a scheduling nightmare.

Communication among the entire team is
the purpose of the stand up meeting. A stand up
meeting every morning is used to communicate
problems, solutions, and promote team focus.
Everyone stands up in a circle to avoid long
discussions. It is more efficient to have one short
meeting that every one is required to attend than
many meetings with a few developers each.

When you have daily stand up meetings
any other meeting's attendance can be based on
who will actually be needed and will contribute.
Now it is possible to avoid even scheduling most
meetings. With limited attendance most

meetings can take place spontaneously in front of
a computer, where code can be browsed and ideas
actually tried out.

The daily stand up meeting is not another
meeting to waste people's time. It will replace
many other meetings giving a net savings several
times its own length.

ExtremeProgramming.org home | XP Rules | Fix XP When It Breaks | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/standupmeeting.html [10/17/2003 1:56:56 PM]

http://c2.com/cgi/wiki?StandupMeeting
mailto:webmaster@extremeprogramming.org

Extreme Rules

Pair Programming

All code to be included in a production
release is created by two people working together
at a single computer. Pair programming increases
software quality without impacting time to
deliver. It is counter intuitive, but 2 people
working at a single computer will add as much
functionality as two working separately except
that it will be much higher in quality. With
increased quality comes big savings later in the
project.

The best way to pair program is to just sit
side by side in front of the monitor. Slide the key
board and mouse back and forth. One person
types and thinks tactically about the method
being created, while the other thinks strategically
about how that method fits into the class. It takes
time to get used to pair programming so don't
worry if it feels awkward at first.

ExtremeProgramming.org home | XP Rules | Sequential Release | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved. Photo of Pair Programming at DaimlerChrysler.

http://www.extremeprogramming.org/rules/pair.html [10/17/2003 1:56:57 PM]

http://c2.com/cgi/wiki?ProgrammingInPairs
http://xprogramming.com/xpmag/pairing.htm
http://www.xpdeveloper.com/cgi-bin/wiki.cgi?DoingPairedProgramming
http://www.pairprogramming.com/
http://www.xp123.com/xplor/xp0005/index.shtml
mailto:webmaster@extremeprogramming.org

XP Lessons Learned

The Whole is Greater Than the Parts

Over a year ago we applied pair
programming and discovered that pairing
improved the quality of design and
implementation without a sacrifice in
productivity. In fact, from our experience, the
productivity of the whole proved to be greater
than that of the individual parts. (Our only "fly in
the ointment" was that

there are some people who don't work well
together, and some individuals who are too
individualistic to make pair programming work --
too bad!)

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1999 Mark Bradac. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/pair.html [10/17/2003 1:56:57 PM]

mailto:webmaster@extremeprogramming.org

Lessons Learned Pair Programming

Some Pair Programming
Rules of Thumb

We learned some fundamental rules for
the pair programming construct itself during the
VCAPS project:

● Never pair two people together who are
brand new to programming in pairs
(always one old-timer with a newcomer).

● When a pair takes the option of working
separately (but with joint responsibility),
they aren't really pair programming.

● If both people can't see what is happening
on the monitor, they aren't really pair
programming.

● Everyone works in a pair (no lone rangers
allowed)

● People have to trust each other, and it may
take time to build trust among everyone on
the team

I think most people who have done pair
programming unsuccessfully (and then
successfully) have learned these sorts of rules of
thumb.

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1998 Jeanine De Guzman. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/pair2.html [10/17/2003 1:56:58 PM]

mailto:webmaster@extremeprogramming.org

Lessons Learned Pair Programming

Pair Programming Reins
in the Cowboy Coders

 Extreme Programming (XP) is not just a
codification of bad programming practices in bad
environments. One key point is the constraining
(read improving) effects that pair programming
places on cowboy programmers with a JANGIT
(Just Add New Garbage Ignoring Tests)
mentality. Even if you tend to have cowboy coders
in your group, pairing them up with an
experienced extreme programmer virtually
guarantees the code will be written properly and
the necessary testing will also be put in place.

Even if two cowboys are paired together
the resulting code will still be better than if either
went off on their own. XP provides a certain set of
checks and balances between a pair since no

two people think alike. When combined with the
other rules of XP what results is the elimination of
bad programming practices and bad
environments.

Pairing also gets rid of any problems
resulting from mediocre programmers writing
poor code and documentation.

I'm speaking from the point of personal
experience in that I didn't think pair
programming was going to help me improve my
code and make me faster. So I went in quite
skeptical. As you can tell, my views have changed
just a bit.

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1998 Tom Kubit. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/pair3.html [10/17/2003 1:56:58 PM]

mailto:webmaster@extremeprogramming.org

Lessons Learned Pair Programming

Pair Programming Reduces
Indecision

 One of the most powerful strengths of
Extreme Programming (XP) is pair
programming. We have found that the interaction
that happens within a pair team is vastly more
than the sum of the parts would produce. Even
the most experienced coder finds that they are
producing a design/code that is at a much higher
level than they could do alone. We have found on
the

VCAPS project that there is typically less
indecision in a pair team, ideas are thrown back
and forth, and the solution space is quickly
narrowed as advantages and disadvantages are
discussed within a pair team.

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1998 Kevin Bradtke. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/pair4.html [10/17/2003 1:56:59 PM]

mailto:webmaster@extremeprogramming.org

Lessons Learned Pair Programming

Pair Programming is Hard Work

 I've been experimenting with pair
programming at my current position. I am
fortunate to be working next to a programmer
that I mesh with very well, and who is crazy
enough to let me talk him into trying some XP
practices. We've been spending about 50% of our
time pair programming, and the results have been
very encouraging. My observations are:

● It's somewhat harder work, because my
partner requires me to justify everything
that is unclear or disagreeable.

● It doesn't seem to me like we're being more
productive at the time -- time does not go
faster when you are always
communicating, especially during vigorous
arguments. But when we get done, we find
that we've written a great deal of code that
we both understand and like.

● Sometimes we both want to drive. We
haven't had to flip quarters yet to decide,
so I guess it hasn't been a problem.

● The shotgun partner can handle
interruptions while the driver keeps
coding. This is a big productivity gain.

● When I win an argument, it feels merely
ok. When I lose one because my idea was
not the best, it feels ''great'', because I
know my partner just saved us from
writing poor code.

● Sometimes we like to fork, with one going
off to do a web search or write a quick test
program, but we usually join before too
long. Neither of us wants to let the other
one get away with any unchallenged code!

Our team lead noticed us working as a
pair, and officially paired us for the next project.
I couldn't have hoped for better -- now we ''have''
to work as a pair (shucky darn).

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1999 Wayne Conrad. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/pair5.html [10/17/2003 1:57:00 PM]

mailto:webmaster@extremeprogramming.org

Lessons Learned Pair Programming

Pair Programming Experiment

 We ran an experiment with 42 seniors at
the University of Utah. Fourteen of them worked
alone. The rest worked in pairs doing pair-
programming. All students completed the same
assignments.

Pair-programming definitely does not cost
twice as much! In their first assignment (I call the
"jelling-assignment") the pairs spent 60% more
programmer hours than the individuals. In the
second assignment, they had gotten used to this
pair-programming thing. The pairs spent only
20% more total time than the individuals. By the
third assignment, the pairs spent only 10% more
time - so if an individual spent 10 hours on the
assignment, the pair worked together for 5 hours
and 15 minutes.

In all cases, the pairs passed about 15%
more of the post-development test cases.

And, over 90% say they enjoy programming
more and they feel more confident in their work
when pairing.

As a posttest to the experiment, all
students worked individually to complete one
assignment. One student said of going back to solo
programming, "Without my partner, I feel like I
lost half my brain."

North Carolina State University

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1999 Laurie Williams. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/pair6.html [10/17/2003 1:57:01 PM]

http://collaboration.csc.ncsu.edu/laurie/
http://collaboration.csc.ncsu.edu/laurie/
http://collaboration.csc.ncsu.edu/laurie/
mailto:webmaster@extremeprogramming.org

Lessons Learned Pair Programming

Code Reviews Considered Hurtful

It is all too easy to become emotionally
invested in the code you've been creating. A
formal group review process creates a stressful
situation and fosters emotional reactions for both
the developer and the reviewer.

There is just no good way for several
people to examine someone's code and suggest
changes without it seeming like personal criticism.
There is a feeling of being attacked from all sides
and it isn't always clear what changes need to be
made to satisfy the reviewers once the review is
complete.

I recently witnessed a developer feeling
personally persecuted by the review process. I
was part of the review team and the code was
from an inexperienced developer. After only two
reviews, this developer asked management to be
excused from any more reviews.

We reassured her that it was not a
personal attack, but her enthusiasm for the
project was gone. She felt completely
demoralized. We all wanted to help, but no one
was available to sit with her and guide her. I
dreaded the reviews almost as much as she did
because I could feel stress levels rising, and knew

time was being wasted.
Pair programming changes the

environment from criticism and competition to
learning and cooperation. Programming partners
must explain to each other what they are doing;
one teaches and one learns, then the roles reverse.
The learner is encouraged to participate with new
ideas or new twists on old ideas, gaining
confidence all the while.

There is a discussion between two
developers instead of a short lecture from a
superior. There are no criticisms thinly veiled as
suggestions, but mutual discovery and agreement.
The resulting code is always better because it has
to pass two pairs of eyes. You end the day with a
feeling of accomplishment instead of animosity.

ExtremeProgramming.org home | XP Lessons Learned | Pair Programming | Email the webmaster
Copyright 1999 Tom Kubit. Logos Copyright 1999 Don Wells all rights reserved.

Photo of pair programming at Daimler Chrysler

http://www.extremeprogramming.org/stories/pair7.html [10/17/2003 1:57:01 PM]

mailto:webmaster@extremeprogramming.org

Sequential Release

Sequential Integration

Without controlling source code
integration developers test their code and
integrate believing all is well. But because of
parallel integration of source code modules there
is a combination of source code which has not
been tested together before. Numerous
integration problems arise without detection.

Further problems arise when there is no
clear cut latest version. This applies not only to
the source code but the unit test suite which must
verify the source code correctness. If you can not
lay your hands on a complete, correct, and
consistent test suite you will be chasing bugs that
do not exist and passing up bugs that do.

Some projects try to have developers own
specific classes. The class owners then ensure that
code for each class is integrated and

released properly. This reduces the problem but
interclass dependencies can still be wrong. It does
not solve the whole problem.

Yet another way is to appoint an
integrator or integration team. Integrating code
from multiple developers is more than a single
person can handle. And a team of people is too big
a resource to integrate more than once a week. In
this environment developers work with obsolete
versions which are then erroneously re-integrated
into the code base.

Continued on page 2

ExtremeProgramming.org home | XP Rules | Integrate Often | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/sequential.html [10/17/2003 1:57:03 PM]

mailto:webmaster@extremeprogramming.org

Sequential Release

Sequential Integration

Continued from page 1

These solutions do not address the root
problem. You want developers to be able to
proceed in parallel, courageously making changes
to any part of the system required, but you also
want an error free integration of those efforts.
Like a dozen steaming locomotives headed for the
switch house all at the same time, there is going to
be trouble. Instead of restricting development to
being sequential, or requiring complex
integration procedures let's rethink the problem.
Our locomotives can all get into the switching
house without a crash if they just take turns. We
need to do this with code integration as well.

Strictly sequential (or single threaded)
integration by the developers themselves in
combination with collective code ownership is a
simple solution to this problem. All source code is
released to the source code safe or repository by
taking turns. That is, only one development pair
integrates, tests and releases changes to the

source code repository at any given moment.
Single threaded integration allows a latest version
to be consistently identified.

This is not to imply that you can not
integrate your own changes with the latest version
at your own workstation any time you want. You
just can't release your changes to the team with
out waiting for your turn.

Some sort of lock mechanism is required.
The simplest thing is a physical token passed from
developer to developer. A single computer
dedicated to this purpose works well if the
development team is co-located. Integrating and
releasing code often shortens the time needed to
hold the lock and thus reducing the wait time to
acquire the lock.

ExtremeProgramming.org home | XP Rules | Integrate Often | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/sequential2.html [10/17/2003 1:57:03 PM]

mailto:webmaster@extremeprogramming.org

Dedicated Release Computer

Dedicated Release Computer

A single computer dedicated to sequential
releases works really well if the development team
is co-located. This computer acts as a physical
token to control releasing. There is also a place
for developers to go to see the final word on what
system configuration is current. Developers have
a source for final arbitration on integration
problems. The computer allows developers to see
who is releasing and when. When the release
computer is occupied no other changes can be
released, stability is ensured.

The latest combined unit test suite can be
run before releasing. Because a single computer is
used the test suite is always up to date. If the unit

tests run at 100% the changes are released, if they
fail the changes are debugged or backed out and
debugged at the developers workstation.

ExtremeProgramming.org home | XP Rules | Integrate Often | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved. The featured insect is actually a moth.

http://www.extremeprogramming.org/rules/dedicated.html [10/17/2003 1:57:04 PM]

http://c2.com/cgi/wiki?SingleReleasePoint
mailto:webmaster@extremeprogramming.org

Extreme Rules

Integrate Often

Developers should be integrating and
releasing code into the code repository every few
hours, when ever possible. In any case never hold
onto changes for more than a day. Continuous
integration often avoids diverging or fragmented
development efforts, where developers are not
communicating with each other about what can
be re-used, or what could be shared. Everyone
needs to work with the latest version. Changes
should not be made to obsolete code causing
integration head aches.

