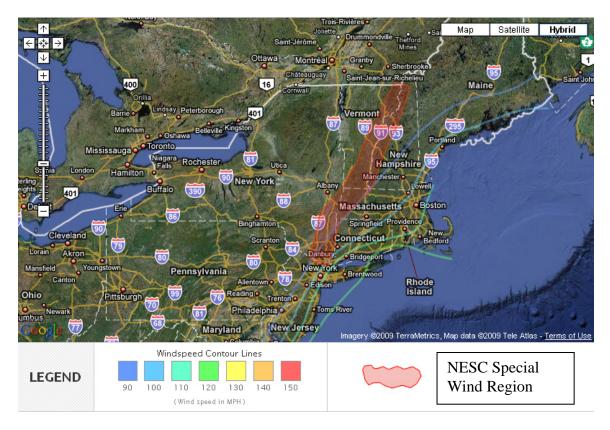
## Extreme Wind Speed Region in New England and New York

P.Jayachandran<sup>a</sup>, M.ASCE, Brian M. Reynolds, P.E.<sup>b</sup> and Mark S. Browne, P.E.<sup>b</sup>

<sup>a</sup> Worcester Polytechnic Institute,100 Institute Road, Worcester, MA, 01609

<sup>b</sup> National Grid, 40 Sylvan Road, Waltham, MA 02451-1120


## Abstract

The extreme wind speed region for New York and New England is described in this paper. The wind speed data from the National Climatic Data Center, National Institute of Standards and Technology, and the US National Meteorological Service are analyzed using software from NIST to develop the probability distribution functions. Contours were drawn for extreme wind speeds and their corresponding mean recurrence interval in a map and data for the New York and New England region. Gumbel Type I distribution model is used to predict probability of any unknown wind speeds exceeding observed wind speeds. Recommendations are made to use these wind speeds in design of transmission line systems.

### 1. Introduction

Present National Grid US Transmission (UST) wind speed design standards follow the basic wind speeds denoted by the National Electrical Safety Code (NESC). Wind speed design requirements are most extreme along the sea coast lines and gradually taper off at points more inland. The minimum basic wind speed is 90 mph on a 3 second gust interval (See Figure 1). The area highlighted in red is denoted as a "Special Wind Region" by the NESC. The NESC provides no guidance on wind speeds in this area other than to recommend regional wind studies be performed as part of design.

Some limited wind speed studies have been performed at National Grid by AWS Truewind in 2006 and WSI Corporation 2007, but there has not been a comprehensive study performed to assess the special wind region. Additionally, the WSI study suggested that wind speeds in excess of 90 mph are possible in some areas in New York. Given the unknown status of the NESC special wind region, and the results from other areas, this study was expanded to assess the wind design for the entire National Grid UST territory.



**Figure 1.** NESC Special wind region and coastal wind contours for New York and New England (map by TerraMetrics).

## 2. Wind Speed Design History

Wind speeds can vary greatly depending upon terrain roughness and geographic features. The American Society of Civil Engineers (ASCE, 1991a) defines 4 major terrain roughness exposure categories. Exposure B is classified as urban and suburban areas and wooded areas. Exposure C is flat open country such as farms and grasslands. This type of terrain is typical of airports where most wind speed data is captured and is the exposure that the NESC basic wind speed is based upon. Exposure D is unobstructed coastlines and open sea. Exposure A is city landscape that is not applicable for transmission line design. It is allowable by ASCE to modify basic wind speed of 90 mph is given for a transmission tower 70 feet in height located in a suburban setting (Exposure B), the design speed can be adjusted to  $90 \times 0.82 = 73.8$  mph (See Table 1).

| Height above<br>ground level,<br>z (ft) (1) | Exposure<br>B (2) | Exposure<br>C (3) | Exposure<br>D (4) |
|---------------------------------------------|-------------------|-------------------|-------------------|
| 0-33                                        | 0.72              | 1.00              | 1.18              |
| 40                                          | 0.75              | 1.03              | 1.21              |
| 50                                          | 0.79              | 1.06              | 1.23              |
| 60                                          | 0.82              | 1.09              | 1.26              |
| 70                                          | 0.85              | 1.11              | 1.28              |
| 80                                          | 0.88              | 1.14              | 1.29              |
| 90                                          | 0.91              | 1.16              | 1.31              |
| 100                                         | 0.93              | 1.17              | 1.32              |
| 120                                         | 0.96              | 1.20              | 1.35              |
| 140                                         | 0.99              | 1.23              | 1.37              |
| 160                                         | 1.02              | 1.26              | 1.39              |
| 180                                         | 1.05              | 1.28              | 1.40              |
| 200                                         | 1.08              | 1.30              | 1.42              |

TABLE 2.4-1. Terrain Factor, Z<sub>v</sub>

Wind speeds can also be affected by local topography (ASCE, 1991c). Increased wind speeds can occur due to funneling affects and wind flows through mountain passes. Wind blowing normal to mountains can see velocity increases on both the windward and leeward faces. Wind flows over mountains can create higher velocities in valley regions sometimes at locations several miles from the mountain ridge.