Each development pair is responsible for
integrating their own code when ever a
reasonable break presents itself. This may be
when the unit tests all run at 100% or some
smaller portion of the planned functionality is
finished. Only one pair integrates at any given
moment and after only a few hours of coding to
reduce the potential problem set to almost
nothing.

Almost continuous integration avoids or
detects compatibility problems early. Integration
is a "pay me now or pay me more later" kind of
activity. That is, if you integrate through out the
project in small amounts you will not find your
self trying to integrate the system for weeks at the
project's end while the deadline slips by. Always
work in the context of the latest version of the
system.

ExtremeProgramming.org home | XP Rules | Collective Code Ownership | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/integrateoften.html [10/17/2003 1:57:04 PM]

http://c2.com/cgi/wiki?ContinuousIntegration
http://www.xprogramming.com/Practices/PracFrequentRelease.html
http://c2.com/cgi/wiki?FrequentReleases
mailto:webmaster@extremeprogramming.org

Lessons Learned

Code Integration Can be
Reduced to Seconds

The VCAPS Project has had considerable
success with the practice of Continuous
Integration. [Continuos Integration is an attitude
towards integration where you integrate as often
as possible.] A couple of key factors we found
were required to be successful:

● Unit tests are an absolute must-have. No
one releases unless they run at 100%!! If
they don't, your changes are not going in.

● Everyone has collective code ownership for
all of the code. That is, each time a
programming pair touches the code, it
should get improved, refactored, and
simplified

● There must be a release station. No one
releases from their own workstation.

Integrate Often!! The longer you wait to
integrate, the more pain you will create.
Continuous integration (as a slogan) is done in
our environment (Visual Works Smalltalk and
GemStone Smalltalk) in a matter of minutes,
usually seconds! Developers integrate multiple
times per day in practice. If it takes too long to
integrate your changes, then the unit of work
being released was too big! The programming
pair is responsible for creating their own
integration hell, or heaven, whichever they
prefer...

ExtremeProgramming.org home | XP Lessons Learned | Integrate Often | Email the webmaster
Copyright 1998 Jeanine De Guzman. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/integrateoften.html [10/17/2003 1:57:05 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Fix XP When It Breaks

Fix the process when it breaks. We don't
say if because we already know you will need to
make some changes for your specific project.
Follow the XP Rules to start with, but do not
hesitate to change what doesn't work. This
doesn't mean the team can do whatever they
want. The rules must be followed until the team
has changed them. All of your developers must
know exactly what to expect from each other,
having a set of rules is the only way to set these
expectations. Have meetings to talk about what is
working and what is not and devise ways to
improve XP.

ExtremeProgramming.org home | XP Rules | Simplicity | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/fixit.html [10/17/2003 1:57:05 PM]

http://c2.com/cgi/wiki?TheyreJustRules
http://www.xprogramming.com/Practices/justrule.htm
mailto:webmaster@extremeprogramming.org

XP flow Chart

ExtremeProgramming.org home | Zoom out to Project | Starting with XP | Email the
webmaster

Copyright 2000 Don Wells all rights reserved

http://www.extremeprogramming.org/map/loops.html [10/17/2003 1:57:06 PM]

mailto:webmaster@extremeprogramming.org
mailto:webmaster@extremeprogramming.org

Starting XP

How do I start this XP thing?

The most obvious way to start extreme
programming (XP) is with a new project. Start
out collecting user stories and conducting spike
solutions for things that seem risky. Spend only a
few weeks doing this. Then schedule a release
planning meeting. Invite customers, developers,
and managers to create a schedule that everyone
agrees on. Begin your iterative development with
an iteration planning meeting. Now you're
started.

Usually projects come looking for a new
methodology like XP only after the project is in
trouble. In this case the best way to start XP is to
take a good long look at your current software
methodology and figure out what is slowing you
down. Add XP to this problem first.

For example, if you find that 25% of the
way through your development process your
requirements specification becomes completely

useless, then get together with your customers
and write user stories instead.

If you are having a chronic problem with
changing requirements causing you to frequently
recreate your schedule, then try a simpler and
easier release planning meeting every few
iterations. (You will need user stories first
though.) Try an iterative style of development and
the just in time style of planning of programming
tasks.

If your biggest problem is the number of
bugs in production, then try automated
acceptance tests. Use this test suite for regression
and validation testing.

If your biggest problem is integration
bugs then try automated unit tests. Require all
unit tests to pass (100%) before any new code is
released into the code repository.

Continued on page 2

ExtremeProgramming.org home | Where can I get more information? | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/start.html [10/17/2003 1:57:07 PM]

mailto:webmaster@extremeprogramming.org

Starting XP

How do I start this XP thing?

Continued from page 1

If one or two developers have become
bottlenecks because they own the core classes in
the system and must make all the changes, then
try collective code ownership. (You will also need
unit tests.) Let everyone make changes to the core
classes whenever they need to.

You could continue this way until no
problems are left. Then just add the remaining
practices as you can. The first practice you add
will seem easy. You are solving a large problem
with a little extra effort. The second might seem
easy too. But at some point between having a few
XP rules and all of the XP rules it will take some
persistence to make it work. Your problems will
have been solved and your project is under
control. It might seem good to abandon the new
methodology and go back to what is familiar and
comfortable, but continuing does pay off in the
end. Your development team will become much

more efficient than you thought possible. At some
point you will find that the XP rules no longer
seem like rules at all. There is a synergy between
the rules that is hard to understand until you have
been fully immersed.

This up hill climb is especially true with
pair programming, but the pay off of this
technique is very large. Also, unit tests will take
time to collect, but unit tests are the foundation
for many of the other XP practices so the pay off
is very great.

XP projects are not quiet; there always
seems to be someone talking about problems and
solutions. People move about, asking each other
questions and trading partners for programming.
People spontaneously meet to solve tough
problems, then disperse again. Encourage this
interaction, provide a meeting area and set up
workspaces such that two people can easily work
together. The entire work area should be open
space to encourage team communication.

ExtremeProgramming.org home | Where can I get more information? | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/start2.html [10/17/2003 1:57:08 PM]

mailto:webmaster@extremeprogramming.org

More XP Information

More Information

Class Room Training

Object Mentor Inc.
offers a 5 day class featuring
Kent Beck, Ron Jeffries, and
Robert Martin in Vernon Hills,
IL.

Industrial Logic teaches
an Extreme Programming
Workshop and a Testing and
Refactoring Workshop.

Advanced Technologies
Integration offers a three day
class in Edina, MN.

 Group Discussion

ObjectMentor Inc. has
set up an XP mailing list for us
at yahoo.com.

There is now a usenet

news group comp. software.
extreme-programming

Web Sites

The Portland Pattern
Repository hosted by Ward
Cunningham. A lively free
wheeling discussion group. Ask
questions and get answers. All
points of view are well
represented here. Information
and experiences using XP from
several projects.

XProgramming.com
hosted by Ron Jeffries. Articles
by Ron and others. Lessons
learned from the C3 project,
Q&A and more.

XP Developer a wiki
style discussion group. The
discussions are about how to
actually do XP. Find out about
the Extreme Tuesday Club
which meets in London.

Conferences

The Fourth
International Conference on
eXtreme Programming and
Agile Processes in Software
Engineering, will be held the
week of May 26, 2003, in
Genova, Italy.

The XP Universe and
Agile Universe conferences will
be co-located in New Orleans,
August 10-13, 2003.

Books

Extreme Programming
Explained: Embrace Change.
Kent Beck explains the concepts
and philosophy behind extreme
programming. This book
teaches what and why but not
how.

Refactoring Improving
the Design of Existing Code.
Martin Fowler writes the first
authoritative volume on
refactoring. Presented as
patterns. There are plenty of
examples in Java. This book
teaches you how to refactor and
why.

Extreme Programming
Installed. By Ron Jeffries, Chet
Hendrickson, and Ann
Anderson. This book covers
specific XP practices in finer
detail than Expreme
Programming Explained. This
book teaches how to program
XP style.

http://www.extremeprogramming.org/more.html (1 of 3) [10/17/2003 1:57:11 PM]

http://www.amazon.com/exec/obidos/redirect-home/extremeprogrammi
http://www.objectmentor.com/training/xptraining.html
http://objectmentor.com/
http://www.objectmentor.com/training/xptraining.html
http://industriallogic.com/training/xpw.html
http://www.industriallogic.com/
http://www.industriallogic.com/training/xpw.html
http://www.industriallogic.com/training/xpw.html
http://www.industriallogic.com/training/trw.html
http://www.industriallogic.com/training/trw.html
http://www.atico.com/jumpstart/course_workshop.html
http://www.atico.com/jumpstart/course_workshop.html
http://www.atico.com/jumpstart/course_workshop.html
http://groups.yahoo.com/group/extremeprogramming
http://objectmentor.com/base.asp?id=113
http://www.egroups.com/group/extremeprogramming/
news:comp.software.extreme-programming
news:comp.software.extreme-programming
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://www.xprogramming.com/
http://www.xprogramming.com/
http://www.xpdeveloper.com/
http://www.xpdeveloper.com/
http://www.xp2002.org/
http://www.xpuniverse.com/
http://www.xpuniverse.com/
http://www.xpuniverse.com/
http://www.amazon.com/exec/obidos/ASIN/0201616416/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201616416/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201616416/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201485672/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201485672/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201485672/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201708426/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201708426/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201708426/extremeprogrammi

More XP Information

Laurie Williams is
researching pair programming
at the University of Utah. She
has conducted a survey of
professional programmers who
have experience working in
pairs.

Willam Wake has
written many good articles
targeted at understanding
specific XP topics.

Martin Fowler has
created a web site for
information about refactoring
including updates to his book.

Jim Highsmith talks
about XP in an article at e-
business application delivery.

RoleModel Software
has an eXtreme Programming
Software Studio(tm) and an
apprenticeship program.

Yonat Sharon has a
general OO site with some
information about XP.

Planning Extreme
Programming by Kent Beck,
and Martin Fowler. This book
presents the latest thoughts on
how to plan software in a rapid
delivery environment. This
book teaches how to run an XP
project.

Extreme Programming
Examined by Giancarlo Succi
and Michele Marchesi. Papers
presented at XP2000. A well
rounded set of papers covers
most topics.

Extreme Programming
in Practice by Robert C.
Martin, James W. Newkirk. A
real project which used XP is
described in gory detail.

Extreme Programming
Explored by William C. Wake.
Based on the popular
XPlorations website. Specific
subjects are explored in detail.

Extreme Programming
Applied: Playing to Win by Ken
Auer and Roy Miller.
Experinces from pioneers in
appling XP. To be published in
September.

People

An excellent source of
information are the people who
have already been learning
about XP.

http://www.extremeprogramming.org/more.html (2 of 3) [10/17/2003 1:57:11 PM]

http://www.cs.utah.edu/~lwilliam/
http://www.cs.utah.edu/~lwilliam/
http://limes.cs.utah.edu/questionnaire/questionnaire.htm
http://www.xp123.com/xplor/
http://www.xp123.com/xplor/
http://www.refactoring.com/
http://www.martinfowler.com/
http://www.refactoring.com/
http://www.cutter.com/ead/ead0002.html
http://www.cutter.com/ead/ead0002.html
http://rolemodelsoft.com/studio.htm
http://rolemodelsoft.com/studio.htm
http://ootips.org/xp.html
http://ootips.org/xp.html
http://www.amazon.com/exec/obidos/ASIN/0201710919/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201710919/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201710919/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201710404/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201710404/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201710404/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201709376/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201709376/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201709376/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201733978/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201733978/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201733978/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201616408/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201616408/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/0201616408/extremeprogrammi

More XP Information

There is the Michigan

eXtreme Programming
Enthusiasts.

There is XP Denver for

the Colorado Front Range.

There is a Hamburg XP

user's group.

XP user group Stuttgart

(XPUGS).

The eXtreme Tuesday

Club meets in London (UK).

There is an XP User's

Group starting in Phoenix,
Arizona

ExtremeProgramming.org home | Where can I find XP people? | Email the webmaster
Exclusive of cover art and logos as noted, Copyright 1999 by Don Wells. Pattern logo Copyright 1997 Cunningham and Cunningham Inc. Red XP logo Copyright 1998 Ronald

E. Jeffries. XPDeveloper logo Copyright 1999 XPDeveloper.com. Role Model logo copyright 1998 Rolemodel Software. eXtreme Programming Software Studio is a trade mark
of Rolemodel Software. U of Utah logo copyright by the University of Utah. Refactoring graphic Copyright 1999 Addison Wesley Longman, Inc. Amazon.com pays a small fee

for the sale of books through this website, all other companies do not pay for advertising and are listed here because I belive they have a good product. Please report any

negative experiences to the webmaster.

http://www.extremeprogramming.org/more.html (3 of 3) [10/17/2003 1:57:11 PM]

http://www.xpdenver.org/
http://c2.com/cgi/wiki?HamburgXpUsersGroup
http://c2.com/cgi/wiki?HamburgXpUsersGroup
http://www.egroups.de/group/xpugs
http://www.xpdeveloper.com/
http://www.xpdeveloper.com/
http://c2.com/cgi/wiki?PhoenixXpUsersGroup
http://c2.com/cgi/wiki?PhoenixXpUsersGroup
mailto:webmaster@extremeprogramming.org

XP people.

People Are Your
Most Valuable Resource.

There used to be a list of people and
companies on this page. The spread of Extreme
Programming (XP) has been so quick that there
are now far too many projects using XP and
people who know how to use XP for a listing.
Please consider instead the Portland Pattern
repository and the Groups.Yahoo.com list to find
XP work or XP people.

ExtremeProgramming.org home | Email the webmaster
Copyright 2000 Don Wells all rights reserved.

http://www.extremeprogramming.org/people.html [10/17/2003 1:57:11 PM]

http://c2.com/cgi/wiki?XpHelpWanted
http://groups.yahoo.com/group/xp-jobs
http://c2.com/cgi/wiki?XpPositionWanted
mailto:webmaster@extremeprogramming.org

Michigan eXtreme Programming Enthusiasts

Michigan eXtreme
Programming Enthusiasts

The October MXPE meeting has been scheduled. The meeting will be held on Thursday, October 9th from
5:30 - 7:30 pm. The meeting will be held at the DTE Energy building in downtown Ann Arbor. The
address is 425 S. Main Street, Ann Arbor, 48104.

Unfortunately, due to scheduling conflicts, Henry Beitz, our scheduled presenter for the last meeting that
was pre-empted by the blackout, will be unable to give his presentation this time around. Rest assured, we
will find another time that work for a future meeting and invite Henry back.

This meeting will consist of two sessions. The first half will be a progress report from the Agile group at
DTE. This should be a real treat to see what progress the team has made since our last meeting there one
year ago. They will discuss the difficulties they have faced and how they have had to adapt in order to
thrive in a large corporate setting. The session will also be open to some Q&A.

The second half of the meeting will be the free-for-all session where you get to bring up the issues and
challenges you face in your work related to implementing XP or, for anyone just wanting to understand
more about XP, to ask any pressing questions you might have about how any of this stuff can actually
work. In the past, this meeting format has provided for lively discussions and a good learning experience
for all involved. I’m sure the DTE guys will give us some interesting topics to cover in more depth, too.

If you are planning on attending, please send a confirmation e-mail to the group account at
mxpe@extremeprogramming.org. Include the number of people planning on attending in the
confirmation. If you have any questions, please contact any of the MXPE officers. Finally, if you have not
yet submitted your membership dues, and since it’s getting near the end of the year, talk to one of the
officers at the meeting. Checks made out to MXPE are the preferred method of payment. Dues amounts
and the mailing address can be found on the group web site (link below). Looking forward to seeing
everyone there.

MXPE yearly dues schedule is as follows; professional member $20, corporate member $100 (6
representatives), student member $5. Single meeting tickets are $5 or $2 for students. Membership will be
for the calendar year effective 1/1 - 12/31. New members pay for the current calendar year unless
otherwise stipulated.

Membership dues can be paid by mail. Please make your check payable to "MXPE."
If you need a receipt sent back to you, please be sure to include a return address with your payment.
Payments can be sent to the following address:

MXPE Treasurer
2041 Miller Rd
Metamora, MI 48455-9222

Payments can also be made at the meeting. Please show up a few minutes early if paying on site. Payment
by check is preferred.

http://www.extremeprogramming.org/mxpe.html (1 of 2) [10/17/2003 1:57:13 PM]

mailto:mxpe@extremeprogramming.org

Michigan eXtreme Programming Enthusiasts

MXPE Officers:
Tom Kubit, President, tom@extremeprogramming.org
Jason Rogers, Vice President, jacaetevha@fast-mail.org
Dave Bryant, Treasurer, dkbryant@urbanscience.com
Don Wells, VP Technology, don@extremeprogramming.org

Subscribe to the MXPE mailing list

ExtremeProgramming.org home | Back to Top | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/mxpe.html (2 of 2) [10/17/2003 1:57:13 PM]

http://c2.com/cgi/wiki?MichiganeXtremeProgrammingEnthusiasts
mailto:tom@extremeprogramming.org
mailto:jacaetevha@fast-mail.org
mailto:webmaster@extremeprogramming.org

Extreme Rules

Coding Standards

 Code must be formatted to agreed coding
standards. Coding standards keep the code
consistent and easy for the entire team to read
and refactor. Smalltalk projects can use Smalltalk
Best Practice Patterns as a coding standard.

ExtremeProgramming.org home | XP Rules | Code The Unit Test First | Email the webmaster
Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/standards.html [10/17/2003 1:57:13 PM]

http://www.amazon.com/exec/obidos/ASIN/013476904X/extremeprogrammi
http://www.amazon.com/exec/obidos/ASIN/013476904X/extremeprogrammi
http://c2.com/cgi/wiki?FormalStandards
http://www.xprogramming.com/Practices/PracCodingStandards.html
http://www.xp123.com/xplor/xp0002f/index.shtml
http://c2.com/cgi/wiki?SpecialFormatting
mailto:webmaster@extremeprogramming.org

Extreme Rules

Optimize Last

Do not optimize until the end. Never try to
guess what the system's bottle neck will be.
Measure it!

Make it work, make it right, then make it
fast.

ExtremeProgramming.org home | XP Rules | No Overtime | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/optimize.html [10/17/2003 1:57:14 PM]

http://c2.com/cgi/wiki?CodeAndThenOptimize
mailto:webmaster@extremeprogramming.org

Extreme Programming Lessons Learned

Optimize Last Because it May
Not be as Slow as You Think

We needed to add some new functionality
to the VCAPS project. Based on some other code
in the system that ran 8 hours this new section
would run in no less than 16 hours even after we
squeezed ever little bit of performance out of it.
We added the new functionality as simply as
possible. We ignored concerns of speed in favor of
concerns of code clarity and maintainability.
Make it run, make it right, make it fast.

When we had finished the code we fired it
up on a Friday afternoon in anticipation of
several days of run time since we had not done
any

optimizing. We were shocked when it came back
in 1 hour. By keeping our design simple and
understandable we had managed to avoid several
"penny wise, pound foolish" types of optimization
that other sections of code had fallen prey to.

At this point we could have considered
optimization, but because it was so much faster
than any other portion of the system we didn't
need to do any optimization at all.

ExtremeProgramming.org home | XP Lessons Learned | Optimize Last | Email the webmaster
Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/optimize2.html [10/17/2003 1:57:14 PM]

mailto:webmaster@extremeprogramming.org

No Overtime

No Overtime

Working overtime sucks the spirit and
motivation out of a team. Projects that require
overtime to be finished on time will be late no
matter what you do. Instead use a release
planning meeting to change the project scope or
timing. Increasing resources by adding more
people is also a bad idea when a project is
running late.

ExtremeProgramming.org home | XP Rules | Unit Tests | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved. Photo of the vampire from the movie Nosferatu.

http://www.extremeprogramming.org/rules/overtime.html [10/17/2003 1:57:15 PM]

mailto:webmaster@extremeprogramming.org

http://www.extremeprogramming.org/stories/simple2.html

You Aren't Going to Need It.

During the initial requirements and design
sessions of my current project, we continually had
people wanting to push a lot of "future"
requirements into the first phase. Our answer was
always the same. "We'll write a card for it so we
don't forget about it, but we won't put it into the
design until the time comes when we need it."

This strategy saved us a tremendous
amount of grief, especially with regard to one of
the fundamental building blocks of the system.
We were designing a model to be used for
defining the possible combinations of product
offerings.

The catch was that in about 6 months time
a new corporate model was going to be released.
We got numerous requests to try to predict and
model the inevitable corporate direction. We
resisted, and instead modeled the product
definition piece of the system to reflect the
current business practice, and only those portions
of it that were relevant to our project.

We kept the design as simple as possible
while still satisfying all project requirements. We
practiced "you aren't gonna need it."

After six months passed the corporate
model was postponed for another year.
Meanwhile our project was considering a
completely new and different model based on
expanded requirements.

If we had tried to guess at a corporate
model we would have needed months of rework to
migrate to this new model. Because we kept our
design very simple, we could easily evolve our
model into the new model. We estimate it will
only take a week or two of adjustments, which
represents substantial savings.

ExtremeProgramming.org home | XP Lessons Learned | Simplicity | Email the webmaster
Copyright 1999 Tom Kubit. Logos Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/simple2.html [10/17/2003 1:57:16 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Design a Simulator for
the Coffee Maker

Design is accomplished in three ways on
an Extreme Programming (XP) project. There
are CRC cards, refactoring, and pair
programming. CRC cards can be considered a
strategic level of design, pair programming is at
the tactical level and refactoring serves both.

For this problem I would feel better with
the team working together. So let's get out the
cards!

Let's start out with our hardware's
interface. We know we have a programmable
interface adapter (PIA). We can set out a card to
represent one object that will be our interface to
the PIA.

Now let's add our coffee maker code as if
it were a single object. It may or may not be, but
right now we are designing the simulator. Let's
put it right next to the PIA because it will
interface with it.

Next we need to add the simulation object.
This will be the object that loops simulating time
and makes the PIA react as if it was being
powered by real hardware. I am thinking that the
simulation will hold onto the coffee maker code. I
put the card slightly under the coffee maker code.
The simulation will signal the coffee maker when
ever the PIA has changed. The coffee maker can
then react to the change.

The GUI will complete our design. It
interacts with the simulation showing the state of
our coffee maker and accepting user input like
the brew button. But the team is not sure about
this design. The simulation interacts with the PIA
and needs to know the internals of the coffee
maker code, which also interacts with the PIA.
Wouldn't it be better if the PIA itself was the
simulation? This cuts down on several interfaces.

http://www.extremeprogramming.org/example/crcsim.html (1 of 2) [10/17/2003 1:57:18 PM]

XP and the Mark IV Coffee Maker

Let's just start over. A good thing about
designing with CRC cards is that we can sweep
the desk clean as many times as we want and we
have not wasted large amounts of time on
creating diagrams for each alternative design.

We are back to just the PIA. This is the
one thing we must have.

To this we add the coffee maker
object(s). This interfaces with the PIA. Now at
this point we could just say that the PIA runs the
simulation, but after some discussion the team
doesn't like that. We want the PIA interface to be
simple and generic, a closer representation of the
hardware. Adding the simulation portion to it
does not achieve that.

So let's put our simulation object back
into play. But instead of the simulation owning
the coffee maker, let's say that the simulation only
interfaces with the PIA. The simulation has no
internal knowledge of how the coffee maker
works. We all like this better. It will even be a
better simulation.

In order to make this work we will have to
have separate threads for the coffee maker and
the simulation. This adds a level of complexity,
but removes about two levels of complexity in the
exchange. We are reducing net complexity
because we do not have to provide one coffee
maker interface for the simulator and some other
interface that will run the coffee maker on real
hardware. On the other hand Java Threads are
just not that complex. And as a bonus we can test
the coffee maker exactly as it would run on real
hardware. We agree this is better even though it
is multithreaded.

Last, we add our GUI to interface to the
simulation. This seems like a good design to start
out with. Remember, we can change our minds
when ever things become difficult to implement.
We rely on this strength of XP so that we don't
have to design out every detail of every class in
advance. Now we need think of a system
metaphor to fit this design.

ExtremeProgramming.org home | A Spike Solution | System Metaphor | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/crcsim.html (2 of 2) [10/17/2003 1:57:18 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Choosing a System Metaphor
for the Simulator

The next step in creating our coffee maker
simulator is the selection of a system metaphor.
What we need is something that everyone can
understand easily. From what we know about our
simulator from our CRC card session we could
consider a finite state automata, but this isn't
exactly the case. We could think of it as an
adapter sitting in between the PIA and the GUI.
But this seems too abstract to me. We could think
of it in terms of an alarm clock, but this isn't right
either.

No, I think that the best metaphor for us
is what Kent Beck calls the naive metaphor. This
is the metaphor that uses the domain itself. We
can use it here because our domain is actually
very simple and generically understood already.

Let's start out writing code for the PIA.
We need to see how well our design holds up
under contact with actual code!

ExtremeProgramming.org home | A Spike Solution | Code for the PIA | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simmet.html [10/17/2003 1:57:19 PM]

mailto:webmaster@extremeprogramming.org

XP Philosophy

The XP Philosophy

In the early 1990s a man named Kent
Beck was thinking about better ways to develop
software. He had recently spent some time
working with Ward Cunningham. Ward and
Kent together had experienced an approach to
software development that made every thing seem
simple and more efficient. Kent contemplated on
what made software simple to create and what
made it difficult. In March of 1996 Kent started a
project at DaimlerChrysler using new concepts in
software development. The result was the
Extreme Programming (XP) methodology.

What Kent came to realize is that there
are four dimensions along which one can improve
any software project. You need to improve
communication. You need to seek simplicity.

You need to get feedback on how well you are
doing. And you need to always proceed with
courage. Communication, Simplicity, Feedback,
and Courage are the four values sought out by XP
programmers.

ExtremeProgramming.org home | Back to What is XP? | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/kent.html [10/17/2003 1:57:19 PM]

http://c2.com/cgi/wiki?ExtremeValues
http://www.xprogramming.com/Practices/PracValues.html
mailto:webmaster@extremeprogramming.org

What is Extreme Programming

What is Extreme Programming?

Extreme Programming (XP) is actually a
deliberate and disciplined approach to software
development. About six years old, it has already
been proven at many companies of all different sizes
and industries world wide.

XP is successful because it stresses customer
satisfaction. The methodology is designed to deliver
the software your customer needs when it is needed.
XP empowers your developers to confidently
respond to changing customer requirements, even
late in the life cycle.

This methodology also emphasizes team
work. Managers, customers, and developers are all
part of a team dedicated to delivering quality
software. XP implements a simple, yet effective way
to enable groupware style development.