The NESC underwent a major change in the wind speed design requirements in 2002. Prior to 2002, the NESC based basic wind speed criteria on fastest mile wind (the amount of time it takes for 1 mile of wind to pass by an anemometer) with a 50 year mean return period. Special wind regions were also designated along the southeastern coast of Lake Erie and from southeastern New York extending north easterly through western Massachusetts and the Vermont – New Hampshire borders (See Figure 2).

21

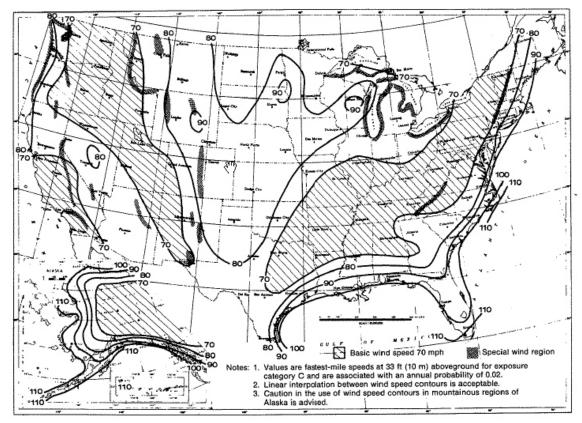
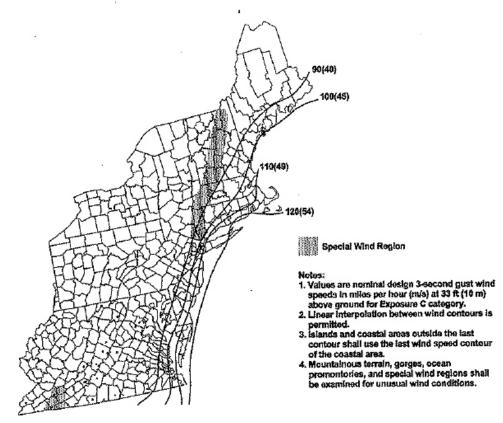




Figure 2. Basic wind speed design chart from NESC 1997. Special wind regions are dentoed by the darkened areas (NESC 1997).

In 2002, the NESC changed the basic wind speed design criteria from fastest mile to 3second gust interval. Since the velocity of the 3-second gust is greater than the fastest mile wind, the basic wind speed design requirements for all locations were increased by roughly 20 mph. However, the introduction of a gust response factor somewhat compensates for this increase. The other notable change was the elimination of the special wind region on the southwest coast of Lake Erie and the widening of the special wind region in the north east (See Figure 3).



**Figure 3.** Basic wind speed design chart from NESC 2002 and NESC 2007 (NESC 2007). Note the elimination of the special wind region along the southwest coast of Lake Erie and the widening of the special wind region in the northeast as compared to NESC 1997, Figure 2.

## 3. Extreme Wind Data in New York and New England

In order to evaluate extreme wind speeds in the UST territory, wind data from weather stations had to be gathered and analyzed statistically. Weather station data was selected following the guidelines of ASCE Standard 7-88 (ASCE, 1991) which sets forth the following criteria:

- 1. Acceptable extreme-value statistical analysis procedures have been employed in reducing the data.
- 2. Consideration is given to the length of record, averaging time, anemometer height, data quality, and terrain exposure.
- 3. The basic wind speed used is not less than 90 mph.