XP improves a software project in four
essential ways; communication, simplicity,

feedback, and courage. XP programmers
communicate with their customers and fellow
programmers. They keep their design simple and
clean. They get feedback by testing their software
starting on day one. They deliver the system to the
customers as early as possible and implement
changes as suggested. With this foundation XP
programmers are able to courageously respond to
changing requirements and technology.

XP is different. It is a lot like a jig saw
puzzle. There are many small pieces. Individually the
pieces make no sense, but when combined together a
complete picture can be seen. This is a significant
departure from traditional software development
methods and ushers in a change in the way we
program.

ExtremeProgramming.org home | A Change in the Way We Program | Email the webmaster

Copyright 1999 Don Wells all rights reserved

http://www.extremeprogramming.org/what.html [10/17/2003 1:57:20 PM]

mailto:webmaster@extremeprogramming.org

A change is coming.

A Change in the Way We Program.

Software which is engineered to be simple
and elegant is no more valuable than software
that is complex and hard to maintain. Can this
really be true? Extreme Programming (XP) is
based on the idea that this is not in fact true.

A typical project will spend about twenty
times as much on people than on hardware. That
means a project spending 2 million dollars on
programmers per year will spend about 100
thousand dollars on computer equipment each
year. Let's say that we are smart programmers
and we find a way to save 20% of the hardware
costs by some very clever programming tricks. It
will make the source code harder to understand
and maintain, but we are saving 20% or 20
thousand dollars per year, a big savings. Now
what if instead we wrote our programs such that
they were easy to understand and extend. We
could expect to save no less than 10% of our
people costs. That would come to 200 thousand
dollars, a much bigger savings. This is certainly
something your customers will notice.

Another important issue to customers are
bugs. XP emphasizes not just testing, but testing
well. Tests are automated and provide a safety net
for programmers and customers alike. Tests are
created before the code is written, while the code
is written, and after the code is written. As

bugs are found new tests are added. A safety net
of tight mesh is created. Bugs don't get through
twice, and this is something the customers will
notice.

Another thing your customers will notice
is the attitude XP programmers have towards
changing requirements. XP enables us to embrace
change. Too often a customer will see a real
opportunity for making a system useful after it
has been delivered. XP short cuts this by getting
customer feed back early while there is still time
to change functionality or improve user
acceptance. Your customers are definitely going
to notice this.

Much of what went into XP was a re-
evaluation of the way software was created. The
quality of the source code is much more
important than one might realize. Just because
our customers can't see our source code doesn't
mean we shouldn't put the effort into creating
something we can be proud of.

ExtremeProgramming.org home | When Should We Use XP? | Email the webmaster
Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/change.html [10/17/2003 1:57:22 PM]

mailto:webmaster@extremeprogramming.org

What is Extreme Programming

When should Extreme
Programming be Used?

Extreme Programming (XP) was created in
response to problem domains whose requirements
change. Your customers may not have a firm idea of
what the system should do. You may have a system
whose functionality is expected to change every few
months. In many software environments dynamically
changing requirements is the only constant. This is
when XP will succeed while other methodologies do
not.

XP was also set up to address the problems
of project risk. If your customers need a new system
by a specific date the risk is high. If that system is a
new challenge for your software group the risk is
even greater. If that system is a new challenge to the
entire software industry the risk is greater even still.
The XP practices are set up to mitigate the risk and
increase the likelihood of success.

XP is set up for small groups of
programmers. Between 2 and 12, though larger
projects of 30 have reported success. Your
programmers can be ordinary, you don't need
programmers with a Ph.D. to use XP. But you can
not use XP on a project with a huge staff. We should
note that on projects with dynamic requirements or
high risk you may find that a small team of XP
programmers will be more effective than a large
team anyway.

XP requires an extended development team.
The XP team includes not only the developers, but
the managers and customers as well, all working
together elbow to elbow. Asking questions,
negotiating scope and schedules, and creating
functional tests require more than just the developers
be involved in producing the software.

Another requirement is testability. You must
be able to create automated unit and functional tests.
While some domains will be disqualified by this
requirement, you may be surprised how many are
not. You do need to apply a little testing ingenuity in
some domains. You may need to change your system
design to be easier to test. Just remember, where
there is a will there is a way to test.

The last thing on the list is productivity. XP
projects unanimously report greater programmer
productivity when compared to other projects within
the same corporate environment. But this was never
a goal of the XP methodology. The real goal has
always been to deliver the software that is needed
when it is needed. If this is what is important to your
project it may be time to try XP.

ExtremeProgramming.org home | Do We Need Another Methodology? | Email the webmaster

Copyright 1999 Don Wells all rights reserved

http://www.extremeprogramming.org/when.html [10/17/2003 1:57:22 PM]

mailto:webmaster@extremeprogramming.org

Do we need XP?

Do We Need Yet
Another Methodology?

When the Hubble Telescope was launched
into space it had a mirror built to the wrong
specifications. It wasn't until the telescope was
fully deployed and in the hands of its customers
that the problem was discovered. A satellite's
customers can't try using it until after it's in outer
space, but why do we do this with software?

What if you walked into an electronics lab
and saw work benches covered in old appliances?
Would you keep that huge old TV with the quaint
little round picture tube because it still had a good
power supply? Would you keep an old AM radio
because it was useful as an RF generator? You
wouldn't because your work bench would be so
cluttered you couldn't get anything done. But this
is exactly what we do with software.

The Zilwaukee Bridge over the Saginaw
River needed to be built in a hurry. The bridge

was built up from both banks of the river to meet
in the middle. But when they got to the middle
one side was three feet higher than the other.
When half of your project is on one side of a river
and the other half is on the other you can't
integrate your project until the very end, but why
do we do this with software?

Extreme Programming (XP) was designed
in response to these kinds of questions. XP was
based on observations of what made computer
programming faster and what made it slower. XP
is an important new methodology for two reasons.
First and foremost it is a re-examination of
software development practices that have become
standard operating procedures. And second, it is
one of several new lightweight software
methodologies created to reduce the cost of
software. XP goes one step further and defines a
process that is simple and enjoyable.

ExtremeProgramming.org home | What is a Lightweight Methodology? | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/another.html [10/17/2003 1:57:23 PM]

mailto:webmaster@extremeprogramming.org

XP is a lightweight methodology

What is a Lightweight
Methodology?

A software methodology is the set of rules
and practices used to create computer programs. A
heavyweight methodology has many rules, practices,
and documents. It requires discipline and time to
follow correctly. A lightweight methodology has
only a few rules and practices or ones which are easy
to follow.

In the late 1960s and early 1970s it was
common practice for computer programmers to
create software any way they could. Many
programmers excelled at creating software too
complex for anyone to understand. At that time it
was a miracle if a program ran without any bugs.
Making computers useful was considered a worthy
quest and not unlike an adventure into the old west.

In 1968 Edsger Dijkstra wrote a letter to
CACM entitled GOTO Statement Considered
Harmful. The central ideas of software engineering
were being born. At that time we believed that
bigger, more disciplined methodologies would help
us create software with consistent quality and
predictable costs. The lawless cowboy coders were
being reined in.

The 1980s were good times for computer
programmers. We had a few rules and practices to
create software that was far superior in quality to
what we were creating only a few years earlier. It
seemed like if we could just create enough rules to
cover the problems we encounter we could create
perfect software and be on time. We added more and
more rules and practices to cover all the potential
problems.

Now in the 21st century we find these rules
are hard to follow, procedures are complex and not
well understood and the amount of documentation
written in some abstract notation is way out of
control. Trying to come up with a bigger and better
methodology was like a California gold rush;
everyone headed west only to be disappointed.

Continued on Page 2

ExtremeProgramming.org home | The XP Rules | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/light1.html [10/17/2003 1:57:24 PM]

mailto:webmaster@extremeprogramming.org

XP is a lightweight methodology

What is a Lightweight
Methodology?

Continued from Page 1

We created software to help us create
software. But this quickly got out of control and
dreadnought CASE tools were born. These tools,
originally created to help us follow the rules, are too
hard to use themselves. Computer programmers find
it necessary to cut corners and skip important
practices to stay on schedule. No one is actually
following the heavy methodologies we have
handcuffed ourselves with. The cowboys have
returned and we find ourselves back at the OK
Corral.

When programmers ignore the rules of their
methodology they are instinctively moving away
from heavyweight methodologies and back toward
an earlier, simpler time of lightweight methodologies
when a few rules were enough.
But we don't want to forget what we have learned.
We can choose to keep the rules that help us create
quality software and throw away those that hinder
our progress. We can simplify those rules that seem
too complex to follow correctly.

We don't want to return to the early days of
cowboy coding when there were no rules at all. But
instead let's stop at just enough rules to keep our
software reliable and reasonably priced. Instead of
cowboy coders we have software sheriffs; working
together as a team, quick on the draw, armed with a
few rules and practices that are light, concise, and
effective.

Extreme Programming (XP) is one of several
new lightweight methodologies. XP has a few rules
and a modest number of practices, all of which are
easy to follow. XP is a clean and concise
environment developed by observing what makes
software development go faster and what makes it
move slower. It is an environment in which
programmers feel free to be creative and productive
but remain organized and focused.

ExtremeProgramming.org home | Introducing XP | Email the webmaster
Copyright 1999 James D. Wells all rights reserved

http://www.extremeprogramming.org/light2.html [10/17/2003 1:57:27 PM]

http://www.martinfowler.com/articles/newMethodology.html#N401
http://www.martinfowler.com/articles/newMethodology.html#N401
mailto:webmaster@extremeprogramming.org

Introducing the Rules of Extreme Programming

Introducing Extreme Programming

Let's turn now to Extreme Programming
(XP) itself. It is a collection of rules and practices
each of which supports several others, and are
supported by several others in turn. When they are
used together a methodology emerges.

We shall examine these rules and practices
now. We will begin with the practices associated
with planning. User stories are the heart of planning
in XP. User stories can be printed or hand written on
cards. The project scope and plan is simply and
efficiently created by manipulating the cards by
hand.

Next we will see how XP projects design the
system architecture. Architectural spikes or
prototypes are used to create a simple overall design
also known as the system metaphor. CRC Cards, a
simple groupware design technique, encourages all
team members to understand and contribute to the
system design. But unique to XP is a reliance on a
programming technique called refactoring to help
uncover the most effective system architecture.

Then we turn our attention to methods for
code creation. As we noted earlier, code quality is
very important on an XP project. Practices which
enhance quality include pair programming,
refactoring, and creating tests before the code.

Testing occupies the place of honor. Good
unit test and acceptance test coverage is the hall
mark of an XP project. An XP project takes the
attitude that developers are responsible for proving to
their customers that the code works correctly, not
customers proving the code is broken.

Continue to follow the little logos for a
guided tour or jump to the catalog of rules and
practices for easy reference. The
buttons link to experiences shared with us by people
who have already tried XP.

ExtremeProgramming.org home | User Stories | Email the webmaster

Copyright 2000 Don Wells all rights reserved

http://www.extremeprogramming.org/introduction.html [10/17/2003 1:57:28 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Test the PIA Class Into Existence

The first bit of programming we can do is
for the PIA class. We know that we need to
simulate the hardware and we know what that
needs to look like. There will be 3 methods, one
for programming the input and output bits, one to
read, and one to write to the PIA. So let's create
the PIA first.

The way that we create code in Extreme
Programming (XP) is to start with a test.

Fortunately we have already created a unit testing
framework. So lets create some code for our first
test. What we want here is to be able to read the
PIA and have any bits programmed to output
always be zero. Input bits are unaffected when
being read.

package simulator.r1.unittest;

import unittest.framework.*;
import simulator.r1.*;

public class TestReadFromPIA extends Test
{public void runTest()

{PIA.register = 0x0F0F;
PIA.setInputs(0x00FF);
should(PIA.read() == 0x000F, "Outputs should always be zero");};}

To be able to compile and run this test we
need to create a stub class for our PIA. We will
just create the methods and not bother writing
code.

package simulator.r1;

public class PIA
{public static int register;

public static int read()
{return 0x0000;}

public static void setInputs(int aShort)
{};}

Next we can create a TestSuite for our
first test.

package simulator.r1.unittest;

import unittest.framework.*;

public class SimulatorTests extends TestSuite
{public SimulatorTests()

{tests = new Test[1];
tests[0] = new TestReadFromPIA();};}

http://www.extremeprogramming.org/example/piacode.html (1 of 2) [10/17/2003 1:57:32 PM]

XP and the Mark IV Coffee Maker

Now we can run this test. It fails of course.
But we like to run it to make sure. Occasionally
the test will pass, which means that our code
already does what we need or our test doesn't test
what we need. Lets go back to the PIA class and
write some code to make the test work. We add
some code and get the following.

package simulator.r2;

class PIA
{public static int register = 0;
public static int inputBits = 0;

public static int read()
{return register & inputBits;}

public static void setInputs(int aBitMask)
{inputBits = aBitMask;};}

Let's try the unit test now. It runs as
expected. Our code is still nice and simple and
clean so we don't need to refactor. So let's add a
second test. We need to test writing to the PIA.

ExtremeProgramming.org home | Back to Creating a Spike Solution | Test Writing to the PIA | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/piacode.html (2 of 2) [10/17/2003 1:57:32 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Unit Test Framework
for a Coffee Maker

We can get a unit testing framework for
Java easy enough. The one we will be using here is
one which runs as an applet and is compiled with
Sun's 1.0.2 JDK compiler. This code should run
on most browsers.

We will create a test suite of three tests to
just test the unit test framework. They are a test
which passes, a test which fails due to a bad
computation, and a test which aborts because
some unexpected exception occurs.

The applet in the right column is our unit
test framework, click run tests to see if it works.
The source code is available for download.

Things are going well, we have our unit

testing framework, story cards, and we are ready
to do our spike solution. After that we can begin
to estimate our project scope and create a
schedule with a release planning meeting.

ExtremeProgramming.org home | XP and the Coffee Maker | A Spike Solution | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/utframe.html [10/17/2003 1:57:33 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Coffee Maker Unit Test Framework

The source code for the very simple Java
unit test framework can be downloaded as a zip
file. Or you can just cut and paste from here.

The first part is the TestGUI class. This

class is the applet that runs the tests and reports
the results. You will probably notice at this point
that the formatting is different from what you are
used to seeing. This is an experiment.

package unittest.framework;

import java.awt.*;
import java.applet.*;

public class TestGUI extends Applet
{Label scoreLabel;
Button runTestsButton;
List listOfTests;
Test tests [];

public void init()
{initializeTests();
setLayout(new BorderLayout());
add("North", scoreLabel());
add("Center", listOfTests());
add("South", runButton());
scoreLabel.setBackground(Color.lightGray);}

public void initializeTests()
{String testSuiteName = getParameter("TestSuite");
tests = testSuiteNamed(testSuiteName).tests;}

private TestSuite testSuiteNamed(String aClassName)
{try

{return (TestSuite) Class.forName(aClassName).newInstance();}
catch (Exception exception)

{return new TestSuite();};}

void runTests()
{for (int each = 0; each < tests.length; each++)

{runTest(each);
showResults();};}

void runTest(int anIndex)
{tests[anIndex].setUp();
tests[anIndex].run();
tests[anIndex].tearDown();}

private void showResults()
{for (int each = 0; each < tests.length; each++)

{listOfTests.replaceItem(tests[each].result, each);}
showScore();}

private void showScore()
{int passed = numberPassed();
float total = (float) tests.length;
int score = (int)(passed / total * 100);
scoreLabel.setText(new Integer(score).toString() + "%");
showPassFail(score);}

http://www.extremeprogramming.org/example/utframesource.html (1 of 4) [10/17/2003 1:57:35 PM]

ftp://ftp.mindspring.com/users/jdonwells/UnitTest.zip
ftp://ftp.mindspring.com/users/jdonwells/UnitTest.zip

XP and the Mark IV Coffee Maker

private int numberPassed ()
{int passed = 0;
for (int each = 0; each < tests.length; each++)

{if (tests[each].success) passed++;}
return passed;}

private void showPassFail (int aScore)
{scoreLabel.setBackground((aScore == 100) ? Color.green : Color.red);}

private Label scoreLabel()
{return scoreLabel = new Label("Not Run", Label.CENTER);}

private List listOfTests ()
{listOfTests = new List(tests.length, false);
for (int each = 0; each < tests.length; each++)

{listOfTests.addItem(tests[each].result);};
return listOfTests;}

private Button runButton()
{runTestsButton = new Button("Run Tests");
return runTestsButton;}

public boolean action(Event anEvent, Object anObject)
{if(wasRunTestsPressed(anEvent))

{runTests();
return true;}

else
{return false;};}

private boolean wasRunTestsPressed(Event anEvent)
{return anEvent.target == runTestsButton;};}

The next portion is the Test class. This
class will be the super class of any tests we will be
creating.

package unittest.framework;

/*
* This is the class to extend for each test you need to run.
* One new class for each test. JUnit allows multiple tests
* per test class and is becoming the standard. Use JUnit instead.
* setUp() is called before the test is run and can be used to
* initialize your test. runTest() is called to actually run
* your test. Override it and send the message should(boolean, String)
* to check if the test has passed or failed.
* tearDown() is called after your test is run and can be used
* to clean up.
*/

public class Test
{public boolean success;
public String result;

public Test()
{super();
this.initialize();}

private void initialize()

http://www.extremeprogramming.org/example/utframesource.html (2 of 4) [10/17/2003 1:57:35 PM]

XP and the Mark IV Coffee Maker

{this.testFailed("not run");}

public void setUp()
{}

protected void runTest()throws Exception
{}

public void tearDown()
{}

protected void should (boolean aTestPassed, String aMessage)
{if (!aTestPassed)

{throw new TestFailedException(aMessage);};}

public void run()
{runAndCaptureAborts();}

private void runAndCaptureAborts()
{try

{runAndCaptureFailures();}
catch (Exception exception)

{testFailed("Aborted : " + exception.getMessage());};}

private void runAndCaptureFailures()throws Exception
{try

{runAndAllowExceptions();}
catch (TestFailedException exception)

{testFailed("Failed : " + exception.getMessage());};}

private void runAndAllowExceptions()throws TestFailedException, Exception
{runTest();
testPassed();}

private void testPassed()
{success = true;
result = message("Passed");}

private void testFailed(String aMessage)
{success = false;
result = message(aMessage);}

private String message(String aString)
{return getClass().getName() + " : " + aString;};}

The third and last portion of the
framework is the TestSuite class. This simple
class holds a set of tests together.

http://www.extremeprogramming.org/example/utframesource.html (3 of 4) [10/17/2003 1:57:35 PM]

XP and the Mark IV Coffee Maker

package unittest.framework;

/*
* Extend this class to create sets of tests to be run together.
* Override the creation method and initialize the tests variable to
* contain an array of Test subclasses. One instance for each
* test that needs to be run. This superclass also provides a
* default empty suite of tests.
*/

public class TestSuite
{public Test tests [];

public TestSuite()
{tests = new Test[0];};}

It helps to see some examples of how to
actually use this framework. Let's create a sample
TestSuite with 3 tests. One each for pass, fail, and
abort results.

The most instructional class is presented
last. The AbortTest is more like a test we would
create. An expression followed by what we are
testing is passed to the should method.

package unittest.framework;

public class FrameworkTests extends TestSuite
{public FrameworkTests()

{tests = new Test[3];
tests[0] = new unittest.framework.GoodTest();
tests[1] = new unittest.framework.FailTest();
tests[2] = new unittest.framework.AbortTest();};}

public class GoodTest extends Test
{protected void runTest()

{should (true, "This test always succeeds");};}

public class FailTest extends Test
{protected void runTest()

{should(false, "this test always fails");};}

public class AbortTest extends Test
{private int number[] = {0,1,2,3};

protected void runTest()
{should(number[1] / number[0] == 0, "test divide by zero");};}

ExtremeProgramming.org home | Back to Unit Test Framework | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/utframesource.html (4 of 4) [10/17/2003 1:57:35 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Story Cards for a Coffee Maker

Let's begin creating user stories for the
Mark IV Coffee Maker. The Fictitious Advanced
Product Design Department (FADD) is our
customer in this case. They will determine what
the coffee maker will do. They will make these
decisions based on their experience with the coffee
maker market and where they want this new
coffee maker to be positioned strategically in the
market. We create four stories making sure that
the stories are about what the coffee maker will
do and not about how it will do it. It is up to the
hardware design group and us, the software
group to decide if these things can work and how. When we met with the hardware

designers they proposed we add a cancel brewing
function. We ask the customers about it and they
make it clear this is not a good idea. This feature
will add nothing to marketability and will cost us
to implement.

Meanwhile, our other team members are
creating a unit testing framework and trying out
a spike solution. The spike solution will be critical
to our estimations at the release planning
meeting.

ExtremeProgramming.org home | XP and the Coffee Maker | Testing Framework | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/coffeestories.html [10/17/2003 1:57:36 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

XP and the Mark IV Coffee Maker

There has been some discussion on
comp.object.moderated of how Extreme
Programming (XP) would design a solution to
Robert Martin's Mark IV Coffee Maker example.
Use cases and a design based on them are
provided by Jim Weirich. The question is would
XP generate a similar design? Let's begin XP
style by scoping the project and seeing what kind
of delivery date we can achieve.

The first phase of any XP project is to
gather user stories and conduct some
experiments. The stories will be used to estimate

the project and to schedule a release date. The
experiments will allow us to make estimations
with confidence.

Some of us will go meet with the hardware
people now. Mean while, some of us will help the
Fictitious Advanced Product Design Department
(FAPDD) create user stories, and some of us will
work on a unit testing framework and then a
spike solution.

ExtremeProgramming.org home | The Coffee Maker's Hardware | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/stories.html [10/17/2003 1:57:36 PM]

http://w3.one.net/~jweirich/java/coffee/CoffeeMaker.htm
mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

XP and the Mark IV Coffee Maker

The meeting between the software people
and the electrical and mechanical engineers on
the project goes well. The hardware people have
already been approached by the Fictitious
Advanced Product Design Department (FAPDD)
and have added several new features to this coffee
maker.

A relief valve to interrupt coffee brewing,
and a weight sensor in the coffeepot station are
new. But most importantly to us is the
microprocessor control system. A state of the art
microcontroller with Java 1.0 burnt into ROM,
half a Meg of FLASH, half a Meg of RAM and 32
GPIO pins.

Fabulous, we won't have to program this
thing in assembler [and all of the people watching
over our shoulders will be able to actually run the
code from their Internet browser.] The electrical
engineers will use the bottom most 8 GPIO pins
for input from the A/D converter to get the
pressure sensor reading. The next 2 pins are input
for the brew button and the water sensor. The
next 4 pins are output to the indicator light,
warmer, boiler, and pressure relief valve in that
order. The top most 18 pins are unused.

Things are going well, then one of the
engineers asks a question: "What about the
cancel brew function."

"We haven't heard anything about that."
"Well, we talked to the FAPDD guys and

they don't want it but we could just add it easy
enough."

"Any additional requirements will effect
our time to delivery date."

"But it won't cost you anything to add it
now, adding it later will."

"I don't think that is true. If we add a
cancel brewing function we will have to read the
brew button during the brew cycle right?"

"Well yes, I suppose but you were going to
do that any way weren't you?"

"We don't know yet. Besides, there is
another issue. We would be required to debounce
the switch."

"Weren't you going to debounce the
switch anyway?"

Continued on Page 2.

ExtremeProgramming.org home | XP and the Coffee Maker | User Stories | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/hardwaredesign.html [10/17/2003 1:57:37 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Debounce a Switch

The problem with hardware is it doesn't
behave nicely. In the case of switches they don't
just turn off and on. They bounce. When you
push a button it will go on, then off, then on, then
off, before it goes on and stays on. The common
way to deal with this is to read a switch's input

and if it has changed state you must ignore it for a
fraction of a second. Just long enough for it to
stop bouncing. Then you may reliably read it as
input again.

ExtremeProgramming.org home | Back to Hardware Design | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/debounce.html [10/17/2003 1:57:37 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

XP and the Mark IV Coffee Maker

Continued from Page 1.

"No we were going to keep it simple. If we
debounce the switch then we add a requirement
to keep track of time. I would like to keep such
things out of the software if possible."

"Sounds like a bad design decision to me."
"If we find out we need it we will just add

it later, XP allows us to act as if future
requirements don't exist, you'll see. Next we need
to talk about functional testing."

"We don't test our products we send them
off to QA. They test it and tell us what is broken.
We fix it and send it back again until everything
is working."

"I was thinking of a different scenario.
Suppose we send a product to QA that has no
bugs?"

"That has never happened."
"We can at least try. What we will need is

a computer with a 32 bit PIA to connect to the
microcontroller we are building for the coffee
maker. An additional PIA to control the coffee
maker's power would also be good. We can then
program the functional test computer to run
scenarios on the coffee maker's microcontroller
and test it completely before it even goes to QA."

"We could make something available near
the end of the project, but you will need one of
our MDL's and a FLASH burner for it to do you
any good. That kind of equipment is already in
short supply. You guys have a lot to learn about
building commercial software!"

"I suppose if you could help us verify a
software simulation, which we could then
supplement with an occasional run on real
hardware that would be enough. We would also
like to do a spike solution before we attempt to
cost out this project. We will need a prototype
coffee maker. We want to try a simple experiment
of reading inputs and controlling outputs."

"We haven't finished our design yet.
Circuit boards won't be available for awhile."

"How about if we wire wrap something
together quickly that just has the processor, brew
button and the indicator light?"

"We can help with a schematic and show
you how to burn the FLASH memory, if you do
all the wire wrapping."

"Agreed."
Next let's see how the rest of the team is

doing with the FADD helping them create user
stories.

ExtremeProgramming.org home | XP and the Coffee Maker | User Stories | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/hardwaredesign2.html [10/17/2003 1:57:38 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Coffee Maker Spike Solution

The spike solution we want to try here will
answer the question: Can we interface to the
hardware as easy as we think? These types of
spikes are very common and very useful at the
beginning of an XP project.

In order to do this spike we will need some
hardware. [Since no hardware exists we will use a
simulation instead.] Our simulated hardware will
need to be designed first. We use CRC cards to
design it. Our next job is to create a
simulation of our PIA, the only hardware we will
interface with. The next piece will be the

simulator itself followed by a GUI to control it.
Then we will create the spike code and answer
our question. If the answer is yes, it is simple to
control the coffee maker hardware, then our user
story time estimates will be lower and with less
risk.

We have not finished our spike yet, but we
should be done soon, so book mark this page and
come back! What we need next is have a release
planning meeting with the user story cards we
created. I will add that example as time allows.