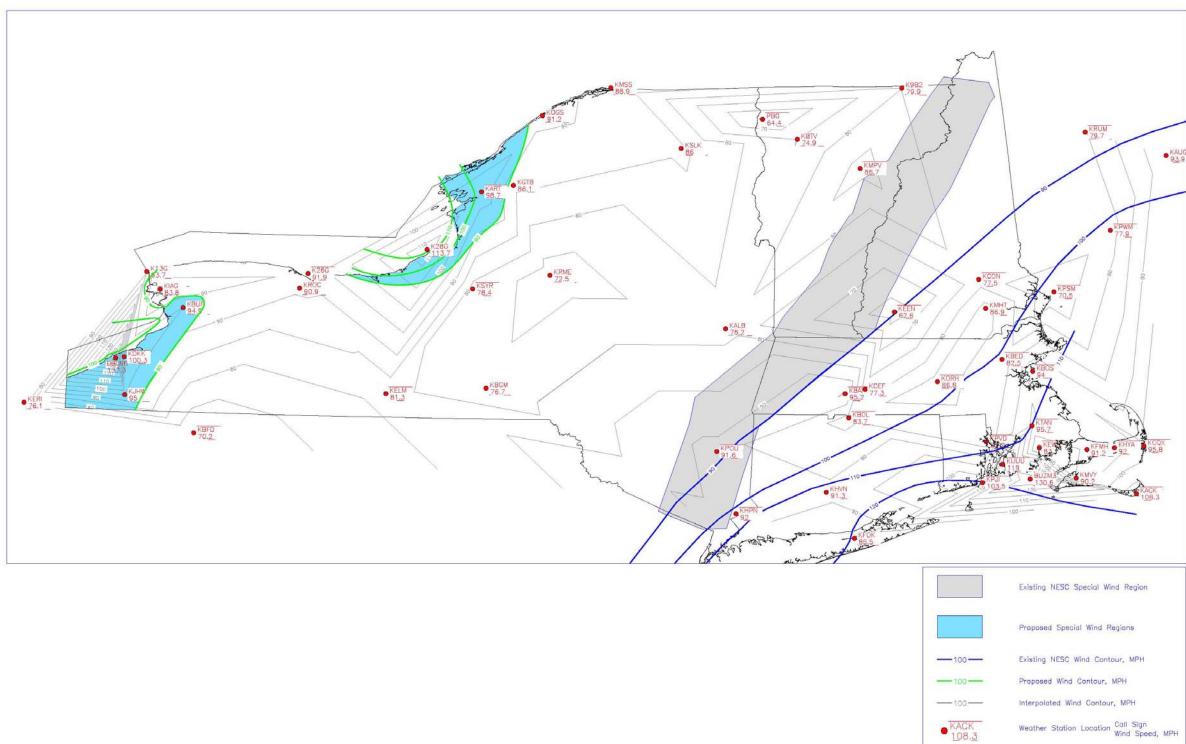
The extreme-value statistical analysis procedure used was Extreme Type I Gumbel distribution method. ASCE has stated that this is a practice well accepted by other investigators including Simiu et al. The procedure determines the probability density and probability distribution functions where Probability P[V(t) < or = X] for any wind velocity V(t) less than or equal to a specified value X, for an averaging time, t. The Return Period R of this velocity V(t), being exceeded by X, is determined from 1/[1-P(v)]. This defines the Mean Recurrence Interval R of any wind velocity V(t) being exceeded by a value X, or equal to it. X is any value of wind speed, greater than or equal to V(t). The

resulting output from this model was verified by mathematical equations developed by Simiu et al (2). The output desired from the NIST model is a 3-second gust interval at a 50 year return period which is consistent with the NESC requirements.

Data was gathered from the National Climatic Data Center (NCDC, 2008) Global Summary of the Day database. A total of 53 weather stations spread throughout the UST service territory were selected. At least 14 years of weather station wind data was used. All stations were consistent in the data provided. Wind speeds were in terms of knots at hourly, 10 minute, and 5 second averaging times. The 10 minute average was determined to be the most robust data and is also a World Meteorological Organization (WMO) standard, so this was the data used for analysis. All stations used a standard WMO anemometer height of 33 ft, and all terrain at station locations was Exposure C, flat open country. The wind speeds entered into the Extreme Type I Gumbel model had to be in terms the fastest speed in miles per hour recorded for each year over a 3-second averaging times, the wind data was multiplied by a factor of 1.43 as determined by the chart developed by Durst (Simiu et al, 1978) and presented by Simiu and Scanlan (2), shown in Appendix A.

Because weather is extreme at the Mount Washington station in New Hampshire, it was left out of the analysis. (The 50 year, 3 second gust winds from the Mount Washington, N.H, and observatory was calculated at 166.1 mph.)

#### 4. Statistical Data Analysis


The results of the Extreme Gumbel Type I distribution model for each weather station examined are shown in Table 2.