ExtremeProgramming.org home | XP and the Coffee Maker | Designing the Simulator | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/spike.html [10/17/2003 1:57:39 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

A Second Test for the PIA Class

Next we can create a unit test for writing
to the PIA register. In this case we are making
sure that only output bits are changed.

package simulator.r3.unittest;

import unittest.framework.*;
import simulator.r3.*;

class TestWriteToPIA extends Test
{public void runTest()

{PIA.register = 0x00FF;
PIA.setInputs(0x0F0F);
PIA.write(0x3333);
should(PIA.register == 0x303F, "Write never changes inputs");};}

We also need to put this test into our test
suite.

package simulator.r3.unittest;

import unittest.framework.*;

public class SimulatorTests extends TestSuite
{public SimulatorTests()

{tests = new Test[2];
tests[0] = new TestReadFromPIA();
tests[1] = new TestWriteToPIA();};}

If we stub out our write method we can
compile and run our new test to be sure it fails.
Now let's create the code for the write method.

package simulator.r3;

public class PIA
{public static int register = 0;
public static int inputBits = 0;

public static int read()
{return register & inputBits;}

public static void write(int theNewOuputs)
{register = read() | (theNewOuputs & ~inputBits);}

public static void setInputs(int aBitMask)
{inputBits = aBitMask;};}

http://www.extremeprogramming.org/example/piacode2.html (1 of 2) [10/17/2003 1:57:40 PM]

XP and the Mark IV Coffee Maker

Run the test again. This time it passes as
expected. Things are going well. But we are not
sure we like the way this code looks. Let's do some
refactoring now.

ExtremeProgramming.org home | Back to Creating a Spike Solution | Refactor | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/piacode2.html (2 of 2) [10/17/2003 1:57:40 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Refactor the PIA Class

Before we do any refactoring we need to
run the unit tests just to be sure we are at 100%.
We will rely on the judgment of the unit tests to
tell us if we have made a mistake while
refactoring.

What we want to do here is make the code
more self explanatory. We will change the
parameter to the setInputBits() method from
aBitMask to theInputBits. We can create a
method inputs(). We can use the inputs()
method in both read() and write(). We can
create a method outputs() to further simplify
write(). We can also create a method
outputBits() to explain what ~inputBits

means to us. And last we should make the
write() method synchronized for
multithreading.

Between each change we run our unit
tests. Each time we create a new method, each
time we change a name. But for the sake of
brevity we will just show you our completed code.

package simulator.r4;

public class PIA
{public static int register = 0;
public static int inputBits = 0;

public static int read()
{return inputs();}

public static void write(int theNewOutputs)
{register = inputs() + outputs(theNewOutputs);}

public static void setInputs(int theInputBits)
{inputBits = theInputBits;}

private static int inputs()
{return register & inputBits;}

private static int outputs(int theOutputs)
{return theOutputs & outputBits();}

private static int outputBits()
{return ~inputBits;};}

Now let's run those unit tests one last time
now that we are done refactoring. We have
correctly refactored our code making it easier to
understand. Next let's work on the simulator.

ExtremeProgramming.org home | The Simulator | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/piacode3.html [10/17/2003 1:57:41 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Start Building the Simulator Class

As we have just seen with the PIA class we
begin to build a class by creating a unit test. In
this case we create a unit test for a message that
the simulator will send to the GUI. Let's start
with the boiler.

What we want to do here is start up the
simulator in its own Thread then change the PIA
register. We then wait a fraction of second and
then make sure a message was sent to the GUI.

package simulator.r5.unittest;

import unittest.framework.*;
import simulator.r5.*;

class TestBoilerOn extends Test implements SimulationInterface
{private int messageSent;
private Thread simulation;

public void setUp()
{messageSent = 0;
PIA.register = 0x0000;
PIA.setInputs(0x003F);
startSimulator();}

public void runTest()
{PIA.write(0x1000);
pauseOneHalfSecond();
should(messageSent == 1, "Got boilerOn " + messageSent + " instead of once");}

public void tearDown()
{stopSimulator();}

public void boilerOn()
{messageSent++;}

private void startSimulator()
{simulation = new Thread(new Simulator(this));
simulation.run();}

private void pauseOneHalfSecond()
{try

{Thread.sleep(500);}
catch (Exception exception)

{};}

private void stopSimulator()
{simulation.stop();
simulation = null;};}

With the test framework we are using we
will also need to add this test to the test suite we
are building.

http://www.extremeprogramming.org/example/simcode.html (1 of 3) [10/17/2003 1:57:43 PM]

XP and the Mark IV Coffee Maker

package simulator.r5.unittest;

import unittest.framework.*;

public class SimulatorTests extends TestSuite
{public SimulatorTests()
{tests = new Test[3];
tests[0] = new TestBoilerOn();
tests[1] = new TestReadFromPIA();
tests[2] = new TestWriteToPIA();};}

With Java we need to create stubs for all
the messages we will send before we can compile.

package simulator.r5;

public class Simulator implements Runnable
{public Simulator (SimulationInterface aGUI)

{}

public void run()
{};}

public interface SimulationInterface
{public void boilerOn();}

Now let's compile and run this new unit
test to make sure that if fails. It fails as expected
so we can now create some code to replace the
stubs we just created.

package simulator.r6;

public class Simulator extends Thread
{SimulationInterface gui;

public Simulator (SimulationInterface aGUI)
{super();
gui = aGUI;}

public void run()
{for (int each = 0; each < 50; each++)

{if ((PIA.register & 0x1000) > 0) gui.boilerOn();
try

{sleep(100);}
catch (InterruptedException exception)

{};};};}

Now we can run the unit tests again to see
if we have the required functionality. The test still
fails. Why? Let's read what the test says, we got
more than one message. We forgot to make sure
the message gets sent only the first time the
register is changed.

http://www.extremeprogramming.org/example/simcode.html (2 of 3) [10/17/2003 1:57:43 PM]

XP and the Mark IV Coffee Maker

ExtremeProgramming.org home | A Spike Solution | Fix the Bug | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simcode.html (3 of 3) [10/17/2003 1:57:43 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Fix a Bug in the Simulator Class

We ran our unit tests and found that we
have a problem. Our simulator sends the message
too many times. So what we need to do is keep
track of what state the switch was in and only
send the message if it changes. Let's write some
code.

package simulator.r7;

public class Simulator extends Thread
{SimulationInterface gui;
boolean boilerIsOn;

public Simulator (SimulationInterface aGUI)
{super();
gui = aGUI;}

public void run()
{for (int each = 0; each < 50; each++)

{if ((PIA.register & 0x1000) > 0 && !boilerIsOn)
{gui.boilerOn();
boilerIsOn = true;}

try
{sleep(100);}

catch (InterruptedException exception)
{};};};}

Run those unit tests again. Now they run
just fine. Let's clean up a bit now.

ExtremeProgramming.org home | A Spike Solution | Refactor the Simulator | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simcode2.html [10/17/2003 1:57:44 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Refactor the Simulator Class

We have kind of a mess on our hands
right now. We got the test to run, but the code
isn't very pretty. So let's do some refactoring.
First we always run the unit tests to make sure we
have 100%, then we start. We can add lots of
small methods named for what they do.

package simulator.r8;

public class Simulator extends Thread
{SimulationInterface gui;
boolean boilerIsOn = false;
static final int BoilerSwitch = 0x1000;

public Simulator (SimulationInterface aGUI)
{super();
gui = aGUI;}

public void run()
{while (true)

{checkBoilerSwitch();
sleepOneTenthSecond();};}

private void checkBoilerSwitch()
{if (wasBoilerJustSwitchedOn()) turnOnBoiler();}

private boolean wasBoilerJustSwitchedOn()
{return isBoilerSwitchedOn() && boilerIsOff();}

private boolean isBoilerSwitchedOn()
{return (PIA.register & BoilerSwitch) > 0;}

private boolean boilerIsOff()
{return !boilerIsOn;}

private void turnOnBoiler()
{gui.boilerOn();
boilerIsOn = true;}

private void sleepOneTenthSecond()
{try

{sleep(100);}
catch (InterruptedException exception)

{};};}

You know what comes next. Run those
unit tests again. They still run so we have not
broken anything. Let's add another unit test.

ExtremeProgramming.org home | A Spike Solution | Next Unit Test | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simcode3.html [10/17/2003 1:57:44 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Unit Test the Boiler Turning Off

The next thing we can test is turning the
boiler off. In order to test the boiler turning off
we must first turn on the boiler then shut it back
off. So let's extend the TestBoilerOff test to also
test for the boiler coming back on. We will need to
rename it to be TestBoiler.

package simulator.r8b.unittest;

import unittest.framework.*;
import simulator.r8b.*;

class TestBoiler extends Test implements SimulationInterface
{private int onMessageSent, offMessageSent;
private Thread simulation;

public void setUp()
{onMessageSent = 0;
offMessageSent = 0;
PIA.register = 0x0000;
PIA.setInputs(0x003F);
startSimulator();}

public void runTest()
{testBoilerOn();
testBoilerOff();}

private void testBoilerOn()
{PIA.write(0x1000);
pauseOneQuarterSecond();
should(onMessageSent == 1, "Got boilerOn " + onMessageSent + " instead of

once");
should(offMessageSent == 0, "Got a different message");}

private void testBoilerOff()
{PIA.write(0x0000);
pauseOneQuarterSecond();
should(onMessageSent == 1, "Got a different message");
should(offMessageSent == 1, "Got boilerOff " + offMessageSent + " instead of

once");}

public void tearDown()
{stopSimulator();}

public void boilerOff()
{offMessageSent++;}

public void boilerOn()
{onMessageSent++;}

private void startSimulator()
{simulation = new Simulator(this);
simulation.start();}

private void pauseOneQuarterSecond()

http://www.extremeprogramming.org/example/simcode4.html (1 of 2) [10/17/2003 1:57:45 PM]

XP and the Mark IV Coffee Maker

{try
{Thread.sleep(250);}

catch (InterruptedException exception)
{};}

private void stopSimulator()
{simulation.stop();
simulation = null;};}

We can change the test suite, create stubs
for the methods we expect to be calling, , compile
them, and try to run it. As we can see we are not
getting our boiler off message as we expected. So
now let's create that code to do that. This time I
am just going to show the changes we will make to
the Simulator class. We will also update the
SimulationInterface to include boilerOff().

private void checkBoilerSwitch()
{if (wasBoilerJustSwitchedOn()) turnOnBoiler();
if (wasBoilerJustSwitchedOff()) turnOffBoiler();}

private boolean wasBoilerJustSwitchedOff()
{return isBoilerSwitchedOff() && boilerIsOn;}

private boolean isBoilerSwitchedOff()
{return (PIA.register & BoilerSwitch) == 0;}

private void turnOffBoiler()
{gui.boilerOff();
boilerIsOn = false;}

Now we run the unit test and it passes.
What now? That's right, another unit test!

ExtremeProgramming.org home | A Spike Solution | Next Unit Test | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simcode4.html (2 of 2) [10/17/2003 1:57:45 PM]

mailto:webmaster@extremeprogramming.org

http://www.extremeprogramming.org/example/simcode5.html

Add Yet Another Unit Test
to the Simulator Class

Let's test the next switch. We choose the
relief valve. First the test code. We notice (since
we cut and pasted it) that this test is very similar
to the boiler test. We have an opportunity for

refactoring, but let's wait until we have two
complete examples before we try to merge them
together.

package simulator.r10.unittest;

import unittest.framework.*;
import simulator.r10.*;

class TestReliefValve extends Test implements SimulationInterface
{private int onMessageSent, offMessageSent, otherMessageSent;
private Thread simulation;

public void setUp()
{onMessageSent = 0;
offMessageSent = 0;
otherMessageSent = 0;
PIA.register = 0x0000;
PIA.setInputs(0x003F);
startSimulator();}

public void runTest()
{testReliefValveOn();
testReliefValveOff();}

private void testReliefValveOn()
{PIA.write(0x2000);
pauseOneQuarterSecond();
should(onMessageSent == 1, "Got reliefValveOn " + onMessageSent + " instead of

once");
should(offMessageSent == 0, "Got a different message");}

private void testReliefValveOff()
{PIA.write(0x0000);
pauseOneQuarterSecond();
should(onMessageSent == 1, "Got a different message");
should(offMessageSent == 1, "Got reliefValveOff " + offMessageSent + " instead

of once");
should(otherMessageSent == 0, "Got some other message");}

public void tearDown()
{stopSimulator();}

public void boilerOff()
{otherMessageSent++;}

public void boilerOn()
{otherMessageSent++;}

public void reliefValveOff()
{offMessageSent++;}

public void reliefValveOn()

http://www.extremeprogramming.org/example/simcode5.html (1 of 3) [10/17/2003 1:57:47 PM]

http://www.extremeprogramming.org/example/simcode5.html

{onMessageSent++;}

private void startSimulator()
{simulation = new Simulator(this);
simulation.start();}

private void pauseOneQuarterSecond()
{try

{Thread.sleep(250);}
catch (InterruptedException exception)

{};}

private void stopSimulator()
{simulation.stop();
simulation = null;};}

We add this to the test suite, and create
stubs for the methods we expect to be calling, now
compile it all, and try to run it. It fails. Let's make
some changes to the simulator class. And add
our new methods reliefValveOn() and
reliefValveOff() to our SimulationInterface.

package simulator.r11;

public class Simulator extends Thread
{SimulationInterface gui;
boolean boilerIsOn = false;
boolean reliefValveIsOn = false;
static final int BoilerSwitch = 0x1000;
static final int ReliefValveSwitch = 0x2000;

public Simulator (SimulationInterface aGUI)
{super();
gui = aGUI;}

public void run()
{while (true)

{checkBoilerSwitch();
checkReliefValveSwitch();
sleepOneTenthSecond();};}

private void checkBoilerSwitch()
{if (wasBoilerJustSwitchedOn()) turnOnBoiler();
if (wasBoilerJustSwitchedOff()) turnOffBoiler();}

private boolean wasBoilerJustSwitchedOn()
{return isBoilerSwitchedOn() && boilerIsOff();}

private boolean wasBoilerJustSwitchedOff()
{return isBoilerSwitchedOff() && boilerIsOn;}

private boolean isBoilerSwitchedOn()
{return !isBoilerSwitchedOff();}

private boolean isBoilerSwitchedOff()
{return (PIA.register & BoilerSwitch) == 0;}

private boolean boilerIsOff()
{return !boilerIsOn;}

http://www.extremeprogramming.org/example/simcode5.html (2 of 3) [10/17/2003 1:57:47 PM]

http://www.extremeprogramming.org/example/simcode5.html

private void turnOnBoiler()
{gui.boilerOn();
boilerIsOn = true;}

private void turnOffBoiler()
{gui.boilerOff();
boilerIsOn = false;}

private void checkReliefValveSwitch()
{if (wasReliefValveJustSwitchedOn()) turnOnReliefValve();
if (wasReliefValveJustSwitchedOff()) turnOffReliefValve();}

private boolean wasReliefValveJustSwitchedOn()
{return isReliefValveSwitchedOn() && reliefValveIsOff();}

private boolean wasReliefValveJustSwitchedOff()
{return isReliefValveSwitchedOff() && reliefValveIsOn;}

private boolean isReliefValveSwitchedOn()
{return !isReliefValveSwitchedOff();}

private boolean isReliefValveSwitchedOff()
{return (PIA.register & ReliefValveSwitch) == 0;}

private boolean reliefValveIsOff()
{return !reliefValveIsOn;}

private void turnOnReliefValve()
{gui.reliefValveOn();
reliefValveIsOn = true;}

private void turnOffReliefValve()
{gui.reliefValveOff();
reliefValveIsOn = false;}

private void sleepOneTenthSecond()
{try

{sleep(100);}
catch (InterruptedException exception)

{};};}

Now we run the unit test and it passes.
Before we can add our next unit test we need to
spend some time refactoring the two tests we
already have so that we can add the third simply.

ExtremeProgramming.org home | A Spike Solution | Next Unit Test | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simcode5.html (3 of 3) [10/17/2003 1:57:47 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Refactor the Simulator Unit Tests

Now let's refactor the unit tests we have
written. The first thing we always do before
refactoring is run the unit tests to be sure we start
at 100%. In this case we are going to be working
with the unit tests themselves. We are using our
code now to verify the unit tests were refactored
correctly instead of the other way around.

package simulator.r12.unittest;

import unittest.framework.*;
import simulator.r12.*;

class SwitchTest extends Test implements SimulationInterface
{protected int onMessageSent, offMessageSent, otherMessageSent;
private Thread simulation;
static final int BoilerSwitch = 0x1000;
static final int ReliefValveSwitch = 0x2000;

public void setUp()
{onMessageSent = 0;
offMessageSent = 0;
otherMessageSent = 0;
PIA.register = 0x0000;
PIA.setInputs(0x003F);
startSimulator();}

public void runTest(int theSwitch)
{testSwitchOn(theSwitch);
testSwitchOff();}

public void tearDown()
{stopSimulator();}

private testSwitchOn(int theSwitch)
{PIA.write(theSwitch);
pauseOneQuarterSecond();
should(onMessageSent == 1, "Got on message " + onMessageSent + " instead of

once");
should(offMessageSent == 0, "Got an off message");}

private testSwitchOff()
{PIA.write(0x0000);
pauseOneQuarterSecond();
should(onMessageSent == 1, "Got an on message instead");
should(offMessageSent == 1, "Got off message " + offMessageSent + " instead of

once");
should(otherMessageSent == 0, "Got some other message");}

public void boilerOff()
{otherMessageSent++;}

public void boilerOn()
{otherMessageSent++;}

http://www.extremeprogramming.org/example/simcode6.html (1 of 3) [10/17/2003 1:57:48 PM]

XP and the Mark IV Coffee Maker

public void reliefValveOff()
{otherMessageSent++;}

public void reliefValveOn()
{otherMessageSent++;}

private void startSimulator()
{simulation = new Simulator(this);
simulation.start();}

private void stopSimulator()
{simulation.stop();
simulation = null;}

private void pauseOneQuarterSecond()
{try

{Thread.sleep(250);}
catch (InterruptedException exception)

{};};}

What we did to create this super class is to
find everything that was in common between the
two classes we already had and create a generic
version. With this super class recreating our two
tests is easy.

package simulator.r12.unittest;

class TestBoiler extends SwitchTest
{public void runTest()

{runTest(BoilerSwitch);}

public void boilerOff()
{offMessageSent++;}

public void boilerOn()
{onMessageSent++;};}

package simulator.r12.unittest;

class TestReliefValve extends SwitchTest
{public void runTest()

{runTest(ReliefValveSwitch);}

public void reliefValveOff()
{offMessageSent++;}

public void reliefValveOn()
{onMessageSent++;};}

Run the new unit tests and they pass. We
can add the third simply now. But before we do
that let's refactor our simulator class first. There
is a lot of code that looks just alike and I think it
could be simpler.

http://www.extremeprogramming.org/example/simcode6.html (2 of 3) [10/17/2003 1:57:48 PM]

XP and the Mark IV Coffee Maker

ExtremeProgramming.org home | A Spike Solution | Refactor the Simulator | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simcode6.html (3 of 3) [10/17/2003 1:57:48 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Refactor the Simulator Itself

Now it is the Simulator's turn for some
refactoring. So let's run those unit tests and get
started. The first thing I want to do is add a
method called isSwitchedOff(). Now I can
change both isBoilerSwitchedOff() and
isReliefValveSwitchedOff() to use it. At this
point I compile and run the unit tests to be sure
my small change is correct.

Then I continue by changing
wasBoilerJustSwitchedOff() and
wasReliefValveJustSwitchedOff() to use
isSwitchedOff() directly. Now I can delete both
isBoilerSwitchedOff() and
isReliefValveSwitchedOff(). Again I run the
unit tests to verify this small change is correct.

I can now do the same with the "on"
methods as well. After each small change I run
the tests before continuing.

This refactoring eliminates several of the
switch specific methods. Last I will create a
Switch interface to keep track of all those bit
masks.

package simulator.r13;

public class Simulator extends Thread implements Switches
{SimulationInterface gui;
private boolean boilerIsOn = false, reliefValveIsOn = false;

public Simulator (SimulationInterface aGUI)
{super();
gui = aGUI;}

public void run()
{while (true)

{checkBoilerSwitch();
checkReliefValveSwitch();
sleepOneTenthSecond();};}

private void checkBoilerSwitch()
{if (wasJustSwitchedOn(BoilerSwitch, boilerIsOn)) turnOnBoiler();
if (wasJustSwitchedOff(BoilerSwitch, boilerIsOn)) turnOffBoiler();}

private void checkReliefValveSwitch()
{if (wasJustSwitchedOn(ReliefValveSwitch, reliefValveIsOn))

turnOnReliefValve();
if (wasJustSwitchedOff(ReliefValveSwitch, reliefValveIsOn))

turnOffReliefValve();}

private void turnOnBoiler()
{gui.boilerOn();
boilerIsOn = true;}

private void turnOffBoiler()
{gui.boilerOff();
boilerIsOn = false;}

private void turnOnReliefValve()
{gui.reliefValveOn();

http://www.extremeprogramming.org/example/simcode7.html (1 of 2) [10/17/2003 1:57:49 PM]

XP and the Mark IV Coffee Maker

reliefValveIsOn = true;}

private void turnOffReliefValve()
{gui.reliefValveOff();
reliefValveIsOn = false;}

private boolean wasJustSwitchedOn(int aSwitch, boolean isOnNow)
{return isSwitchedOn(aSwitch) && !isOnNow;}

private boolean wasJustSwitchedOff(int aSwitch, boolean isOnNow)
{return isSwitchedOff(aSwitch) && isOnNow;}

private boolean isSwitchedOff(int aSwitch)
{return (PIA.register & aSwitch) == 0;}

private boolean isSwitchedOn(int aSwitch)
{return !isSwitchedOff(aSwitch);}

private void sleepOneTenthSecond()
{try

{sleep(100);}
catch (InterruptedException exception)

{};};}

package simulator.r13;

public interface Switches
{static final int BoilerSwitch = 0x1000;
static final int ReliefValveSwitch = 0x2000;}

This looks like enough for now. If
complexity creeps in again we will do more
refactoring. Let's run those unit tests one last time
to make sure we are ready to continue. How do
we continue? Of course, another unit test.

ExtremeProgramming.org home | A Spike Solution | Another Unit Test | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simcode7.html (2 of 2) [10/17/2003 1:57:49 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Test the Warmer Switch Now

The next unit test will test the warmer
switch. We refactored our unit tests so now this is
trivial.

package simulator.r14.unittest;

class TestWarmer extends SwitchTest
{public void runTest()
{runTest(WarmerSwitch);}

public void warmerOff()
{offMessageSent++;}

public void warmerOn()
{onMessageSent++;};}

We always test our test by creating stubs,
compiling and running. Of course it fails. Now
let's add some code to make it pass. We can add
three methods checkWarmerSwitch(),
turnOnWarmer() and turnOffWarmer(). Then
change our run() method to call them.

package simulator.r15;

public class Simulator extends Thread implements Switches
{SimulationInterface gui;
private boolean boilerIsOn = false, reliefValveIsOn = false, warmerIsOn = false;

public Simulator (SimulationInterface aGUI)
{super();
gui = aGUI;}

public void run()
{while (true)

{checkBoilerSwitch();
checkReliefValveSwitch();
checkWarmerSwitch();
sleepOneTenthSecond();};}

private void checkBoilerSwitch()
{if (wasJustSwitchedOn(BoilerSwitch, boilerIsOn)) turnOnBoiler();
if (wasJustSwitchedOff(BoilerSwitch, boilerIsOn)) turnOffBoiler();}

private void checkReliefValveSwitch()
{if (wasJustSwitchedOn(ReliefValveSwitch, reliefValveIsOn))

turnOnReliefValve();
if (wasJustSwitchedOff(ReliefValveSwitch, reliefValveIsOn))

turnOffReliefValve();}

private void checkWarmerSwitch()
{if (wasJustSwitchedOn(WarmerSwitch, warmerIsOn)) turnOnWarmer();

http://www.extremeprogramming.org/example/simcode8.html (1 of 2) [10/17/2003 1:57:50 PM]

XP and the Mark IV Coffee Maker

if (wasJustSwitchedOff(WarmerSwitch, warmerIsOn)) turnOffWarmer();}

private void turnOnBoiler()
{gui.boilerOn();
boilerIsOn = true;}

private void turnOffBoiler()
{gui.boilerOff();
boilerIsOn = false;}

private void turnOnReliefValve()
{gui.reliefValveOn();
reliefValveIsOn = true;}

private void turnOffReliefValve()
{gui.reliefValveOff();
reliefValveIsOn = false;}

private void turnOnWarmer()
{gui.warmerOn();
warmerIsOn = true;}

private void turnOffWarmer()
{gui.warmerOff();
warmerIsOn = false;}

private boolean wasJustSwitchedOn(int aSwitch, boolean isOnNow)
{return isSwitchedOn(aSwitch) && !isOnNow;}

private boolean wasJustSwitchedOff(int aSwitch, boolean isOnNow)
{return isSwitchedOff(aSwitch) && isOnNow;}

private boolean isSwitchedOff(int aSwitch)
{return (PIA.register & aSwitch) == 0;}

private boolean isSwitchedOn(int aSwitch)
{return !isSwitchedOff(aSwitch);}

private void sleepOneTenthSecond()
{try

{sleep(100);}
catch (InterruptedException exception)

{};};}

We now run the unit tests again and they
pass. Something is wrong with this code. It is
getting way to large and hard to understand and
there are lots of methods that look alike except for
a couple name changes. I think it is time for a big
refactoring.