**Table 2.** Weather station locations and final wind speed results.

| Station<br>Call<br>Sign | Station Name                | State | Latitude  | Longitude | Elevation,<br>meters | Data<br>Points,<br>years | Extreme<br>Wind<br>Speed, 50<br>Yr 3-sec<br>Gust, mph |
|-------------------------|-----------------------------|-------|-----------|-----------|----------------------|--------------------------|-------------------------------------------------------|
| KBDL                    | HARTFORD BRADLEY INTL AP    | СТ    | 41.938º N | 72.683º W | 54.60                | 64                       | 83.7                                                  |
| KHVN                    | NEW HAVEN TWEED AIRPORT     | СТ    | 41.264º N | 72.887º W | 0.40                 | 53                       | 91.3                                                  |
| KHYA                    | BARNSTABLE MUNI BOA         | MA    | 41.667º N | 70.267º W | 1.70                 | 36                       | 92                                                    |
| KBED                    | BEDFORD HANSCOM FIELD       | MA    | 42.47º N  | 71.289º W | 4.10                 | 37                       | 82.5                                                  |
| KBOS                    | BOSTON LOGAN INT'L ARPT     | MA    | 42.361º N | 71.011º W | 0.90                 | 66                       | 94                                                    |
| BUZM3                   | BUZZARDS BAY (Buoy Station) | MA    | 41.383º N | 71.033º W | 1.70                 | 25                       | 130.6                                                 |
| KCQX                    | CHATHAM MUNI ARPT           | MA    | 41.683º N | 70° W     | 1.90                 | 31                       | 95.8                                                  |
| KCEF                    | CHICOPEE FALLS WESTO        | MA    | 42.198º N | 72.534º W | 7.50                 | 65                       | 77.3                                                  |
| KMVY                    | MARTHAS VINEYARD            | MA    | 41.393º N | 70.615º W | 2.10                 | 36                       | 90.2                                                  |
| KACK                    | NANTUCKET MEMORIAL          | MA    | 41.25º N  | 70.067º W | 1.40                 | 60                       | 108.3                                                 |
| KEWB                    | NEW BEDFORD RGNL            | MA    | 41.667º N | 70.95° W  | 2.50                 | 35                       | 83.1                                                  |
| KFMH                    | OTIS ANGB                   | MA    | 41.65º N  | 70.517º W | 4.00                 | 57                       | 91.2                                                  |
| KTAN                    | TAUNTON MUNI ARPT           | MA    | 41.867º N | 71.017º W | 1.30                 | 38                       | 95.7                                                  |
| KBAF                    | WESTFIELD BARNES MUNI AP    | MA    | 42.158º N | 72.716º W | 82.60                | 35                       | 95.2                                                  |

| KORH  | WORCESTER MUNICIPAL ARPT      | MA | 42.267º N | 71.876º W | 31.00  | 60 | 86.8  |
|-------|-------------------------------|----|-----------|-----------|--------|----|-------|
| KAUG  | AUGUSTA AIRPORT               | ME | 44.321º N | 69.797º W | 11.00  | 43 | 93.9  |
| KPWM  | PORTLAND INTL JETPORT         | ME | 43.642º N | 70.304º W | 1.90   | 61 | 77.9  |
| KRUM  | RUMFORD                       | ME | 44.533º N | 70.533º W | 20.50  | 27 | 79.7  |
| KCON  | CONCORD MUNICIPAL ARPT        | NH | 43.195º N | 71.501º W | 10.60  | 61 | 77.5  |
| KEEN  | DILLANT HOPKINS               | NH | 42.9º N   | 72.267º W | 15.30  | 35 | 62.6  |
| KMHT  | MANCHESTER AIRPORT            | NH | 42.933º N | 71.438º W | 7.10   | 47 | 86.9  |
| KMWN  | MOUNT WASHINGTON              | NH | 44.267º N | 71.3º W   | 191.00 | 36 | 166.1 |
| KPSM  | PEASE INTL TRADEPOR           | NH | 43.083º N | 70.817º W | 3.10   | 53 | 70.5  |
| KSLK  | ADIRONDACK RGNL               | NY | 44.385° N | 74.207º W | 50.70  | 36 | 86    |
| KALB  | ALBANY COUNTY AP              | NY | 42.748º N | 73.803º W | 89.00  | 56 | 78.2  |
| KBGM  | BINGHAMTON BROOME COUNTY ARPT | NY | 42.208º N | 75.981º W | 49.90  | 61 | 76.7  |
| KBUF  | BUFFALO BUFFALO ARPT          | NY | 42.941º N | 78.736º W | 21.50  | 65 | 94.9  |
| DBLN6 | DUNKIRK (Buoy Station)        | NY | 42.483º N | 79.35º W  | 19.70  | 24 | 137.3 |
| KDKK  | DUNKIRK CHAUTAUQUA CO AP      | NY | 42.493º N | 79.272º W | 21.10  | 16 | 100.3 |
| KELM  | ELMIRA AIRPORT                | NY | 42.159º N | 76.892º W | 29.10  | 42 | 81.3  |
| KGTB  | FORT DRUM/WHEELER-S           | NY | 44.05º N  | 75.733º W | 20.70  | 50 | 86.1  |
| KRME  | GRIFFISS AFB                  | NY | 43.233º N | 75.4º W   | 158.20 | 57 | 72.5  |
| KJHW  | JAMESTOWN (AWOS)              | NY | 42.15º N  | 79.267º W | 52.50  | 33 | 95    |
| KMSS  | MASSENA AP                    | NY | 44.936º N | 74.846º W | 6.50   | 60 | 88.9  |
| K13G  | NIAGARA (CGS)                 | NY | 43.267º N | 79.067º W | 82.00  | 20 | 93.7  |
| KIAG  | NIAGARA FALLS AF              | NY | 43.107º N | 78.945º W | 17.90  | 50 | 83.3  |
| KOGS  | OGDENSBURG INTL               | NY | 44.683º N | 75.467º W | 9.10   | 25 | 91.2  |
| K28G  | OSWEGO (CGS) (Buoy Station)   | NY | 43.467º N | 76.517º W | 78.00  | 20 | 113.7 |
| PBG   | PLATTSBURGH AFB               | NY | 44.65º N  | 73.467º W | 7.20   | 40 | 64.4  |
| KPOU  | POUGHKEEPSIE                  | NY | 41.633º N | 73.883º W | 47.20  | 31 | 91.6  |
| K26G  | ROCHESTER (CGLS)              | NY | 43.25º N  | 77.6º W   | 82.00  | 20 | 91.9  |
| KROC  | ROCHESTER GREATER ROCHESTER I | NY | 43.117º N | 77.677º W | 16.90  | 61 | 90.9  |
| KSYR  | SYRACUSE HANCOCK INT'L ARPT   | NY | 43.109º N | 76.103º W | 12.70  | 59 | 78.4  |
| KART  | WATERTOWN AP                  | NY | 43.992° N | 76.022º W | 10.20  | 52 | 98.7  |
| KFOK  | WESTHAMPTON GABRESKI AP       | NY | 40.844° N | 72.632º W | 2.00   | 46 | 85.5  |
| KHPN  | WHITE PLAINS WESTCHESTER CO A | NY | 41.067º N | 73.708º W | 12.10  | 47 | 92    |
| KBFD  | BRADFORD REGIONAL AP          | PA | 41.803º N | 78.64º W  | 65.50  | 52 | 70.2  |
| KERI  | ERIE INTERNATIONAL AP         | PA | 42.08º N  | 80.183º W | 22.50  | 61 | 76.1  |
| KUUU  | NEWPORT                       | RI | 41.517º N | 71.283º W | 5.20   | 28 | 119   |
| KPJI  | POINT JUDITH (CGS)            | RI | 41.35º N  | 71.467º W | 0.20   | 22 | 103.5 |
| KPVD  | PROVIDENCE T F GREEN STATE AR | RI | 41.722º N | 71.433º W | 1.90   | 38 | 82.2  |
| KBTV  | BURLINGTON INTERNATIONAL AP   | VT | 44.468º N | 73.15º W  | 10.40  | 53 | 74.9  |
| KMPV  | MONTPELIER AP                 | VT | 44.203º N | 72.579º W | 34.20  | 42 | 86.7  |
| K9B2  | NEWPORT                       | VT | 44.933º N | 72.2º W   | 233.00 | 14 | 79.9  |

It was desired to analyze the wind speeds at each station spatially and interpolate wind contours between each station. This was accomplished by entering the station data from Table 2 into PLS-CADD, a transmission line design software package. The X and Y axis points were longitude and latitude, and the extreme wind speed was entered as an elevation. The terrain contour feature in PLS Cadd successfully interpolated wind speeds between each station and produced a contour map which could be overlaid on an existing UST transmission map (See Figure 4.)



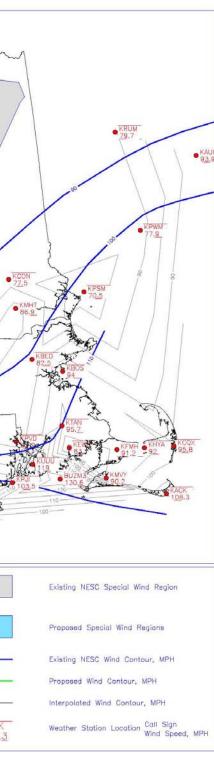



Figure 4. UST Transmission map with existing NESC wind contours and special wind region, PLS Cadd contours, and proposed wind contours.

The results show that the maximum wind speed in the special wind region in eastern New York is 90 mph. They also show two small areas along the coasts of Lake Erie and Lake Ontario where wind speeds could reach 100 mph, in excess of the NESC requirement of 90 mph.

Most weather station locations appear to be at or below the NESC basic wind speed requirements. There were some exceptions as follows:

- Station BUZM3 (Buzzards Bay) was calculated at 130.6 mph where the NESC requires approximately 118 mph (interpolated). This has no effect on UST facilities so this result can be ignored.
- Stations KPOU (Poughkeepsie) and KOGS (Ogdensburg International AP) were at 91.6 and 91.2 mph respectively. This is slightly above the minimum basic wind speed of 90 mph, so it is felt a change here is not necessary.
- Station KERI (Erie International Airport) was calculated at 76.1 mph despite being in close proximity to the Lake Erie coast line. It is felt that this station is not representative of an Exposure C due to the dense development around the airport and to the steep incline between the airport and the lake front.

#### 5. Conclusions

The NESC special wind region is more clearly defined as a result of this research. Gumbel- Type I and II distributions were fitted to wind speed data from NIST, NCDC and the US Meteorological Service using software developed by NIST (NIST, 2008). From this, curves of probability distribution functions were developed. These were used to define probability P[X > = V30] and mean recurrence intervals of wind speeds.

Appendix B shows typical statistical analysis including the Gumbel type I and II fitted to the data.

The special wind region in eastern New York was found not to require a wind speed in excess of the basic NESC requirement of 90 mph. Therefore, a design wind speed of 90 mph is recommended.

#### Acknowledgements

The authors would like to acknowledge comments and revisions suggested to rewrite this paper by Dr.Emil Simiu, NIST Fellow, BFRL, National Institute of Standards and Technology, Gaithersburg, MD. Prof.William E.Saul, Michigan State University, East Lansing, MI, also provided some comments. The authors acknowledge this help.

#### References

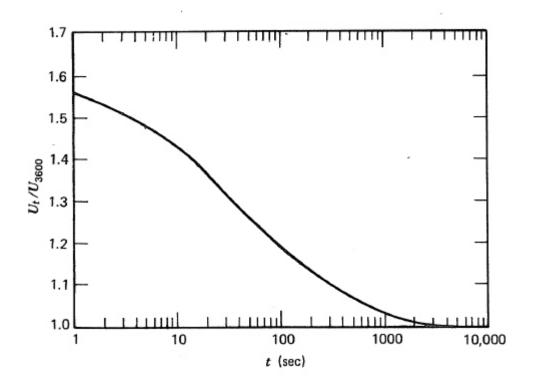
American Society of Civil Engineers (ASCE), 1991a. Guidelines for Electrical Transmission Line Structural Loadings. 18-24

American Society of Civil Engineers (ASCE), 1991b. Guidelines for Electrical Transmission Line Structural Loadings. 21

American Society of Civil Engineers (ASCE), 1991c. Guidelines for Electrical Transmission Line Structural Loadings. 6

Institute of Electrical & Electronics Engineers Inc (IEEE), 1997. National Electrical Safety Code C2-1997. McGraw-Hill. 151

Institute of Electrical & Electronics Engineers Inc (IEEE), 2006. National Electrical Safety Code C2-2007. McGraw-Hill. 183


National Climatic Data Center (NCDC), 2008. National Environmental Satellite, Data, and Information Services (NESDIS), www.ncdc.noaa.gov

National Institute of Standards & Technology (NIST), 2008. Extreme Wind and Wind Effects on Structures, <u>www.itl.nist.gov</u>

Simiu, E. & Scanlan, R.H., 1978, Wind Effects on Structures. John Wiley & Son's, Inc. 62

## Appendix A

Ratio of probable maximum speed averaged over period t to that averaged over one hour (Simiu and Scanlan, 1978).



# Appendix B

Example of Extreme Type I Gumbel distribution for Buffalo – Niagara Airport years 1942 – 2008.

| itle<br>kuffalo 1942- | 2009           |                    |              |          |          |     |                      |                        |              | /) -In       |    | d<br>3 Sec Gust<br>V(x years)<br>100.7 |   | 0 Year Return Period<br>3 Sec Gu<br>-In(Pv) -In(-In(Pv)) V(x years<br>020203 3.901939 |  |
|-----------------------|----------------|--------------------|--------------|----------|----------|-----|----------------------|------------------------|--------------|--------------|----|----------------------------------------|---|---------------------------------------------------------------------------------------|--|
|                       |                |                    |              |          |          |     |                      |                        |              |              |    |                                        |   |                                                                                       |  |
| Veather Statio        |                |                    |              |          | 65       | Er  | iter graph v         | ariables y=            | 8.3          | 385 <b>x</b> | •  | 62.389                                 |   |                                                                                       |  |
|                       | WBAN<br>number |                    |              |          |          |     |                      |                        |              |              |    |                                        |   |                                                                                       |  |
| Station               | "Weather       |                    |              |          |          |     |                      |                        |              |              |    |                                        |   |                                                                                       |  |
| wmber<br>wmo/DATS     | Bureau Air     | DA Year,<br>Month, |              |          |          |     |                      |                        |              |              |    |                                        |   |                                                                                       |  |
| AV3 number)           | Navy"          | Day                | U3, mph      | m        | N        | Pv  | -In(Pv)              | -In(-In(Pv))           |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1961               |              | 1        | 65       |     |                      | -1.559418              |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      | 14733          | 1969               |              | 2        | 65       |     | 3.731546             | -1.316823              |              |              |    | Type I Distribution -                  |   |                                                                                       |  |
| 725280                |                | 1973               | 54.3         | 4        | 65       |     |                      |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1993               | 54.3         | 5        |          |     |                      | -0.977916              |              |              |    | 90.0 T                                 |   | y = 8.3385x + 62.389<br>R <sup>2</sup> = 0.9866                                       |  |
| 725280<br>725280      |                | 1995<br>1998       | 54.3<br>54.3 | 6        |          |     |                      | -0.900419<br>-0.830838 | ÷            | <u> </u>     |    | 80.0                                   | ~ | H. = 0.3066                                                                           |  |
| 725280                |                | 1990               | 56.0         | é        |          |     | 2.153361             |                        | (udm)        | _            |    | 70.0                                   |   |                                                                                       |  |
| 725280                | 14733          | 1960               | 56.0         | 9        | 65       | 0.1 | 2.029132             | -0.707608              |              |              |    | 60 <b>-</b>                            |   |                                                                                       |  |
| 725280                | 14733<br>14733 | 1962<br>2001       | 56.0<br>56.0 | 10<br>11 |          |     |                      | -0.651619<br>-0.598374 | Wind Speed   | _            | -  | 60.0                                   |   | 1                                                                                     |  |
| 725280<br>725280      |                | 2001 2004          | 56.0         | 11       |          | 0.2 | 1.819158             | -0.598374              | Vine         |              |    | 40.0                                   |   | Treatment                                                                             |  |
| 725280                |                | 1968               | 57.6         | 13       | 65       | 0.2 | 1.645715             | -0.498175              |              |              |    |                                        |   | Type I EV Distribution                                                                |  |
| 725280                |                | 1970               |              | 14       |          |     | 1.569107             |                        | st M         |              |    | 30.0                                   |   |                                                                                       |  |
| 725280<br>725280      |                | 1966<br>1980       | 59.1<br>59.1 | 15<br>16 |          |     | 1,497954             | -0.4041<br>-0.358743   | Fastest Mile |              |    | 20.0                                   |   | Distribution)                                                                         |  |
| 725280                |                | 1988               | 59.1         | 17       |          | 0.3 |                      | -0.314257              | a            |              |    | 10.0                                   |   | 1                                                                                     |  |
| 725280                | 14733          | 1994               | 59.1         | 18       | 65       | 0.3 | 1.310608             | -0.270491              |              |              | -, | 0.0                                    |   | 1                                                                                     |  |
| 725280<br>725280      |                | 1996<br>2006       | 59.1<br>60.7 | 19<br>20 |          |     |                      | -0.227313<br>-0.184606 | -            | 2            | -1 | 0 1                                    | 2 | 3                                                                                     |  |
| 725280                |                | 1975               |              | 20       |          | 0.3 |                      |                        |              |              |    | -in(-in(Pv))                           |   |                                                                                       |  |
| 725280                | 14733          | 1944               | 62.4         | 22       |          | 0.3 | 1.105392             | -0.1002                |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      | 14733<br>14733 | 1952<br>1964       | 62.7<br>62.7 | 23<br>24 | 65       | 0.3 | 1.060053             | -0.058319<br>-0.016544 |              |              |    |                                        |   |                                                                                       |  |
| 725280                |                | 1904               | 62.7         | 24       |          |     | 0.975113             |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 2003               | 62.7         | 26       | 65       | 0.4 | 0.935203             | 0.066992               |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      | 14733<br>14733 | 2002<br>1949       |              | 27<br>28 | 65       | 0.4 | 0.896825             | 0.108894               |              |              |    |                                        |   |                                                                                       |  |
| 725280                |                | 1949               | 65.8<br>65.8 | 20       |          |     | 0.824225             |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1965               | 65.8         | 30       | 65       | 0.5 | 0.78981              | 0.235963               |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733<br>14733 | 1974<br>1981       | 65.8<br>65.8 | 31       | 65       | 0.5 | 0.75654              | 0.279                  |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      | 14733          | 1981               | 65.8         | 32<br>33 |          |     | 0.693147             |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1984               | 65.8         | 34       | 65       | 0.5 | 0.662897             | 0.411136               |              |              |    |                                        |   |                                                                                       |  |
| 725280                |                | 1991               | 65.8         | 35       |          |     | 0.633535             | 0.45644                |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      | 14733<br>14733 | 2000<br>2007       | 65.8<br>65.8 | 36<br>37 | 65<br>64 | 0.5 | 0.60501              | 0.50251<br>0.549433    |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1954               | 67.5         | 38       | 65       | 0.6 | 0.550292             | 0.597306               |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1990               | 67.5         | 39       | 65       | 0.6 | 0.524016             | 0.646233               |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      | 14733<br>14733 | 1978<br>1982       | 69.1<br>69.1 | 40<br>41 |          |     | 0.498413 0.473449    |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1982               | 69.1         | 41       |          |     | 0.449094             |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280                |                | 1989               | 69.1         | 43       | 65       | 0.7 | 0.425317             | 0.854921               |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      |                | 1956<br>2005       |              | 44<br>45 |          |     | 0.402092 0.379395    |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 2005               |              | 45<br>46 |          |     | 0.379395             |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1955               | 72.6         | 47       | 65       | 0.7 | 0.33549              | 1.092163               |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      | 14733<br>14733 | 1971<br>1997       | 72.6<br>72.6 | 48<br>49 |          | 0.7 | 0.31424 0.293432     | 1.157599               |              |              |    |                                        |   |                                                                                       |  |
| 725280                |                | 1997               | 74.2         | 49<br>50 |          |     | 0.293432             |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1959               | 74.2         | 51       | 65       | 0.8 | 0.253071             | 1.374085               |              |              |    |                                        |   |                                                                                       |  |
| 725280                |                | 1985               |              | 52       |          |     | 0.233486             |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      |                | 1942<br>1948       |              | 53<br>54 |          |     | 0.214276 0.195429    | 1.540489<br>1.632557   |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 2008               | 75.7         | 55       | 65       | 0.8 | 0.176931             | 1.731997               |              |              |    |                                        |   |                                                                                       |  |
| 725280                |                | 1976               | 77.0         | 56       |          |     | 0.158768             | 1.84031                |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      |                | 1947<br>1951       | 79.0<br>79.0 | 57<br>58 |          | 0.9 |                      | 1.959494<br>2.092293   |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1953               | 79.0         | 59       |          | 0.9 |                      | 2.242621               |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1946               |              | 60       |          |     | 0.089248             |                        |              |              |    |                                        |   |                                                                                       |  |
| 725280<br>725280      | 14733<br>14733 | 1967<br>1979       | 84.1<br>86.9 | 61<br>62 | 65<br>65 |     | 0.072597<br>0.056219 | 2.62283<br>2.878493    |              |              |    |                                        |   |                                                                                       |  |
| 725280                |                | 1979               | 87.2         | 63       | 65       |     |                      | 3.216239               |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1977               | 90.5         | 64       | 65       |     | 0.024247             | 3.719447               |              |              |    |                                        |   |                                                                                       |  |
| 725280                | 14733          | 1950               | 97.3         | 65       | 65       | 1   |                      | 4.751735               |              |              |    |                                        |   |                                                                                       |  |