ExtremeProgramming.org home | A Spike Solution | Refactor Again | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simcode8.html (2 of 2) [10/17/2003 1:57:50 PM]

mailto:webmaster@extremeprogramming.org

XP and the Mark IV Coffee Maker

Refactor the Simulator Again

What we want to do here is remove the
duplication of code. What we see is lots of code
that does not use any local variable or methods
which are exclusive to the owning class. We see
the potential for a new class to eliminate the
redundancy. We can try it and see if we like it.
But first we run the unit tests to be sure we are at
100% to start. First I can extract out the boiler
switch check into a separate class. We can then
remove the boiler switch check from the
simulator.

package simulator.r16;

public class BoilerSwitchCheck extends Object implements Switches
{private boolean boilerIsOn = false;

public void checkBoilerSwitch(SimulationInterface aGUI)
{if (wasJustSwitchedOn()) turnOnBoiler(aGUI);
if (wasJustSwitchedOff()) turnOffBoiler(aGUI);}

private void turnOnBoiler(SimulationInterface aGUI)
{aGUI.boilerOn();
boilerIsOn = true;}

private void turnOffBoiler(SimulationInterface aGUI)
{aGUI.boilerOff();
boilerIsOn = false;}

private boolean wasJustSwitchedOn()
{return isSwitchedOn() && boilerIsOff();}

private boolean wasJustSwitchedOff()
{return isSwitchedOff() && boilerIsOn;}

private boolean isSwitchedOff()
{return (PIA.register & BoilerSwitch) == 0;}

private boolean isSwitchedOn()
{return !isSwitchedOff();}

private boolean boilerIsOff()
{return !boilerIsOn;};}

Now let's run those same unit tests again.
They run just fine so we refactored out the new
class correctly. We can refactor out the relief
valve check and the warmer switch check as well.
Our simulator is now reasonably simple.

http://www.extremeprogramming.org/example/simcode9.html (1 of 2) [10/17/2003 1:57:52 PM]

XP and the Mark IV Coffee Maker

package simulator.r17;

public class Simulator extends Thread
{SimulationInterface gui;
private BoilerSwitchCheck boiler = new BoilerSwitchCheck();
private ReliefValveCheck reliefValve = new ReliefValveCheck();
private WarmerSwitchCheck warmer = new WarmerSwitchCheck();

public Simulator (SimulationInterface aGUI)
{super();
gui = aGUI;}

public void run()
{while (true)

{boiler.checkBoilerSwitch(gui);
reliefValve.checkReliefValve(gui);
warmer.checkWarmerSwitch(gui);
sleepOneTenthSecond();};}

private void sleepOneTenthSecond()
{try

{sleep(100);}
catch (InterruptedException exception)

{};};}

Let's run the unit tests for this simplified
simulator class. We pass the test. Now we have a
different problem to solve. We have three classes
almost alike. Can we create a single super class to
hold most of the common code? I haven't finished
trying this yet, so come back soon and see what
happens next!

ExtremeProgramming.org home | A Spike Solution | Back to Spike | Email the webmaster

Copyright 1999 by Don Wells.

http://www.extremeprogramming.org/example/simcode9.html (2 of 2) [10/17/2003 1:57:52 PM]

mailto:webmaster@extremeprogramming.org

Extreme Rules

Unit Tests

Continued from page 1

Unit tests enable refactoring as well. After
each small change the unit tests can verify that a
change in structure did not introduce a change in
functionality.

Building a single universal unit test suite
for validation and regression testing enables
frequent integration. It is possible to integrate any
recent changes quickly then run your own latest
version of the test suite. When a test fails your
latest versions are incompatible with the team's
latest versions. Fixing small problems every few
hours takes less time than fixing huge problems
just before the deadline. With automated unit
tests it is possible to merge a set of changes with
the latest released version and release in a short
time.

Often adding new functionality will
require changing the unit tests to reflect the
functionality. While it is possible to introduce a
bug in both the code and test it rarely happens in
actual practice. It does occasionally happen that
the test is wrong, but the code is right. This is
revealed when the

problem is investigated and is fixed. Creating
tests independent of code, hopefully before code,
sets up checks and balances and greatly improves
the chances of getting it right the first time.

Unit Tests provide a safety net of
regression tests and validation tests so that you
can refactor and integrate effectively. As they say
at the circus; never work without a net! Creating
the unit test before the code helps even further by
solidifying the requirements, improving developer
focus, and avoid creeping elegance.

ExtremeProgramming.org home | XP Rules | Download a Unit Test Framework | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/unittests2.html [10/17/2003 1:57:53 PM]

http://c2.com/cgi/wiki?UnitTests
http://www.xprogramming.com/xpmag/expUnitTestsAt100.htm
http://www.junit.org/
mailto:webmaster@extremeprogramming.org

Extreme Rules

The Customer is Always Available

Continued from page 1.

Because details are left off the user stories
the developers will need to talk with customers to
get enough detail to complete a programming
task. Projects of any significant size will require a
full time commitment from the customer.

The customer will also be needed to help
with functional testing. The test data will need to
be created and target results computed or
verified. Functional tests verify that the system is
ready to be released into production. It can
happen that the system will not pass all functional
tests just prior to release. The customer will be
needed to review the test score and allow the
system to continue into production or stop it.

This may seem like a lot of the customer's
time at first but we should remember that the
customer's time is spared initially by not
requiring

a detailed requirements specification and saved
later by not delivering an uncooperative system.

Some problems can occur when multiple
customers are made available part time. Experts
in any field have a tendency to argue. This is
natural. Solve this problem by requiring all the
customers to be available for occasional group
meetings to hash out differences of opinion.

ExtremeProgramming.org home | XP Rules | Coding Standards | Email the webmaster
Copyright 1997, 1999 Don Wells all rights reserved. Any resemblance to actual customers is purely coincidental.

http://www.extremeprogramming.org/rules/customer2.html [10/17/2003 1:57:56 PM]

http://www.xp123.com/xplor/xp0006c/index.shtml
mailto:webmaster@extremeprogramming.org

Extreme Rules

Release Planning

Continued from page 1

Individual iterations are planned in detail
just before each iteration begins and not in
advance. The release planning meeting was called
the planning game and the rules can be found at
the Portland Pattern Repository.

When the final release plan is created and
is displeasing to management it is tempting to just
change the estimates for the user stories. You
must not do this. The estimates are valid and will
be required as-is during the iteration planning
meetings. Underestimating now will cause
problems later. Instead negotiate an acceptable
release plan. Negotiate until the developers,
customers, and managers can all agree to the
release plan.

The base philosophy of release planning is
that a project may be quantified by four
variables; scope, resources, time, and quality.
Scope is how much is to be done. Resources are

how many people are available. Time is when the
project or release will be done. And quality is how
good the software will be and how well tested it
will be.

Management can only choose 3 of the 4
project variables to dictate, development always
gets the remaining variable. Note that lowering
quality less than excellent has unforeseen impact
on the other 3. In essence there are only 3
variables that you actually want to change. Also
let the developers moderate the customers desire
to have the project done immediately by hiring
too many people at one time.

ExtremeProgramming.org home | XP Rules | Release Plan | Email the webmaster

Copyright 1999 Don Wells all rights reserved.

http://www.extremeprogramming.org/rules/planninggame2.html [10/17/2003 1:57:57 PM]

http://c2.com/cgi/wiki?PlanningGame
http://www.xp123.com/xplor/xp0006b/index.shtml
http://c2.com/cgi/wiki?PlanningGame
http://c2.com/cgi/wiki?ExtremePlanning
http://c2.com/cgi/wiki?FourVariables
http://www.xp123.com/xplor/xp0002g/index.shtml
mailto:webmaster@extremeprogramming.org

Extreme Programming Lessons Learned

XP and Databases

At the VCAPS project we found ourselves
faced with the problem of XP and a large
database. Our database was Object Oriented, but
a relational database could be handled the same
way. Remember that if you implement user
stories customer value first your database tables
and normalization will become stable faster.

The key point is taking the advice of Kent
Beck, act as if the database is easy to change.
Relational databases were created to be flexible,
so flex them. Kent also advises that when
something is very difficult try doing it more often
not less. That way you get good at doing it and it
won't be hard any longer. Get into the habit of
migrating your database often, you will make less
mistakes not more.

The VCAPS solution was to have a gold, a
silver, and many bronze database versions. The
gold is the one that resembles the production
database. The silver is a migrated gold database.
Each developer has a bronze database migrated
from the silver.

A bronze database becomes silver when
the developer's code is released. A silver database
becomes gold when the production database is
migrated.

It is important that everyone can easily get
a copy of the gold or silver data base to use as a
bronze quickly and that we keep track of
migration paths. Setting up scripts to copy
databases as files is very useful. You need one to
make a copy of a bronze database promoting it to
silver, and one to restore the current silver to the
local host, which ever computer you are at.

Each database has the same set of test
user ids and passwords. Developers and database
connections can use the same user ids on any of
the databases.

Each development pair will release newly
developed code into the source code safe, promote
their bronze database to silver, and add a
migration script to a list. How you manage the list
of migrations will depend on your data base
software and how you access it. This list of scripts
can then be executed in sequence to migrate the
production database when the new

version is released to production. Independence
from the application code is important since it can
change causing the migration script fail. Use an
integration station to control the sequence of
changes.

At any moment in time the new silver
database and the currently released code version
are exactly in sync. This is important and requires
discipline to maintain.

At any moment in time the gold database
and the production release match up for
production support. At any moment it time the
data base migration scripts and the most current
development release match up ready to be
released.

Developers can integrate often because it
is easy to copy the silver database and check out
the current released code at the same time. The
unit tests will run at 100%. Developers then add
their own changes, perform any database
migration, and integrate until the unit tests are
running at 100% again. This method is very fast
and only takes a couple minutes.

To support testing we had a script to
create a new gold database with a predefined set
of test data. Some data will be created by tests,
but providing an example in the database helps
developers create reliable migration scripts. We
found it useful to create a new gold and migrate it
to silver once a week to avoid the inevitable data
corruption and to assure ourselves that our
migration scripts were correct.

We did have an occasional problem with
migration. We didn't do as good a job of keeping
track of changes as we should have. What we
ended up doing near the end was to formulate our
migrations as executable methods on a DB
maintenance object. This makes the production
migration more reliable and a non-event.

http://www.extremeprogramming.org/stories/testdb.html (1 of 2) [10/17/2003 1:57:58 PM]

http://c2.com/cgi/wiki?ExtremeProgrammingChallengeThirteen
http://c2.com/cgi/wiki?ExtremeProgrammingChallengeThirteenPointFive
http://www.egroups.com/messagesearch/extremeprogramming?query=About%20DB%20Design

Extreme Programming Lessons Learned

ExtremeProgramming.org home | XP Lessons Learned | Next Lesson | Email the webmaster
Copyright 1998, 1999, 2001 Don Wells all rights reserved.

http://www.extremeprogramming.org/stories/testdb.html (2 of 2) [10/17/2003 1:57:58 PM]

mailto:webmaster@extremeprogramming.org

ExtremeProgramming.org Recent Changes

What Has Changed Here?

August 17, updated MXPE next meeting.
March 29, added links to other XP

summaries from the project map page.
March 27, small changes to the front page,

iteration planning and project velocity.
February 17, Changed some icon links to

new articles at www.xprogramming.com
January 30, XP Universe and Agile

Universe will be in Chicago August 4-7, 2002.
January 23, Changes to the feedback loop

diagram.
January 5, Changes to the integrate often

page.
June 4, Changes to the people page. New

books on the more page.
April 22, Updated the XP and Database

page. Added a new diagram showing the planning
and feedback loops.

Changing this web site for the better is
made possible by the people who have taken time
to comment and make recommendations. Many
people have contributed to this web site and the
list has become too long to show. Email the
webmaster.

ExtremeProgramming.org home | Email the webmaster

Copyright 2000 Don Wells all rights reserved.

http://www.extremeprogramming.org/recentchanges.html [10/17/2003 1:58:00 PM]

http://www.xprogramming.com/
http://www.xpuniverse.com/
http://www.xpuniverse.com/
mailto:webmaster@extremeprogramming.org
mailto:webmaster@extremeprogramming.org
mailto:webmaster@extremeprogramming.org

	extremeprogramming.org
	Extreme Programming: A Gentle Introduction.
	Extreme Programming Lessons Learned
	Lessons Learned
	Commitment Schedule
	Extreme Rules
	Extreme Rules
	Extreme Rules
	Extreme Rules
	User Stories
	Extreme Rules
	Extreme Rules
	Extreme Rules
	XP flow Chart
	Extreme Rules
	Extreme Programming Lessons Learned
	Extreme Rules
	Extreme Rules
	Extreme Rules
	Extreme Rules
	Extreme Programming Lessons Learned
	Extreme Programming Lessons Learned
	Extreme Rules
	Extreme Programming Lessons Learned
	Extreme Programming Lessons Learned
	Extreme Rules
	Extreme Rules
	XP Lessons Learned
	XP flow chart
	Extreme Rules
	Extreme Programming Lessons Learned
	Extreme Rules
	Extreme Rules
	Refactor Mercilessly
	Extreme Rules
	Extreme Rules
	XP flow chart
	XP flow chart
	Extreme Rules
	Extreme Rules
	XP Lessons Learned
	Lessons Learned Pair Programming
	Lessons Learned Pair Programming
	Lessons Learned Pair Programming
	Lessons Learned Pair Programming
	Lessons Learned Pair Programming
	Lessons Learned Pair Programming
	Sequential Release
	Sequential Release
	Dedicated Release Computer
	Extreme Rules
	Lessons Learned
	Extreme Rules
	XP flow Chart
	Starting XP
	Starting XP
	More XP Information
	XP people.
	Michigan eXtreme Programming Enthusiasts
	Extreme Rules
	Extreme Rules
	Extreme Programming Lessons Learned
	No Overtime
	http://www.extremeprogramming.org/stories/simple2.html
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP Philosophy
	What is Extreme Programming
	A change is coming.
	What is Extreme Programming
	Do we need XP?
	XP is a lightweight methodology
	XP is a lightweight methodology
	Introducing the Rules of Extreme Programming
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	http://www.extremeprogramming.org/example/simcode5.html
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	XP and the Mark IV Coffee Maker
	Extreme Rules
	Extreme Rules
	Extreme Rules
	Extreme Programming Lessons Learned
	ExtremeProgramming.org Recent Changes

	HCJNHCBIHJCDENEMCCHCDHHIFIEDPGFG:
	form1:
	x:
	f1: enter email address

	f2:

