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EXTREMELY LOW FREQUENCY (ELF) PROPAGATION FORMULAS 
FOR DIPOLE SOURCES RADIATING IN A 

SPHERICAL EARTH-IONOSPHERE WAVEGUIDE 

1. INTRODUCTION 

Extremely low frequency (ELF) propagation formulas for dipole sources radiating in a 
spherical earth-ionosphere waveguide (figure 1-1) have been derived by various authors. 

Developments of such formulas are provided in the texts Written by J. R. Wait (reference 1) and 

J. Galejs (reference 2). These spherical waveguide formulas have been derived for a uniform earth 

and ionosphere and, depending on the field component, have a range dependence characterized by 
either the Legendre function of the first kind of complex degree and order zero or one of its first 
two derivatives. In the ELF band (defined here as 30 to 300 Hz), because the ionospheric 
reflection height is less than one-half of a free-space wavelength, the only propagating mode in the 
earth-ionosphere waveguide is the zeroth-order transverse magnetic (TM) mode, which is 
commonly referred to as the quasi-transverse electromagnetic (quasi-TEM) mode. 

IONOSPHERE 

Figure 1-1. Spherical Coordinate System Description of the Earth-Ionosphere Waveguide 



To predict the fields more accurately at ranges closer to the source or to account for more 

complicated boundary conditions, various investigators have incorporated the earth-flattening 

approximation into their ELF propagation formulas. In this approximation, the Legendre 

function range dependence is approximated by the product of a Hankel function and a curvature 

correction term (spherical earth spreading factor). As a result, the fields are derived from a 

planar earth-ionosphere waveguide model and then multiplied by the curvature correction term. 

For example, Bannister (reference 3) has derived ELF propagation formulas based on the earth- 

flattening approximation that extend the results of Wait and Galejs to closer ranges from the 

source. Whereas the spherical waveguide formulas given by Wait and Galejs are valid for ranges 

greater than approximately three ionospheric reflection heights from the source, Bannister's 

formulas are valid in the quasi-nearfield range, which is defined as the range where the 

measurement distance is greater than an earth wavelength, but much less than a free-space 

wavelength. However, Bannister's approximate formulas are not valid at field points close to the 

antipode where the simple spherical focusing factor fails. 

To account for the anisotropic surface impedance in the vicinity of a horizontal electric 

dipole (HED) at ELF, Wolkoff and Kraimer (references 4 and 5) have listed propagation 

formulas that are modifications of Bannister's HED formulas. Wolkoff and Kraimer's formulas 

account for the anisotropic ground through the use of two complex-valued antenna pattern 

factors. These antenna pattern factors are unique for a given HED and must be determined from 

near-field measurements of the antenna. Wolkoff and Kraimer have determined the antenna 

pattern factors for each of the U.S. Navy's ELF transmitting antennas (reference 4). Wolkoff 

and Kraimer's propagation formulas have been formally derived from Bannister's formulas by 

Casey (reference 6) through use of the reciprocity theorem. 

For prediction of the ELF fields from dipole sources at antipodal ranges, propagation 

formulas that are valid out to approximately 20 Mm from the source must be applied. In a recent 

report (reference 7), approximate formulas for a HED source that contain the proper range 

dependence at antipodal ranges in a spherical earth-ionosphere waveguide, referred to as 

"antipode-centered propagation formulas," were derived. These HED formulas are based on 

Burrow's simple parallel-plate waveguide approximation of the earth-ionosphere waveguide 

(reference 8) and include a curvature correction factor. In reference 7, the antipode-centered 

propagation formulas were compared with Bannister's HED formulas (direct and indirect great- 



circle path fields were combined) under various propagation conditions, where both the source 

and field points are located on the earth's surface. The results showed that Bannister's vertical 

electric field and radial magnetic field formulas (magnitude only) agree to within 1 dB of the 

corresponding antipode-centered formulas for ranges greater than 0.97 Mm to 1.13 Mm from the 

antipode, depending on the propagation conditions. In addition, Bannister's azimuthal magnetic 

field formula agrees to within 1 dB of the corresponding antipode-centered formula for ranges 

greater than 3.17 Mm to 3.72 Mm from the antipode, depending on the propagation conditions. 

In this report, ELF propagation formulas for dipole sources radiating in a spherical earth- 

ionosphere waveguide are derived from first principles. These derivations are presented because 

the developments given by previous authors were found to be difficult to follow. The formulas 

derived here are based on the assumptions of a homogeneous, isotropic earth and a 

homogeneous, isotropic ionosphere of constant reflection height. As a result, the earth and 

ionosphere boundaries are modeled as scalar surface impedances. The spherical waveguide 

formulas are expressed in terms of series expansions of TM and transverse electric (TE) modes. 

However, at ELF, the only mode of practical interest is the quasi-TEM mode. The computed 

results for the spherical waveguide formulas presented in this report are based on an exact 

hypergeometric series representation of the Legendre function of the first kind. The propagation 

formulas for a horizontal magnetic dipole (HMD) can be derived from the HED formulas 

through application of the duality principle (reference 2). 

In addition, in this report, through appropriate approximations of the range dependence, it 

will be shown how the spherical waveguide formulas (for both vertical electric dipole (VED) and 

HED sources) can reduce to Bannister's formulas or to the antipode-centered formulas. It will 

also be shown how the quasi-TEM spherical waveguide formulas derived for a HED located at 

the surface of the earth can be modified to account for the anisotropic surface impedance in the 

vicinity of the antenna. These modified spherical waveguide formulas will include Wolkoff and 

Kraimer's antenna pattern factors and will be useful for prediction of the electromagnetic (EM) 

fields radiated by the U. S. Navy's four transmitting antennas at antipodal ranges. Detailed 

derivations of approximate formulas for the Legendre function range dependence are given in the 

appendices. Comparisons of the spherical waveguide propagation formulas with both 

Bannister's direct great-circle path and total field (direct plus indirect great-circle paths) 

formulas are presented for the surface magnetic field and vertical electric field components under 

various propagation conditions. The field comparisons are presented at several frequencies for 



both VED and HED sources at ranges that extend from 1 Mm from the source to the antipode, 

where both the source and field points are located at the earth's surface. These comparisons will 

help to more accurately establish the maximum ranges over which Bannister's approximate 

formulas are valid. 



2. APPLICATION OF PARALLEL-PLATE WAVEGUIDE MODEL FOR 
DETERMINATION OF APPROXIMATE MODE CUTOFF FREQUENCIES 

To obtain a basic understanding of EM propagation in a spherical earth-ionosphere waveguide 

in the ELF band, it is helpful to formulate the problem under the assumption of planar boundaries. 

Such an approach has been applied by Burrows (reference 8) and Budden (reference 9). In the 

ELF band, both the earth and ionosphere appear as nearly perfect conductors (references 2 and 8). 

Therefore, in this section, the TEM, TM, and TE modes are derived for a parallel-plate waveguide 

with perfectly conducting walls. 

The analysis of this section will show that, because the ionospheric reflection height is much 

less than a free-space wavelength at ELF, the TEM mode is the only propagating mode. The 

TEM mode is characterized by electric and magnetic fields that are oriented perpendicular to the 

direction of propagation. If the finite conductivity of the earth and ionosphere are considered, 

the TEM mode configuration is perturbed to the quasi-TEM mode. The quasi-TEM mode 

includes surface electric- and magnetic-field components that lie along the direction of 

propagation. Therefore, the quasi-TEM mode is the only mode of practical concern at ELF. 

The cutoff frequencies for the dominant TE and TM modes are given for several representative 

ionospheric reflection heights. The propagation formulas for dipole sources radiating in a 

parallel-plate waveguide with finitely conducting boundaries have been derived by Burrows 

(reference 8) and will not be presented in this report. 

2.1 TEM AND TM MODES 

Consider the parallel-plate waveguide model of the earth-ionosphere waveguide, as shown 

in figure 2-1. In this model, the z-direction is normal to the planar boundaries and the x-direction 

denotes the direction of propagation. Because the parallel-plate waveguide is a two-dimensional 

model, it is assumed that there is no variation along the ^-direction, i.e., ? I?y = 0 for all field 

components. For simplicity, the earth and ionosphere are both assumed to be perfectly 

conducting. 

Appendix A provides a derivation of the EM fields in terms of potentials. These formulas 

are based on an assumed time-harmonic dependence ofeJat, where (O = 2nf is the angular 

frequency (rad/s),/is the frequency in Hertz (Hz), and j = >/^T. A time-harmonic dependence 

will be assumed in each of the field expressions presented in this report. 
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Figure 2-1.   Parallel-Plate Model of the Earth-Ionosphere Waveguide 

In this section, the TEM and TM modes (with respect to the z-direction) are derived in terms 

of the z component of the electric Hertz potential Jie.; and the TE modes (with respect to the z- 

direction) are derived in terms of the z component of the magnetic Hertz potential n*. The z 

component of each potential is chosen in order to generate modes that will correspond with the 

spherical waveguide modes that are derived in appendix C. 

To derive the TEM and TM modes in the parallel-plate waveguide, consider the electric 

Hertz potential ite that is given as 

ite = ZJiez(x,z) , (2-1) 

where z denotes the unit vector along the z-direction. The electric Hertz vector is defined in 

terms of the magnetic vector potential A in appendix A, expression (A-26a). The substitution of 

this definition into the inhomogeneous vector Helmholtz equation for the magnetic vector 

potential (A-6) yields 

VxVxjte-k2
njr

e = -V&e + —^—J, (2-2) 
Jmeo 

where k0= coJjj~e~ is the wave number in free space, fi0 and e0 are the permeability and 

permittivity, respectively, of free space, 0e is the electric scalar potential, and J is the electric 

current density. Note that expression (2-2) applies to a point lying in free space. 



To eliminate &e from the above equation, the Lorentz gauge condition (reference 10) is 

applied, i.e., 

V • ne + ®e = 0 • (2-3) 

The substitution of expression (2-3) into (2-2) yields 

V2ne + khte = - -r^- J. (2-4) 
jwe0 

To derive the TEM and TM modes, it is assumed that there are no sources so that /= 0 in 

formula (2-4). The following is obtained if expression (2-1) is substituted into equation (2-4): 

d2Jte„     d2JteT 

'+-T^ + *5»? = 0. (2-5) 
dx2       dz2       ° z 

Because the modes are assumed to propagate along the jc-direction in the waveguide, ne can be 

expressed as 

xp,z) = f(z)e~J«x , (2-6) 

where k is the wave number (along the direction of propagation) and^z) is a function to be 

determined. The substitution of expression (2-6) into (2-5) yields 

f"(z) + k2
cf(z) = 0, (2-?) 

where 

k2
c = k2

0-k2. (2-8) 

In the above formula, kc is commonly referred to as the cutoff wave number (reference 10). 

Expressions for the EM fields in terms of the electric- and magnetic-Hertz vectors are given 

in formulas (A-27) and (A-28). For the TEM and TM modes, the magnetic-Hertz vector ith is 

zero. Therefore, the substitution of equation (2-1) into the EM field formulas (A-27) and (A-28) 

yields the following: 

£.=-J*V. (2"9a) 

Ez = k2jil, (2-9b) 



and 

Hy = -coe0k7Te
z- (2"9c) 

Note that the x variation defined in expression (2-6) has been accounted for in the above field 

formulas. The field components listed above are the only nonzero components. Also, note that 
because the TM modes are "transverse magnetic" with respect to the z-direction, Hz = 0. 

The solution of the differential equation (2-7) is given as 

f(z) = Cj cos kcz + c2 sin kcz , (2-10) 

where c \ and c2 are arbitrary constants. To determine c t and c2, the boundary conditions at the 

surfaces of the earth and ionosphere must be applied. Because the earth and ionosphere are 

assumed to be perfectly conducting, the following boundary conditions apply: 

Ex(x,0) = 0, z = 0,h ■ (2-11) 

The substitutions of expressions (2-9a) and (2-6) into the boundary conditions above yields 

/'(0) = f'(h) = 0 • (2-12) 

From formula (2-10),/'(z) is given as 

f'(z) = - kccl sin kcz + kcc2 cos kcz ■ (2-13) 

The application of the boundary condition for/' at z = 0 to formula (2-13) gives 

kcc2 = 0  ■ (2-14) 

Therefore, the solutions of the above equation are kc = 0 or c2 = 0. If c2 = 0, then the boundary 

condition f'(h) = 0 results in 

*™ = X ' w = 0'1'2'-- (2-15) 

The index n in the above formula denotes the mode index. 

The substitution of the above result for/(z) into expression (2-6) for ne. yields 

jre,n(x,z) = c1 cos(^p) e-jkx , /; = 0, 1, 2,..., (2-16) 



where Hs given from formulas (2-8) and (2-15) as 

k2 = k2
o-(!f)2,n = 0,l,2,.... (2_17) 

A mode is said to be at cutoff when k = 0 or equivalently, when kc = k0. The cutoff wave 

numbers for the TEM (« = 0) and TM modes (n = 1,2,...) are given in formula (2-15). 

Therefore, the cutoff frequencies for these modes are given by 

/CT = ^*cn = |f. » = 0,1,2,... , (2-18) 

where c denotes the speed of light in free space. Table 2-1 lists the cutoff frequencies for the 

dominant modes in the parallel-plate waveguide as computed from expression (2-18) for several 

representative ionospheric reflection heights. The table indicates that the TEM mode propagates at 

all frequencies while the TMj mode does not propagate for frequencies below 1.67 kHz. Because 

the frequency range of interest here lies below 300 Hz, the TM modes are of no concern. 

Table 2-1. Cutoff Frequencies for TEM, TMlf and TM2 Modes for a 
Parallel-Plate Waveguide with Perfect Electrically Conducting 

Boundaries for Several Waveguide Heights 

h(km) /co(Hz) /ci(kHz) /c2(kHz) 

50 0 3.00 6.00 

75 0 2.00 4.00 

90 0 1.67 3.33 

The TEM and TM fields are determined through the substitution of expression (2-16) into 

formulas (2-9) to give the following: 

..,       innk 
Exn = -J- sin 

(mtz\ -jkx , n= 1,2,3,..., 

Ezn = k2cos[^)e-^, n = 0,1,2,..., 

and 

Hyn = - we0 cos(^jp) e-ft*, n = 0, 1, 2, 

(2-19a) 

(2-19b) 

(2-19c) 



In formulas (2-19), note that the arbitrary constant has been suppressed. It should be noted 

that Ex vanishes for the TEM mode (n = 0). This is consistent with the fact that the TEM mode 

has no field component along the direction of propagation (reference 10). However, for a 

finitely conducting boundary, Ex does not vanish but is related to the surface magnetic field Hy 

through the surface impedance of the boundary surface. For example, for a finitely conducting 

earth with surface impedance r\e, Ex is related to Hy at z = 0 as Ex = -r\e Hy. 

2.2 TE MODES 

The derivation of the TE modes in the parallel-plate waveguide are very similar to the 

derivation of the TM modes. Consider the magnetic Hertz potential Kh that is given as 

ith = £ n*(x,z) ■ (2-20) 

The magnetic Hertz vector is defined in terms of the electric vector potential F in expression 

(A-26b). The substitution of this definition into the inhomogeneous vector Helmholtz equation 

for the electric vector potential (A-11) yields 

VxVxjih-k2
1Jih = -V<Ph + —l—M, (2-21) 

where <Ph is the magnetic scalar potential and Mis the magnetic current density. It should be 

noted that expression (2-21) applies to a point in free space. 

To eliminate <Ph from the above equation, the Lorentz gauge condition (reference 10) is 

applied, i.e., 

V • a* + <Ph = 0 • (2-22) 

The substitution of expression (2-22) into (2-21) yields 

V2jch + k2
nji

h = L_ M . (2-23) 
J<»Po 

To derive the TE modes, it is assumed that there are no sources so that M = 0 in the above 

formula. If expression (2-20) is substituted into equation (2-23), the following expression is 

obtained: 
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d2^    d2Jik 

dx2        dz2        °  z (2-24) 

Because the modes are assumed to propagate along the x-direction in the waveguide, Jt\ can be 

expressed as 

jth = z nh(x,z) = z g(z) e jkx, (2-25) 

where g(z) is a function to be determined. The substitution of expression (2-25) into (2-24) 

yields 

g"(z) + k2
cg(z) = 0, 

where the cutoff wave number kc is defined in formula (2-8). 

(2-26) 

The TE mode EM fields can be obtained through the substitution of expression (2-20) into 

formulas (A-27) and (A-28) with the electric Hertz vector ne set to zero to yield the following: 

Ey = oinjcnh •<r"z ' 

Hx = ~jk 
3f? 
dz 

and 

Hz = k2^ . 

(2-27a) 

(2-27b) 

(2-27c) 

Note that the x variation defined in expression (2-25) has been accounted for in the above field 

formulas. The field components listed above are the only the nonzero components. Also, note 
that because the TE modes are transverse electric with respect to the z-direction, we have Ez = 0. 

The solution of the differential equation (2-26) is given as 

g(z) = c3 cos kcz + c4 sin kcz , (2-28) 

where c3 and c4 are arbitrary constants. To determine c3 and c4, the boundary conditions at the 

surfaces of the earth and ionosphere must be applied. Because the earth and ionosphere are 

assumed to be perfectly conducting, the following boundary conditions exist: 

Ey(x,0) = 0, z = 0,h . (2-29) 
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The substitutions of expressions (2-27a) and (2-25) into the boundary conditions above yields 

g(0) = g(h) = 0. (2-30) 

The substitution of the boundary conditions (2-30) into expression (2-28) results in the following 

solution: 

gm(z) = c4 sin(^p) ,m=l,2, 3,.... (2-31) 

A comparison of formulas (2-28) and (2-31) shows that the cutoff wave number kcm for the mth 

TE mode is given as 

kcm = Uf' m= 1,2,3,.... (2-32) 

The substitution of the above result for gm{z) into formula (2-25) for n1} followed by another 

substitution into the TE field expressions (2-27) yields 

Eym = <°Vok sin(^) e~JkX ' m = !' 2> 3' - ' (2-33a) 

Hxm = - ^ cos(^) e-** , m = 1, 2, 3,..., (2.33b) 

and 
Hm = k2 sin(^p) e-** , m = 1, 2, 3,..., (2.33c) 

where the wave number k is given from formulas (2-8) and (2-32) as 

k2 = kl-(^f,in=l,2,3,.... (2-34) 

The cutoff frequencies for the TE modes are given by 

■'cm = 2Ü   cm = ~2h ' m ~ '"' (2-35) 

A comparison of formula (2-18) with (2-35) indicates that the cutoff frequencies of the TMn and 

TEm modes are the same provided n = m. Therefore, the cutoff frequencies for the TEj and TE2 

are the same as those of the TM] and TM2 modes, respectively, given in table 2-1. Thus, 

because the frequency range of interest here lies below 300 Hz, the TE modes are also of no 

concern in this report. 
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3. ELF PROPAGATION FORMULAS BASED ON THE 
EARTH-FLATTENING APPROXIMATION 

To reduce the mathematical complexities associated with the problem of the propagation of 

radio waves over a spherical earth, Pryce (reference 11) introduced the earth-flattening 

approximation in which the problem reduces to the propagation over a planar earth with an 

atmosphere having a modified refractive index. In his investigation of the accuracy of the earth- 

flattening approximation, Pekeris (reference 12) assumed that the range-dependence function can 

be expanded in an asymptotic series involving increasing negative powers of the earth's radius. 

In Pekeris' asymptotic series (for the range dependence), the first term corresponds to the model 

of a flat earth and the succeeding terms are corrections for curvature. Koo and Katzin (reference 

13) extended the work of Pryce and Pekeris to obtain exact differential equations for the 

spherical geometry in terms of equations of planar earth type, resulting in solutions that are 

applicable for arbitrary ranges and heights. Wait (reference 1) has applied the earth-flattening 

approximation to obtain an approximate range dependence in the ELF band. 

In this section, the earth-flattening approximation as applied to the range dependence of the 

fields is presented. Bannister's ELF propagation formulas, which incorporate the earth- 

flattening approximation, are presented for VED and HED antennas located on the surface of the 

earth. In addition, Wolkoff and Kraimer's HED propagation formulas, which are modifications 

of Bannister's formulas to account for the anisotropic surface impedance in the vicinity of the 

source, are also presented. For each set of formulas presented in this section, both the direct and 

indirect great-circle path fields are given because both fields must be combined in order to 

predict the propagation at antipodal ranges. In section 5 of this report, Bannister's formulas are 

compared with the spherical waveguide formulas to determine the maximum ranges of validity 

of Bannister's formulas. 

3.1    EARTH-FLATTENING APPROXIMATION TO THE 
LEGENDRE FUNCTION OF THE FIRST KIND 

As shown in appendices F, G, and H, the range dependencies of the EM fields in the earth- 

ionosphere waveguide are expressed in terms of the Legendre function of the first kind, 
Pv(- cos 6), or one of its first two derivatives. From appendix J, the complex degree v of the 

Legendre function is related to the wave number k in the waveguide as 

k = ß-ja=^m, (3-1) 
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where ß = 27t/A and a are the phase and attenuation constants, respectively, and A is the 

wavelength. It should be mentioned that k corresponds to the quasi-TEM mode, the only 

propagating mode in the spherical waveguide at ELF. 

A mathematical development of the earth flattening approximation is given in appendix K. 

From expression (K-33), the Legendre function is approximated as 

Pv(- cos 6) I    pig 
—h-z s H)f>{kp) * / —?-—;- , Ivl » 1, \kp\ » 1 , (-i r> 

j sin VTt °     r  V   sin pla ^" ' 

where p = a0 is the great-circle path distance along the earth from the source point to the field 

point and H^ denotes the Hankel function of the second kind with order 0. In the above 

approximation, H@\kp) corresponds to the range dependence for a flat earth and the square- 

root term is the correction for curvature. Expression (3-2) is sometimes referred to as the earth- 

flattening approximation with curvature correction. It should be noted that expression (3-2) 

differs by a factor ofy with the one given by Wait (reference 1). The propagation formulas 

presented in the remainder of this section each incorporate approximation (3-2). 

3.2    BANNISTER'S FORMULAS 

As mentioned in section 1, Bannister (reference 3) has derived ELF propagation formulas for 

dipole sources that incorporate the earth-flattening approximation. These formulas are valid in 

the quasi-near field range, which corresponds to measurement distances that are greater than an 

earth wavelength. Although only Bannister's formulas for VED and HED sources are presented 

here, the field expressions for an HMD source can be readily obtained from the HED formulas 
(reference 14) through replacement of the electric dipole moment/? with jk/n, where m is the 

current moment (current-area product) of the HMD, and ke is the wave number in the earth. It 

should be added that the equivalent HMD is oriented perpendicular to the HED, i.e., a jy-directed 

HMD is equivalent to an jc-directed HED located on the surface of the earth, where the z 

direction points radially outward from the earth's surface. 

It should be mentioned that Bannister's formulas presented here have been slightly modified 

in order to compute the phase as well as the magnitude of the field. The same formula 

modifications were used by Wolkoff and Kraimer (references 4 and 5) in their HED formulas. 
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3.2.1 VED 

Consider a VED located on the earth's surface and oriented along the positive z direction in 

the coordinate system defined in figure 3-1. Under the assumption of a scalar earth conductivity 
cre, Bannister (reference 3) has derived propagation formulas that are valid at the earth's surface 

(z = 0) for ranges greater than an earth's wavelength (i.e., p > Ae). These formulas are given as 

Ed=  MoP 

Ed = 

Ink p3 

MekP 

Vh(t) e-aP + j% Gh(u) (M 2 H^(kp) 
pi a 

sin (p / a) 

1/2 

^ Gh(u) Hf\kp) 
pi a 

and 

H* = -&Gh(u)H?Xkp) 

sin (p / a) 

pi a 

1/2 

sin (p / a) 

1/2 

where 

and 

Gh{u) = ^ coth(M) + (l - J) w2csch2(«) . 

Vh(t) = t3 coth(0 csch2(r), 

p = Idl (electric dipole moment), 

k0 = -Q = Y~ (wave number in free space), 

k=®-ja (wave number in the earth-ionosphere waveguide), 

r» k C *   Ct 
S = T~=v~Jir (normalized wave number), 

Ko Ko 

Ve = 
JWc 

o. + j(oe (intrinsic impedance of the earth), 

u = 
Tip 

2h 

and 

(3-3a) 

(3-3b) 

(3-3c) 

(3-4) 

(3-5) 
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t- _ u _np\h 
S2    2h\k 

The superscript d in the field components refers to the direct great-circle path contribution. In 

the above formulas, / denotes the antenna current, dl is the effective length of the antenna, a is 
the radius of the earth, A0 is the wavelength in free space, ee is the permittivity of the earth, v is 

the speed of propagation in the earth-ionosphere waveguide, «is the attenuation constant in 

Np/m, h is the ionospheric reflection height, and p = aß is the direct great-circle path distance 

from the source to the field point. Note that a time-harmonic dependence of e10)t is assumed in 

expressions (3-3), where co= 2/rfis the angular frequency (rad/s), and/is the frequency in Hertz. 

The functions Gh and Vh were included by Bannister to extend the range of the previous ELF 

formulas down to the quasi-nearfield range (i.e., p > Ae and p « A0). Therefore, for an earth 

conductivity cre = 2 x 10"4 S/m and frequency/= 76 Hz, Bannister's formulas are valid for ranges 

greater than 30 km from the source. Bannister has noted that for u < 0.5, Gh(u) s 1; for t < 0.5, 

Gh(t) e Vh(t) a 1; for u > 2.5, Gh{u) a ^ = £; for t > 4.5, Vh(t) a 0. Note that the spherical 

earth spreading (curvature) factor  (p/a) / sin {pla)\     appears in each VED field component 

expression. 

GREAT-CIRCLE 
PATH 

Figure 3-1. Coordinate System Used by Bannister (Reference 3) 
(The VED and HED sources are each located at the origin with the VED oriented 

along the positive z-direction and the HED along the positive x-direction.) 
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The VED field expressions given above are associated with the fields that propagate along 

the direct great-circle path that connects the source and field points (figure 3-2). At antipodal 

ranges, the contribution from the indirect great-circle path field must be included in order to 

account for the interference produced by the two paths. The indirect great-circle path field 

components for the VED can be obtained from the direct great-circle path fields in equations 

(3-3) through replacement of the range p with the indirect great-circle path range pt = 2na - p 

(figure 3-2) and with the inclusion of the appropriate phase shift as obtained from table J-l in 

appendix J. As explained in appendix J, this added phase shift of ±j depends on the primary 

range dependence of the field and therefore varies with each field component. Therefore, the 

indirect great-circle path VED fields are given as follows: 

Ej =      W Vh(tt) e- opt + j | Gh(ut) (kPl)
2 HW(kPl) 

Pila 

sin (p / a) 

1/2 

(3-6a) 

EP = ^jTGtui>HP(kP) 
pJa 

and 

Hicp = -^.GhWH?\kp) 

sin (p / a) 

pt I a 

1/2 

sin (p / a) 

1/2 

(3-6b) 

(3-6c) 

jip- Tip   i 
where ui = -~jr and ti = -^ -^. The superscript i m the field components refers to the indirect 

great-circle path contribution. For each component, the total field is obtained through addition of 

the direct and indirect great-circle path contributions, i.e., 

Ez = Ed
z+E{ , 

E  =Ed + Fi 

(3-7a) 

(3-7b) 

and 

H(p-H(p + H'(p (3-7c) 
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DIPOLE SOURCE 
FIELD POINT 

2a P + i\ = 2ixa 

ANTIPODE 

Figure 3-2. The Earth and the Two Great-Circle Paths to the Field Point 

3.2.2 Horizontal Electric Dipole 

Consider a HED located on the earth's surface and oriented along the positive x direction of 

the coordinate system defined in figure 3-1. Under the same assumptions given for the VED, the 

HED propagation formulas are given as follows: 

Ei=--^Ghiu)H?\kP) pi a 

sin (p / a) 

1/2 

cos q> , (3-8a) 

.      TTf^Cf) 
4cofxop 

Hf{kp)-j-Hf\kp) pi a 
sin (p / a) 

1/2 

cos q> (3-8b) 

Ed: 
AlOflJ)2 1 

pi a 

sin (p / a) 

3/2 

sin q> (3-8c) 

K 4w0p2      i 

pi a 

sin (p / a) 

3/2 

sin (p (3-8d) 
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and 

Hi= 
Vji2pGh(t) 

4(DfA0p 
HV>{kp)-j-Hf\kp) 

pla 

sin (p / a) 

1/2 

cos (p s (3-8e) 

where 

Hh(t) = Gh{t) + Vh(t) 

Bannister has noted that for t > 2.5, Gh{t) s # = £ hf    and for * > 4.5, Vh(t) = 0 and 

(3-9) 

2t_pik^2 

1/2 
^A(0 - GA(0 s ^ = -^ I-y-1 .  Note that the spherical earth spreading factor (pla) I sin (p/a) 

appears in each HED field component expression along with an additional factor of 

I {pla) I sin {pla)   appearing in the E^ and Hd formulas. This factor of {pla) I sin {pia)] also 

appears in the corresponding HED spherical waveguide formulas derived in the appendix H. Note 

that the surface electric field components Ed and Ed are related to the surface magnetic field 

components Hd and Hd, respectively, through the impedance of the earth %. 

As previously mentioned, at antipodal ranges, the contribution from the indirect great-circle 

path field must be included in order to predict the interference produced by the two paths. The 

indirect great-circle path field components for the HED can be obtained from the direct great- 

circle path fields in equations (3-8) through replacement of the range p with the indirect great- 

circle path range p, and with the inclusion of the appropriate phase shift as obtained from table 

J-l in appendix J. As mentioned earlier in this section, the added phase shift of ±j depends on 

the primary range dependence of the field and therefore varies with each field component. Thus, 

the indirect great-circle path HED fields are given as follows: 

■ _ - r)ekpGh{u} 

El = 
mlk2pGh{t} 

4a)poPi 

lf\kPl) 
Pila 

sin (p / a) 

1/2 

COS <P > 

H^(kPl 
kPi    i 

\kPl) 
Pila 

sin (p / a) 

111 

cos cp. 

(3-10a) 

(3-10b) 

E' = 
_jrßkpHJßl 

v        4ü)fx0p}        l 
H^{kPi) 

pJa 

sin (p / a) 

3/2 

sin q>, (3-10c) 
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"•y^T}"^"?^ 
Pila 

sin (p / a) 

3/2 

sin (p , (3-10d) 

and 

injc2p 1 H^-^HfXkp) Pila 

sin (p / a) 

1/2 

cos cp (3-10e) 

where p„ u{, and ?, were previously defined for the VED. For each field component, the total 

field is obtained through addition of the direct and indirect great-circle path contributions as is 

shown for the VED fields in expressions (3-7). 

3.3    FORMULAS FOR A HED ABOVE AN ANISOTROPIC GROUND 

To account for the anisotropic earth conductivity beneath a HED antenna, Wolkoff and 

Kraimer (references 4 and 5) have extended Bannister's formulas (3-8). Wolkoff and Kraimer's 

formulas have been formally derived by Casey (reference 6). The coordinate system used by 

Wolkoff and Kraimer to describe the EM field radiated by a HED at a given point on the surface 
of the earth is described in figure 3-3. In this illustration, Et and Nt refer to the geometric (or 

true) east and north directions, respectively, at the transmitter location, while Er and Nr refer to 

the geometric east and north directions, respectively, at the receiver location (or field point). 

Note that the geometric east and north directions vary as functions of location along the earth's 

surface and lie on the tangent plane to the spherical earth. In addition, E and N correspond to the 

x ax\Ay directions, respectively, in the local rectangular coordinate system at each point on the 

spherical earth, and the vertical direction z points radially outward from the center of the earth at 

each point as illustrated in figure 3-4. 

In figure 3-3, the range p is the direct great-circle path distance from the HED center to the 

field point, (p is the azimuthal angle measured counterclockwise from true east at the transmitter, 
and (p„ is the azimuthal angle measured clockwise from true north at the transmitter. The unit 

vectors (p, q>, z) form a right-handed cylindrical coordinate system in which z is directed 

radially outward from the center of the earth. This cylindrical coordinate system differs from the 

convention used by Bannister and others (compare with figure 3-1), who define the azimuthal 

angle <p to be measured counterclockwise with respect to the electrical axis of the HED. Wolkoff 

and Kraimer (references 4 and 5) use the revised coordinate system described here because their 

antenna pattern factors are determined from magnetic field measurements that are referenced 

with respect to the local north and east directions. 
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DIRECT 
GMSWCIRCUS 

PATH 

MED 

Figure 3-3. Coordinate Systems at the Transmitter and Receiver Locations 
Used by Wolkoffand Kraimer (References 4 and 5) 

NORTHPOLE 

IÖIMTOR 

SOUTH POLE 

Figure 3-4. Local Rectangular Coordinate System (E, N, z) at a 
Given Point on a Spherical Earth 
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Wolkoff and Kraimer's propagation formulas for the direct wave fields from a HED are 

given as follows: 

Ap l 

.      klHAt)     ... 
Hi = ^4 H\2\kp) 

pi a 

sin (p / a) 

pi a 

1/2 
7>inn-;r„cosn 

p   Am\xy sin (p / a) 

3/2 

Te cos cpn + Tn sin cpn 

and 

H^(kp)-j-Hf\kp) pi a 

sin (p/fl) 

1/2 

Te sin yn - T„ cos q>n 

(3-1 la) 

(3-1 lb) 

(3-1lc) 

In the above formulas, Te and Tn denote the antenna pattern factors in the east and north 

directions, respectively. These complex-valued quantities account for the antenna length as well 
as the anisotropic ground conductivity beneath the antenna. For a given HED, Te and Tn are 

determined through measurement of the surface magnetic field at a location lying in the near 
field of the antenna (reference 4). It should be noted that in the above formulas, Te and Tn have 

been interchanged from their original definitions given in reference 6. A detailed discussion of 

the antenna pattern factors is given in a technical report that is still in preparation (reference 15). 

Wolkoff and Kraimer's propagation formulas for the indirect-wave fields from a HED are 

obtained from the direct great-circle path fields in equations (3-11) through replacement of the 
range p with the indirect great-circle path range p, and with the inclusion of the appropriate 
phase shift of ±j for each field component as obtained from table J-l in appendix J. Thus, 

Wolkoff and Kraimer's HED indirect wave formulas are given as follows: 

kIG,,(u,)     /0> 

z = ~~4j~    > (kpi) 
Pi/a 

sin (p / a) 

1/2 

Te sin q>n - T„ cos q>n 

__jkUUtl Pi la 

sin (p / a) 

3/2 

^cos^ + T^sing?,, 

(3-12a) 

(3-12b) 

and 

Jk2lGh(t) 

*      4copoPl 
H' = ngXkpt-jL-HVXkp,) 

Pi la 

sin (p / a) 

1/2 

TeSin V„ -T„ COS <pn 
,(3-12c) 
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where pt is defined in figure 3-2 and ut and tt are defined in section 3.2.1. For each field 

component, the total field is obtained through addition of the direct and indirect great-circle path 

contributions as is shown for the VED fields in expressions (3-7). 

A comparison of Wolkoff and Kraimer's HED formulas (3-11) with Bannister's formulas 

(3-8) yields the conversions in table 3-1. 

Table 3-1. Conversion Table Relating Bannister 's HED Propagation 
Formulas with Those of Wolkoff and Kraimer 

Field Component Bannister Wolkoff and Kraimer 

^z'Hq) - r\e dl cos (p Te sin % - T„ cos <pn 

Hp - T]e dl sin (p Te cos (p„ + Tn sin q>„ 

To convert from one of Bannister's HED formulas to the corresponding Wolkoff and Kraimer 

formula, the quantity in the second column of table 3-1 is replaced by the corresponding quantity 

given in the third column. Table 3-1 is a revision of a similar table originally presented by Casey 

(reference 7). A comparison of columns two and three above shows that the antenna length dl in 

Bannister's formulas is absorbed into the antenna pattern factors. 

Numerical results based on Wolkoff and Kraimer's HED formulas will not be presented in 

this report. For results based on these formulas, the reader is referred to a forthcoming report 

(reference 15). 
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4. SPHERICAL WAVEGUIDE PROPAGATION FORMULAS 

ELF propagation formulas for VED and HED sources that radiate in a spherical earth- 

ionosphere waveguide have been derived in appendices F and H, respectively. These spherical 

waveguide formulas are based on the assumptions of a uniform isotropic earth and a uniform 

isotropic ionosphere of constant height, where the waveguide boundaries are represented by 

scalar surface impedances. Through use of the thin-shell approximation derived in appendix I, it 

is shown that only the quasi-TEM mode can propagate in the 30-Hz to 300-Hz frequency band. 

In this section, the quasi-TEM spherical waveguide formulas for VED and HED sources are 

presented, where the source and observation points are located on the surface of the earth. From 

the series approximation of the Legendre function of the first kind (see appendix J, section J.2), it 

is shown that the HED spherical waveguide formulas reduce to expressions that are closely 

related to the antipode-centered formulas that were previously derived (reference 7) for antipodal 

ranges. In addition, through use of the earth-flattening approximation derived in appendix K, it 

is shown that the spherical waveguide formulas reduce to Bannister's formulas given in section 

3.2. Finally, through use of table 3-1, spherical waveguide formulas for a HED above an 

anisotropic ground are presented. 

4.1    PROPAGATION PARAMETERS FOR TM AND TE MODES AT ELF 

The radial wave numbers for the quasi-TEM, TM, and TE modes in the spherical earth- 

ionosphere waveguide at ELF are derived in appendix I. These formulas are based on the thin- 

shell approximation that has been shown (reference 2) to be suitable in the ELF band. The radial 
wave number krv has been defined in terms of the free-space wave number k0 and the wave 

number k in the direction of propagation as 

■-(*;-** 

1/2 
(4-1) 

From appendix I, approximate formulas for the radial wave number k     for the quasi-TEM 
O 

mode and the radial wave numbers k      for the TM modes are given as 

(1+7) 
(A + A)k v   g        e>   o 

2h 

1/2 

AJcoh «1, (4-2) 

and 
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j(A +A)k 
krvn *™+      *nx        . | W' | « 1 ; »= 1, 2,3,.... (4-3) 

Similarly, approximate formulas for the radial wave numbers fc      for the TE modes are given by 
m 

I 

; m= 1,2,3,.... (4-4) it-,   a 
!    y(^ + ^)_1 

&J* o 

In the above approximations, it is assumed that the spherical waveguide boundaries appear as 

nearly perfect conductors. Therefore, in formulas (4-2) and (4-3), \Ag |« 1 and \Ae |« 1, where Ag 

denotes the normalized surface impedance of the earth and Ae denotes the normalized surface 

impedance of the ionosphere for the quasi-TEM and TM modes. Similarly, in formula (4-4), 

\Ag | « 1 and \Ah | « 1, where ^denotes the normalized surface impedance of the ionosphere for 

the TE modes. 

For a given mode, the wave number k in the direction of propagation is given from formula 

(4-1) as 

k = ß-ja=(kl-kl)m, (4-5) 

where ß = 2rc/A and a are the phase and attenuation constants, respectively, and A is the 

wavelength. In the above formula, note that the radial wave number k^ corresponds to a 

particular mode and is given by one of the approximations (4-2), (4-3), or (4-4). A subscript or 

superscript has not been included with k because only quasi-TEM mode propagation formulas 

are referred to in the remainder of section 4. In the ELF propagation literature, the mode 

propagation parameters are given by civ, a, and h, where c is the speed of light in free space, 

v is the phase velocity of the mode, and h is the ionospheric reflection height. The mode 

parameter civ is expressed in terms of the wave number k as 

c _ Re{k} _ ß 
v-    ko    ~k0- ^b) 

Tables 4-1 a and 4-lb provide a listing of the phase velocity ratio {civ) and attenuation a, 

respectively, for equally spaced frequencies across the 30-Hz to 300-Hz frequency band under 

daytime propagation conditions with h = 50 km, earth conductivity a„ = 10"3 S/m, and 

ionospheric conductivity at = 10"5 S/m. These tables are based on the thin-shell approximation 
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and are computed from formulas (4-2) to (4-6). Note that the attenuation, expressed in decibels 

per megameter (dB/Mm), can be obtained from a(Np/m) through the relation 1 Np = 20 log10(e) 

dB = 8.686 dB. 

Table 4-la. Phase Velocity Ratio c/vfor the Dominant Modes in a Spherical 
Earth-Ionosphere Waveguide at ELF Frequencies Under Daytime 

Conditions with h=S0 km, Gg = 10r3 S/m, andat = 10rS S/m 

Frequency 
(Hz) 

Quasi-TEM TMi TM2 TEX TE2 

30 1.157 3.199 xlO"3 1.599 xlO"3 17.33 34.65 

60 1.112 4.524 xlO"3 2.262 x 10"3 7.268 14.53 

90 1.092 5.542 x lO"3 2.770 x lO"3 4.280 8.556 

120 1.079 6.402 x lO"3 3.199 xlO"3 2.916 5.827 

150 1.071 7.161 xlO"3 3.577 x lO"3 2.157 4.308 

180 1.065 7.849 x 10"3 3.919 xlO"3 1.682 3.358 

210 1.060 8.483 x lO"3 4.234 xlO"3 1.361 2.716 

240 1.056 9.075 x lO"3 4.527 xlO"3 1.132 2.258 

270 1.053 9.635x lO3 4.803 x lO"3 0.9621 1.917 

300 1.050 1.017 xlO"2 5.064 xlO"3 0.8313 1.655 

Table 4-lb shows that the quasi-TEM mode is the only propagating mode in the ELF band 

with an attenuation rate of approximately 0.75 dB/Mm at 30 Hz that increases with frequency to 

2.63 dB/Mm at 300 Hz. Table 4-lb also shows that the attenuation rates of the TM and TE 

modes are too high to be of any practical concern across the 30-Hz to 300-Hz frequency band. 

Note that the attenuation increases with the order of the mode. In addition, the attenuation rates 

of the TEj and TE2 modes are less than those of the TM! and TM2 modes, respectively. Table 

4-la indicates that the phase velocity of the quasi-TEM mode monotonically increases with 

frequency over the 30-Hz to 300-Hz band. 
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Table 4-lb. Attenuation a in dB/Mm for the Dominant Modes in a Spherical 
Earth-Ionosphere Waveguide at ELF Frequencies Under Daytime 

Conditions with h=50 km, Gg = 10r3 S/m, and Oi = 10~5 S/m 

Frequency 
(Hz) Quasi-TEM TMj TM2 TEj TE2 

30 0.7543 545.7 1091 390.6 781.3 

60 1.110 545.6 1091 430.4 861.0 

90 1.385 545.4 1091 449.5 899.5 

120 1.617 545.2 1091 461.3 923.3 

150 1.822 544.9 1091 469.4 939.9 

180 2.007 544.5 1091 475.3 952.3 

210 2.178 544.1 1091 479.8 961.9 

240 2.337 543.6 1090 483.4 969.7 

270 2.486 543.1 1090 486.2 976.1 

300 2.628 542.5 1090 488.5 981.5 

Tables 4-2a and 4-2b list the phase velocity ratio and attenuation rate, respectively, for 

equally spaced frequencies across the 30-Hz to 300-Hz ELF band under nighttime propagation 

conditions with h = 75 km, Og = 10"^ S/m, and <7j = 10"^ S/m. The numbers in these tables are 

also based on the thin-shell approximation. Table 4-2b shows that the quasi-TEM mode is the 

only propagating mode in the ELF band at nighttime with an attenuation rate of approximately 

0.53 dB/Mm at 30 Hz that monotonically increases with frequency to 1.78 dB/Mm at 300 Hz . 

Note that the attenuation rates of the TM and TE modes are again too high to be of any practical 

concern. Table 4-2a indicates that the phase velocity of the quasi-TEM mode monotonically 

increases with frequency over the tabulated frequency band. 
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A comparison of tables 4-1 with tables 4-2 shows that the mode attenuation rates are less 
at nighttime. In addition, the phase velocity of the quasi-TEM mode is greater at nighttime. 

Because the quasi-TEM mode is the only propagating mode in the 30-Hz to 300-Hz band, the 
remainder of this report will focus on the quasi-TEM mode. 

Table 4-2a. Phase Velocity Ratio c/vfor the Dominant Modes in a Spherical 
Earth-Ionosphere Waveguide at ELF Frequencies Under Nighttime 

Conditions with h = 75 km, ag = 10'3 S/m, and 0/ = 10r5 S/m 

Frequency 
(Hz) 

Quasi-TEM TMj TM2 TEj TE2 

30 1.106 3.199 xlO"3 1.599x10-3 9.360 18.72 

60 1.075 4.525 x 10"3 2.262xl0-3 3.729 7.455 

90 1.061 5.546xl0-3 2.771 x 10-3 2.143 4.283 

120 1.053 6.409 x 10-3 3.200xl0-3 1.439 2.873 

150 1.048 7.172xl0-3 3.579xl0-3 1.054 2.103 

180 1.043 7.867 x 10-3 3.921 x 10-3 0.8163 1.627 

210 1.040 8.510x10-3 4.237xl0-3 0.6572 1.308 

240 1.038 9.113x10-3 4.532x10-3 0.5445 1.082 

270 1.035 9.685 x 10-3 4.809x10-3 0.4612 0.9151 

300 1.037 1.023xl0-2 5.072 x IQ"3 0.3976 0.7875 
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Table 4-2b. Attenuation a in dB/Mm for the Dominant Modes in a Spherical 
Earth-Ionosphere Waveguide at ELF Frequencies Under Nighttime 

Conditions with h = 75 km, og = l(t3 S/m, and (T{ = 10~5 S/m 

Frequency 
(Hz) 

Quasi-TEM TM! TM2 TEj TE2 

30 0.5263 363.8 727.6 290.9 581.9 

60 0.7655 363.6 727.6 310.7 621.6 

90 0.9496 363.4 727.4 319.7 640.0 

120 1.105 363.0 727.3 325.1 651.2 

150 1.242 362.6 727.1 328.6 658.8 

180 1.366 362.1 726.8 331.0 664.4 

210 1.480 361.5 726.5 332.7 668.6 

240 1.586 360.8 726.2 333.9 672.0 

270 1.686 360.0 725.8 334.6 674.7 

300 1.780 359.2 725.3 335.1 676.8 

4.2    QUASI-TEM FIELDS 

4.2.1 VED 

The spherical waveguide propagation formulas for a VED located at an arbitrary height 

above the surface of the earth are derived in appendix F. These formulas simplify considerably 

for the case when both the source and observation points are located on the surface of the earth. 

Under this assumption, from appendix F, section F.2, the quasi-TEM fields for a VED are given 

as follows: 

E'     4*>2    sinv0jr   *V  COS0) 

Fve_      VoPA 
1 

6 Aha    sin vji dd   v. PA-cos B) , 

(4-7a) 

(4-7b) 

and 

Hve=   P        l 
f     Aha sin v0% dd PA- cos 6)   . (4-7c) 
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The reader is referred to the spherical coordinate system (r, 6, <p) described in figure 1-1 with 

unit vectors {f,d,q>) illustrated in figure 4-1. In these formulas, the VED is located at (r,0) = (a, 

0) and the observation point is at (r, 0, (p) = (a, 0, <p). Note that because of azimuthal symmetry, 
the above formulas are independent of <p. In addition, the excitation factor Ae has been replaced 
by 0.5, a suitable approximation at ELF, as is shown in appendix I, section 1.2. In the above 

formulas, Ag denotes the normalized surface impedance of the earth and Pv is the Legendre 
function of the first kind of degree v0 and order zero, where v0 is the n = 0 solution of the TM- 
mode characteristic equation. 

Figure 4-1. Spherical Coordinate System 

From appendix J, section J.l, v0 is related to the quasi-TEM wave number k as 

}:-
Vo+m K~      a (4-8) 

As discussed in appendix K, if | v01» 1, then 

v0 + 1/2 m f        i\~|i/2 

v0(v0 + 1) j      . (4-9) 

The above result is generally valid in the ELF band. Therefore, under this condition, the wave 
number k can be approximated as 
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IC ä ± : 

1/2 

- . (4-10) 

For a homogeneous and isotropic earth, the normalized surface impedance Ag is given by 

where the intrinsic impedance of the earth rje is given in section 3.2.1. 

4.2.2 Horizontal Electric Dipole 

The spherical waveguide propagation formulas for a HED located at an arbitrary height 

above the surface of the earth are derived in appendix H. As with the VED formulas, the HED 

formulas simplify considerably for the case when both the source and observation points are 

located on the surface of the earth. Under this assumption, from appendix H, section H.2, the 

quasi-TEM fields for a HED are given as follows: 

he YioAzP 1 d 
K = -   AU     -^— To Pv (- cos 0) cos w , (4-12a) r Aha   sin v0% 38   V '       r ' v        ' 

Ee = -k1 /       ^   ■   — TZ5 pv ("cos Ö) cos <P. (4-12b) u Ah       v0(v0 + 1) sin v0Jt  dd2   v° 

7he j(o\i0A2p      1 j      j    9 

and 

K = —-Air- r^—TT —^ ^-ä TO Pv (- cos 0) sin w, (4-12c) <P 4A       v0(v0 +1) sin vji sin 0  30   V 7       r' v        > 

He* = —hr / *    ix -J —ö 7JÄ pv ("cos 0) sin q>, (4-12d) ö 4Ä     v0(v0 +1) sin v0% sin 0  M   V r' v ' 

,     jk„A0p        , ,        s2 

K = —ZT-     ,        n -^— TZi Pv (" cos 0) cos <p . (4-12e) 
<P Ah     v0(v0 + 1) sin V0K  dd2   v° 

The reader is again referred to the spherical coordinate system (r, 6, (p) described in figure 1-1. 

In these formulas, the HED is located at (r, #) = (a, 0) and the observation point is at (r, 6, (p) = 

{a, 6, (p). Note that the above formulas have the same azimuthal dependencies as Bannister's 

HED formulas that are listed in section 3.2.2. As in the VED case, the excitation factor Ae
0 has 

been approximated by 0.5. The complex degree v0 in the above HED formulas corresponds to 

the n = 0 solution of the TM-mode characteristic equation. 
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4.3 ANTIPODE-CENTERED FORMULAS 

In order to predict the EM fields produced by a HED at antipodal ranges, the author 

(reference 7) derived some simple approximate formulas that are based on an earth-flattening 

type of approximation that has the proper range dependence in the vicinity of the antipode and 

accounts for spherical curvature at further distances from the antipode. The resulting "antipode- 

centered" formulas have range dependencies that are similar in form to the corresponding ones 

that incorporate the earth-flattening approximation except that the Hankel function is replaced by 
a Bessel function of the first kind and the range argument is replaced by pa, where pa = a(jc-8) 

is the great-circle path distance from the antipode to the field point (figure 3-2). The range 

dependencies in the antipode-centered formulas are derived from an approximate series 
representation of Pv(- cos 0) that is suitable in the vicinity of the antipode (0=7t). From the 

primary terms in this series, approximate formulas for Pv{- cos 0) and its first two derivatives 

with respect to 9 are derived in appendix J, section J.2. These formulas are given as follows: 

Pv(-cosd)*J0(kpa) Pala 11/2 

sin pja 
(4-13a) 

A. 
dd Pv(-cos0)*kaJl(kpa) Pja 

sin pja 

1/2 

and 

(4-13b) 

d- 
dd 

2 Pv(-cos 6)*-(kay JoW-^J^Pa) 
Pala 

sin pja 

1/2 

(4-13c) 

Through use of the above approximations, antipode-centered formulas for both VED and HED 

sources are derived from the spherical waveguide formulas presented in section 4.2. The resulting 

HED formulas are then compared with the corresponding formulas derived in reference 7. 

4.3.1 VED 

The application of the approximate formulas (4-13) and (1-7) to the spherical waveguide 

formulas for a VED source given in expressions (4-7) yields the following field approximations: 

jr}Jc2p      1       i n 

Akji   sin V0JI 
7°( Pa) 

pja 

sin pja 

1/2 

(4-14a) 
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v Ah        sin 1/ -ir     lv  ra' 
1 

4/z     sin v0Jt 
Pata 

sin pa/a 

1/2 

(4-14b) 

and 

<?    4h sin v03t   J   ra 
Pa/a 

sin pfl/a 

1/2 

(4-14c) 

where pa = a(n-6) is the great-circle path distance from the antipode to the field point (figure 

3-2). In the above formulas, note that sin 6 = sin {pia) = sin (pa Id) and p + pa = 7ia. 

4.3.2 Horizontal Electric Dipole 

The application of the approximate formulas (4-13) and (1-7) to the spherical waveguide 

formulas for a HED source given in expressions (4-12) results in the following field 

approximations: 

and 

,        iinkA0p phe ^       lo      gr 

r   ~          Ah 
1 

sin V0TC h&Pa) 
Pala 

sin pja 

■ 1/2 

cos <p , 

^e _      Ah 
1 

sin v0n WPa)     kpa
J*{kPa) 

Pa
/fl 

sin pa/a 

Ehe .. J^o^gP 
v-   4khpa 

—^—JiW sin V0JI 

Pj° 
sin pja 

3/2 

sin <p , 

6      4khpa  sin v0%   l   Fa   5 
Pala    f 

,inpa/a 

'2 

sin cp , 

Hhe^    Jko\P 
f "       Ah 

1 
sin v0n 

J0{kpa (*Pfl) 
Pala 

sin pa/a 

1/2 

cos <p 

1/2 

cos (/9 

(4-15a) 

(4-15b) 

(4-15c) 

(4-15d) 

(4-15e) 

A comparison of expressions (4-15a), (4-15d), and (4-15e) with the corresponding formulas 

given in reference 7 shows that the above formulas differ by a factor C that is defined as 
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c = 
ejkiw. j    ejv0x 

2 sin V0JI    2 sin v0Jt (4-16) 

Note that the final expression in formula (4-16) was obtained through use of equation (4-8). 

Table 4-3 lists the magnitude and phase of C for several frequencies in the ELF band. The 

magnitude of C is tabulated to three significant figures while the phase of C is given to the 

nearest thousandth of a degree. Because the antipode-centered propagation formulas in reference 

7 were derived via Bannister's HED formulas and because there is a sign difference between 

Bannister's HED formulas and the spherical waveguide formulas (see section 4.4), C has been 

multiplied by -1 in table 4-3. The results show that C is very small in magnitude and phase over 

the ELF band, indicating that the HED antipode-centered propagation formulas of reference 7 are 

sufficiently accurate to be used in place of expressions (4-15a), (4-15d), and (4-15e). 

Table 4-3. Magnitude and Phase of Difference Factor C in HED Antipode-Centered ELF 
Propagation Formulas at Several Frequencies under Daytime Conditions 

Frequency (Hz) v0 |C|(dB) Phase{-C} (deg) 

30 4.75 -./ 0.440 -2.56xl0-2 3.599 

76 11.7-7 0.880 - 1.52xl0-2 0.204 

100 15.9-7 1-32 1.92 xlO"3 0.007 

300 46.4-/3.67 - 5.73 x 10"10 0.000 

The suitability of the antipode-centered ELF propagation listed in formulas (4-14) and (4-15) 
depends entirely on the accuracy of the approximations for Pv(- cos 6) and its first two 

derivatives with respect to 0 as given in expressions (4-13). Comparison plots of the exact series 
formulas for Pv(- cos 6) (and its first two derivatives with respect to 0) and the approximate 

formulas (4-13) are given in appendix J, section J.3, for frequencies of 30 Hz and 76 Hz. The 

plots show that the approximate formulas are in close agreement with the corresponding exact 

formulas. This comparison improves with increasing frequency and degrades with increasing 

derivative order. (For more details regarding this comparison, refer to appendix J, section J.3.) 

In summary, the antipode-centered propagation formulas (4-14) and (4-15) are suitable 

substitutes for the spherical waveguide formulas presented in section 4.2. 
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4.4    REDUCTION TO BANNISTER'S FORMULAS VIA 
THE EARTH-FLATTENING APPROXIMATION 

The earth-flattening approximation to the Legendre function of the first kind is derived in 

appendix K. Earlier in this report, it was mentioned that this approximation has been incorporated 

into Bannister's VED and HED formulas given in section 3.2. Through use of the earth-flattening 

approximation, it is shown that the VED and HED spherical waveguide formulas can reduce to 

Bannister's formulas. 

4.4.1 VED 

From expression (K-33) in appendix K, the Legendre function of the first kind and degree v 

is approximated as 

Pv{- cos 6) s j sin vji H^\kp) 
p I a 

sin (p / a) 

1/2 

(4-17) 

where p = ad is the great-circle path distance along the earth from the source point to the field 
point (figure 3-1) and H^ denotes the Hankel function of the second kind with order 0. As 

discussed in section 3.1, H^\kp) corresponds to the range dependence for a flat earth and the 

square-root term is the correction for curvature. The spherical waveguide propagation formulas 

for a VED are given in expressions (4-7). In these formulas, the range dependencies are 
expressed in terms of either Pv(- cos 0) or its first derivative. From the approximation (4-17), 

the derivative of Pv(- cos 0) with respect to 9 is given by 

dd 
Pv (- cos 0) s -jka sin V0JI H^\kp) 

pi a 

sin (p / a) 

1/2 

(4-18) 

where the 0-derivative of H^\kp) is given by 

Ö 

dd Hg\kp) = ka H^\kp) = -ka H^\kp) . (4-19) 

In the approximation (4-18), note that the 6 derivative was applied only to the Hankel function 

term because it varies more rapidly than the curvature correction term. 

The substitution of the approximations (4-10), (4-17) and (4-18) along with expression 

(4-11) into the VED formulas (4-7) yields 
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and 

K'.-^H?\kp) 
pi a 

sin (p / a) 

1/2 

(4-20a) 

(4-20b) 

(4-20c) 

In the above formulas, note that the spherical components r and 6 have been replaced by the 

equivalent cylindrical components z and p, respectively. The above formulas are generally valid 

for ranges greater than three ionospheric reflection heights, i.e., p > 3/z. In order to show that the 

above VED formulas are equivalent to those of Bannister given in section 3.2.1, the functions Gh 

and Vh must be replaced by their approximate forms. For p > 3h, these functions can be 

approximated as 

and 
<w-£=£ (4-21) 

Vh(t) - 0 . (4-22) 

The substitutions of the above approximations into Bannister's VED formulas (3-3) yields 

pi a 
*?-■&?«?»(*» 

E}'*&HPW> 

sin (p / a) 

1/2 

pi a 

and 

Hd^-J^Hf\kP) 

sin (p / a) 

pi a 

sin (p / a) 

1/2 

1/2 

(4-23a) 

(4-23b) 

(4-23c) 

A comparison of formulas (4-20) with (4-23) shows that the VED spherical waveguide formulas 

reduce to Bannister's formulas for p > 3A. 
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4.4.2 Horizontal Electric Dipole 

The spherical waveguide propagation formulas for a HED are given in expressions (4-12). In 

these formulas, the range dependencies are expressed in terms of either the first or second 

derivatives of Pv(- cos 0). An approximation for the first derivative of Pv(- cos 0) with respect to 

0is given in formula (4-18). From this approximation, the second derivative of Pv(- cos 0) is 

given as 

30' 
Pv (- cos 0) a - jka sin v0n -^ { Hf\kp) 

30 
pi a 

sin (p / a) 

1/2 

■ j{ka)2 sin v0x Hf(kp)-j-Hf\kp) 
pi a 

sin (p / a) 

1/2 

(4-24) 

In the above approximation, note that the 6 derivative was only applied to the Hankel function 

term because it varies more rapidly than the curvature correction term. 

The substitution of the approximations (4-10), (4-17), (4-18), and (4-24), along with 

expression (4-11), into the HED formulas (4-12) yields 

if.Zg-Hpep) 
pi a 

sin (p / a) 

112 

cos q), (4-25a) 

EP   S- 

koV2eP 
4iloh 

H%\kp)-j-Hf\kp) pi a 
sin (p / a) 

1/2 

cos q) (4-25b) 

Eh^^?-Hf\kp) 
f     4i]0khp 

pi a 
sin (p / a) 

3/2 

sin q) , (4-25c) 

Hhe^koM_H(2){k) 

P     4ilokhp    x     r 

pi a 

sin (p / a) 

3/2 

sin q), (4-25d) 

and 

„heJoVeP 
<p 4i1oh 

H%\kp)-±-Hf\kp) pi a 
sin (p / a) 

in 

cos qi (4-25e) 
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In the above formulas, note that the spherical components r and 6 have again been replaced by 

the equivalent cylindrical components z and p, respectively. The above formulas are generally 

valid for p > 3A. In order to show that the above HED formulas are equivalent to those of 
Bannister given in section 3.2.2, the functions Gh, Vh, and Hh must be replaced by their 

approximate forms. Approximations for Gh(u) and Vh(t) are given in expressions (4-21) and (4- 

22), respectively. For p > 2>h, Gh(t) and Hh(t) can be approximated as follows: 

and 

(4-26) 

(4-27) 

The substitutions of the approximations (4-21), (4-26), and (4-27) into Bannister's HED 

formulas (3-8) yields 

Ef^-^HfXkp) 
p I a 

sin (p I a) 

1/2 

cos cp 

Ed^k<W2eP 
P     4Voh 

H%Xkp)-j-HfXkp) pi a 

sin (p / a) 

1/2 

cos cp . 

(4-28a) 

(4-28b) 

Et 
kon2

ep 
f      4t] Jchp    i 

HV\kp) 
p I a 

sin (p / a) 

3/2 

sin q> (4-28c) 

p       4r)0khp    l 
pi a 

sin (p / a) 

3/2 

and 

Hi=- 
k
0neP 

4t]0h 
H£Xkp)-j-HfXkp) 

sin cp , 

pi a 

sin (p / a) 

1/2 

cos <p 

(4-28d) 

(4-28e) 

A comparison of formulas (4-25) with (4-28) indicates that each of the HED spherical waveguide 

formulas reduces to within a factor of-1 of Bannister's formulas for p>3h. At this time, there 

is no explanation for the sign difference. 
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4.5    MODIFICATION OF HED SPHERICAL WAVEGUIDE FORMULAS 
TO ACCOUNT FOR AN ANISOTROPIC GROUND 

The HED spherical waveguide formulas (4-12) are based on the assumption of a 

homogeneous, isotropic earth. These formulas can be modified to account for an anisotropic- 

ground conductivity in the vicinity of the HED through use of the reciprocity theorem. The 

derivations of the modified HED spherical waveguide formulas follow that given by the author 

(reference 6) for Bannister's HED formulas and will not be presented here. In addition, the 
conversion (table 3-1) may be applied to the spherical waveguide formulas if Ez and Hp are 

replaced by Er and HQ, respectively. Therefore, the modified HED spherical waveguide 

formulas are 

?he 1 
Aha sin v0x  38 

Pv (- cos 6) Te sin q>n - Tn cos <pfl (4-29a) 

H he frj 1 
4l1oh v

0(Vo+ !)  sin von sin ^   Ö0 

i i       d 
7)flPv(-cos0)   Te COS <Pn + Tn Sln <P,, , (4-29b) 

and 

Rhe _      fig1   1 
v        4rloh v0(v0+ 1) sinv0Ji  dd 

P(-cosÖ) 2 * v Te sin cpn - Tn cos (pfl (4-29c) 

In the above formulas, Te and Tn are the antenna pattern factors in the east and north directions, 

respectively, and q>n is defined in figure 3-3. As with Wolkoff and Kraimer's formulas given in 

section 3.3, only the field components of practical interest are listed above. 
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5. COMPARISONS OF PROPAGATION FORMULAS 

In section 3, Bannister's ELF propagation formulas were presented for both VED and HED 

sources radiating in a spherical earth-ionosphere waveguide, where both the source and field 

points are located on the earth's surface. In section 4, spherical waveguide formulas for VED 

and HED sources were given. The spherical waveguide formulas are expected to be more 

accurate at antipodal ranges because they have a range dependence that is more accurate than 

Bannister's formulas, which are based on the earth-flattening approximation with curvature 

correction. 

In this section, plots of the spherical waveguide and Bannister's ELF propagation formulas 

are presented as functions of range for both daytime and nighttime propagation conditions at 

several frequencies in the ELF band. Results are presented for VED and HED sources, where 

both the source and field points are located on the surface of the earth. In the plots of Bannister's 

formulas, separate graphs of the direct great-circle path field and the summation of the direct and 

indirect great-circle path fields are given. The comparisons presented here will help to more 

accurately establish the maximum ranges of validity of Bannister's formulas. Plots of only the 

dominant field components are presented, i.e., Eve, H™, Ehe, H^e, and H^f. 

For a HED source, the plots presented in this report are at the azimuth angle (p in which the 

magnitude of the field component is a maximum. In particular, the plots of E¥ and H^  are 

given for q> = 0° and the plots of Hhp  are given for (p = 90°. In addition, for the spherical 

waveguide formulas, the spherical coordinates r and 6 are replaced by the cylindrical 

coordinates z and p, respectively, where z = r-a,p = a$, and a is the earth's mean radius. The 

unit vectors in these coordinate systems are related as follows: £ = f and p = 8. 

Table 5-1 is a list of the propagation parameters at several ELF frequencies under typical 

daytime and nighttime conditions. The propagation parameters civ, a, and h were obtained from 

Bannister (reference 16) and are based on an exponential conductivity profile of the ionosphere 

(reference 17). The degrees of the Legendre function v0 in the spherical waveguide formulas 

that are listed in this table are computed from formula (4-8). It should be mentioned that the 76- 

Hz parameters listed in this table are different from those obtained from Wolkoff (reference 18) 

for use in an earlier investigation (reference 7). In that study, Wolkoff determined the 76-Hz 

propagation parameters from the measured data listed by Bannister (reference 17). The 76-Hz 
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frequency is of particular interest in applications because it is the center frequency of the U.S. 

Navy Submarine ELF Communications System. 

Table 5-1. Propagation Parameters for Typical Daytime and Nighttime Conditions at 
Several Frequencies as Obtained from Bannister (Reference 16) 

Frequency 
(Hz) 

Propagation 
Condition civ a (dB/Mm) Ä(km) Vo 

30 Daytime 1.31 0.60 51 4.75-/0.440 

30 Nighttime 1.14 0.70 73 4.07-/0.513 

76 Daytime 1.25 1.4 53.5 12.2-/ 1.03 

76 Nighttime 1.12 0.90 77 10.9-7 0.660 

100 Daytime 1.23 1.8 55 15.9-/ 1.32 

100 Nighttime 1.12 1.15 77 14.5 -j 0.844 

300 Daytime 1.17 5.0 59 46.4-/ 3.67 

300 Nighttime 1.10 2.7 81 43.6-/ 1.98 

5.1    RESULTS AT 76 HZ 

Plots of the computed magnitude and phase of the vertical electric field produced by a VED 

under daytime propagation conditions at 76 Hz are given in figures 5-1 a and 5-lb, respectively. In 

addition, plots of the magnitude and phase of the azimuthal magnetic field from a VED source are 

presented for the same propagation conditions in figures 5-2a and 5-2b, respectively. Each of 

these graphs are given as a function of the distance measured from the antipode pa, which is 

defined in terms of the direct great-circle path distance p measured from the source as pa = ita - p 

and illustrated in figure 3-2. Figures 5-la and 5-2a show an interference pattern that is greatest in 

the vicinity of the antipode and slowly diminishes with increasing distance from the antipode. 

The interference is caused by the combination of the direct and indirect great-circle path fields. 

In figures 5-la and 5-2a, note that Bannister's direct great-circle path field components do not 

show an interference pattern because they do not include the indirect great-circle path 

contribution. 

42 



In figure 5-1 a, Bannister's total field (direct plus indirect great-circle path formulas) result 

for Ev
z
e shows good agreement with the spherical waveguide formula for all ranges except those 

that are very close to the antipode. In particular, Bannister's total field result for Ev
z
e agrees to 

within 1 dB of the spherical waveguide formula for pa = 1.15 Mm or, equivalently, p = 18.87 

Mm. In comparison, Bannister's direct great-circle path formula for Ev
z
e agrees to within 1 dB 

of the spherical waveguide formula for pa = 6.09 Mm or, equivalently, p - 13.93 Mm. Clearly, 

under these propagation conditions, Bannister's total field results are much more accurate than 

Bannister's direct great-circle path results at antipodal ranges. 

A comparison of figures 5-la and 5-2a indicates that Bannister's total field result for H™ 

does not agree as closely with the corresponding spherical waveguide formula as Ev
z
e. In figure 

5-2a, Bannister's total field result for W* agrees to within 1 dB of the spherical waveguide 

formula for pa = 1.89 Mm or equivalently, p = 18.13 Mm. In addition, Bannister's direct great- 

circle path formula for Hv* agrees to within 1 dB of the spherical waveguide formula for 

pa = 6.78 Mm or equivalently, p = 13.24 Mm. The poorer agreement in Bannister's total field 

result for Hv* is because its range dependence is proportional to the first derivative of 

P (- cos 0) as compared with Eve, which has a range dependence that is directly proportional to 

P (- cos 0) • This observation is attributed to the fact that in the earth-flattening approximation 

for p (- cos 0), each successive derivative introduces additional error into the approximation. 

The phase plots for Ev
z
e and H™, given in figures 5-lb and 5-2b, respectively, show a 

similar comparison of Bannister's results with the spherical waveguide formulas as was observed 

for the field magnitudes. In figure 5-lb, Bannister's total field result for Eve agrees to within 5° 

in phase of the spherical waveguide formula result for pa = 1.35 Mm or, equivalently, p = 18.67 

Mm. In figure 5-2b, Bannister's total field result for H™ agrees to within 5° in phase of the 

spherical waveguide formula result for pa = 3.67 Mm or, equivalently, p = 16.35 Mm. 

Bannister's direct great-circle path formulas for Eve and Hv* agree to within 5° in phase of the 

corresponding spherical waveguide formula results for pa = 7.29 Mm and pa = 7.30 Mm, 

respectively. As expected, the phase results computed from Bannister's total field formulas 

agree more closely with the spherical waveguide formulas than do Bannister's direct great-circle 

path formulas. 
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Plots of the computed magnitudes and phases of the HED field components Ef!e, H^c, 

and Hy under daytime propagation conditions at 76 Hz are given in figures 5-3, 5-4, and 5-5, 

respectively. The magnitude plots show that Bannister's total field results for E^e, H^e, and 

Hy  agree to within 1 dB of the corresponding spherical waveguide formula results for pa = 1.89 

Mm, pa - 2.12 Mm, and pa = 2.67 Mm, respectively. Note that the ranges of agreement for H™ 

and E'*e are the same. This observation is not surprising because the range dependencies of 

these field components are each proportional to the first derivative of p (- cos 6) ■ The poorer 

agreement for H^e is because its range dependence is proportional to the second derivative of 

P (- cos 6), resulting in additional error in the earth-flattening approximation. 

ve 

In figures 5-3a, 5-4a, and 5-5a, Bannister's direct great-circle path results for E^e, H^e, and 
p 

Hy  agree to within 1 dB of the corresponding spherical waveguide formula results for pa - 6.78 

Mm, pa = 6.77 Mm, and pa - 6.08 Mm, respectively. Note that the ranges of agreement for H™, 

E^e, and H^e are nearly identical because the formulas have the same range dependence. 

Surprisingly, H^e shows a better agreement with the spherical waveguide formulas than the 

other direct great-circle path field components. 

The phase plots for E^e, H^e, and Hf*, given in figures 5-3b, 5-4b, and 5-5b, respectively, 

show a similar comparison of Bannister's results with the spherical waveguide formulas as was 

observed for the field magnitudes. In these plots, Bannister's total field results for E]le, H^c, and 

Hy  agree to within 5° in phase of the corresponding spherical waveguide formula results for 

pa - 3.67 Mm, pa = 3.67 Mm, and pa = 6.14 Mm, respectively. Based on these comparisons, the 

phase agreement for each of these field components is worse than observed in the corresponding 

magnitude comparisons. Bannister's direct great-circle path formulas for E!!c, H^e, and H^e 

agree to within 5° in phase of the corresponding spherical waveguide formula results for pa = 

7.30 Mm, pa = 7.31 Mm, and pa = 9.56 Mm, respectively. As was observed for the VED fields, 

the phase results computed from Bannister's total field HED formulas agree more closely with 

the spherical waveguide formulas than do Bannister's direct great-circle path formulas. 

\ 
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Plots of the computed magnitudes of the VED field components Eve and H™ under typical 

nighttime propagation conditions at 76 Hz are given in figures 5-6a and 5-6b, respectively. 

Similar plots of the computed magnitudes of the HED field components E^e, H1?, and H^ 

under typical nighttime propagation conditions at 76 Hz are given in figures 5-7a, 5-7b, and 5-7c, 

respectively. In these plots, Bannister's total field results for Ev*, Hv*, E^e, H^e, and H^e 

agree to within 1 dB of the corresponding spherical waveguide formula results for pa > 1.49 Mm, 

pa > 2.50 Mm, pa > 2.50 Mm, pa > 2.51 Mm, and pa > 3.41 Mm, respectively. Although these 

agreements are not quite as good as the corresponding daytime propagation results, they follow 

the same trend. In comparison, Bannister's direct great-circle path field results for Ev
z
e, H™, 

E1?, H^e, and H^e agree to within 1 dB of the corresponding spherical waveguide formula 

results for pa > 10.20 Mm, pa > 10.24 Mm, pa > 10.24 Mm, pa > 10.25 Mm, and pa > 10.21 Mm, 

respectively. These ranges of agreement are considerably worse than what was observed for the 

direct great-circle path field results under daytime conditions. This observation is attributed to 

the lower attenuation at nighttime which results in an interference pattern from the two great- 

circle path fields that extends to greater distances from the antipode. 

A summary listing of the ranges over which Bannister's direct great-circle path and total 
field formulas agree to within 1 dB in magnitude of the corresponding spherical waveguide 
formulas are given in tables 5-2a and 5-2b, respectively, for both typical daytime and nighttime 
propagation conditions at 76 Hz. In these tables, the normalized range ßpa is included in 
parentheses, where /?= Re{fc} = 27iM is the phase constant of the quasi-TEM wave and A is the 
corresponding wavelength. (Normalized ranges will be discussed later in this section.) 

A comparison of these tables clearly shows that Bannister's total field formulas have a much 
greater range of agreement with the spherical waveguide formulas than do Bannister's direct 
great-circle path formulas. From table 5-2a, the ranges of satisfactory agreement for Bannister's 
direct great-circle path formulas extend from pa > 6.08 Mm to pa > 10.25 Mm, depending on the 
field component and propagation condition. In comparison, from table 5-2b, the ranges of 
satisfactory agreement for Bannister's total field formulas extend from pa > 1.15 Mm to pa > 

3.47 Mm. As previously mentioned, the poorer agreement observed for Bannister's direct great- 
circle path formulas is attributed to their inability to predict the interference produced by the 
superposition of the direct and indirect great-circle path fields. 
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Table 5-2a. Ranges Over Which Bannister's Direct Great-Circle Path Field Formulas Agree 
to Within 1 dB in Magnitude of the Spherical Waveguide Formulas at 76 Hz 

Field 
Component 

Propagation 
Condition Range 

Ele 
Daytime pa>6.09Mm (ßpa> 12.13) 

Nighttime pa > 10.20 Mm (ßpa > 18.20) 

HV; Daytime pa>6.1SMm {ßpa > 13.50) 

Nighttime pa > 10.24 Mm (J3pa > 18.27) 

E? Daytime pa > 6.78 Mm {ßpa > 13.50) 

Nighttime pa > 10.24 Mm (ßpa > 18.27) 

Hh
p
e 

Daytime yOa>6.77Mm (ßpa> 13.48) 

Nighttime pa > 10.25 Mm (ßpa > 18.29) 
Xjhe 

Daytime /7a>6.08Mm (ßpa> 12.11) 

Nighttime pa > 10.21 Mm {ßpa > 18.21) 

Table 5-2b. Ranges Over Which Bannister's Total Field Formulas Agree to Within 
1 dB in Magnitude of the Spherical Waveguide Formulas at 76 Hz 

Field 
Component 

Propagation 
Condition Range 

E? Daytime /?a>1.15Mm {ßpa> 2.29) 

Nighttime /?a>1.49Mm (ßpa>2.66) 

n;e 
Daytime pa > 1.89 Mm (J3pa > 3.76) 

Nighttime /?a>2.50Mm (ßpa > 4.46) 

£.Ae Daytime /?a>1.89Mm (ßpa>3.76) 

Nighttime yOa>2.50Mm (J3pa>4.46) 
jrhe Daytime /?a>2.12Mm (ßpa>4.22) 

Nighttime /?a>2.51Mm (ßpa>4AS) 
zjhe 

Daytime pa>2.61Mm (ßpa>5.32) 

Nighttime pa>3.41Mm (J3pa>6.19) 

56 



I 
.8 

I 

I 
I 

£ 

So: 
&£ 

%) 

«1 

1 S 
ft, ^ tl 

fej < 

■gsg 
«a 

— Si 

c 8 

< 
II 
a. 
GO 

O a. 

u 
e 

e 
a o. 
B 
O 

« 
60 a 
D. o 

(WASP) I a 

u 
a 

Si a 
.0* 

o 
H 

57 



* 5 

a c 

K .1 
Is 

.8 

B 
< 

II 
ft. 

O 

5) £*■ 

-o 
OS 
d 

CS 

Q   ^>   u 
^   S   a 

- •«   C 
53   55    ü 

©*.<■> 

•elf 
I* 

C3 
D- 
c 
O 
e3 
00 
es a. 
2 a. 
u -c 

r*> 

Owvap) I H 

in "^ 

s s 
.5$ 

58 



I 

I 

I 

\o 

i V 

Sp
he

ric
al

 w
av

eg
ui

de
 

B
an

ni
st

er
 (d

ir.
) 

B
an

ni
st

er
 (d

ir.
+i

nd
.) 

1          «                  j                              ! 

i          1\                  1 
i               V                      ■                                          : 

■                         1}                ■                                            ■ 
>       t 

i    ; 

i i 
!        TV       | ~ 7  

■ 

:                                 /'        i                                             ■ 
1                                 I   »      :                                              ; O 

It  ^v                            j 

j                                         t   :   I                                          1 

-■«fr  :                                     1 1— ~~*jj- |—    

1 /    ^~""^a*"t,s"s^&; 

i              (    -              /    :                                           \ - 

1                                              1                                              1                       o O 

CM 

o o \© o 

(WASP) | H 

8 

■8 

1* IPS 

E 
< 

ii 
a. 

«I 

as <ü 

c u 
E 

i 
"o 
& •5 
u 

c 

j: Sf fc. Ci o 

1 
1 II 

If ft, 
L- 
a 

%J ea 
^       S S s: 

S     £ S 3 

s    ^ •& 'S 
>W              kj :** TO 

«     C*3 < 

"v. .8 E 
«u •»^ ^ 

•** 
si * II 
s 

«J ■8 
■a 

E* 

s & |5 
Q •n 

d 
II 

* cs s "8 ^ 

.8 •8 
11 

1 1 & 
C8 

of
Sp

 
F

ie
ld

 

en 

U 
E 

s w CS 

o ** JS OS 

C u c 
3 JÜ o 
B-ttJ 
§ bU 

„« n, 
O s 

£ 
«o N*"^ 
s» k. 
s 
.& 

59 



__00    2 

o O 
00 o 
<N cs 

o o o 
^mt CN en 
<Ti m en 

(WVSP) I H| 

•a 

to 

•■2 if 

'S K 

I« 

a U 
S a 

«M «I II 

i" 

o 
E 

JD 
"3 a 
•5 
u £ 

-o c 

o " o 
ON 

"5b c 
ed 

"eei 

Ik 

a 
a 
a 

CQ 
*a a a 
I 
a 
S* to 

6 

3 

•8 

E 
r» r- 
II 

■a 
ON 
ö 

to  ' to  , 
-I 
I' 

2 
c to 

a>fc, 
a vs 
a c 
<ji   to 

c a 
ft«>S 

I 
I 

a 

ii 
> 
V 
im 
es 
OS u 

E « 
CS a. 
c 
.2 
"es 
00 
es 
O. 
O 

60 



vo 

.8 T3 
C 9 

>   u.   w 

o 
o. «3 « 
(/) CQ CO 

(ui/vSP) |  H| 

V 
>« -ta 

^3 >j 
E 
< 

SS —' 

ag
ni

 
t7

6
 ii 

5 * 4-t c 
(1) *> a j= 

-s a n 
E 
5) 

•*■» a o 
&g „© o. .so •o 

§ .2 c "-C TS 
O   Ö E 
k, te ^ a s •*. O 
.ft ft || 

§. 

ö> * W 

a,£ _u 

PS B 

"e3 

3 

63 "3 E 
as   U N 

I.    CL 11) 

S&* 
«  S E 

'    .2» ^ 
s ^5 i-~ 
a ►?■ r- 

«a ü II 

"3S -s 
E 

IS e to 
a ss T5 

&e>5^ C\ 

Sf« O 

Ss a 
II 

-^ cs 
a ft ^H 

t8« II 
S S 
*5,.a "5 
celt, Ü 

ft « 
CS 

S   V a a <L> 

.3 &e E 

8.* 
ca 
u 
CS a. 

i « B 
O 

rft •« 
^"S CS 

60 

J5» -S n. o 
im 

"A "^ U 
(11 

2! a w 

.*> 

61 



5.2    RESULTS AT OTHER FREQUENCIES 

In order to obtain a better assessment of the maximum ranges of validity of Bannister's 

propagation formulas, it is necessary to compare them with the spherical waveguide formulas at 

additional frequencies across the ELF band. Plots of the computed magnitudes and phases of the 

VED field components Ev.e and Hv* under typical daytime propagation conditions at 30 Hz are 

given in figures 5-8 and 5-9, respectively. Similar plots of the HED field components Ehe, Hhe, 
h l       P 

and H™ under typical daytime propagation conditions at 30 Hz are given in figures 5-10, 5-11, 

and 5-12, respectively. A comparison of these plots with the corresponding 76-Hz graphs 

indicates that the 30-Hz field values are generally larger in magnitude, and the interference 

produced by the two great-circle path fields at 30 Hz extends to much greater distances from the 

antipode. These observations are the result of the lower attenuation at 30 Hz, which allows the 

indirect great-circle path fields to propagate over greater ranges from the source. At 30 Hz, 

Bannister's total field results for £.ve, H™, E\e, Hh
p
e, and H% agree to within 1 dB of the 

corresponding spherical waveguide formula results for pa > 2.71 Mm, pa > 4.55 Mm, pa > 4.55 

Mm, pa > 4.52 Mm, and pa > 6.44 Mm, respectively. These results indicate that Bannister's total 

field formulas show a poorer agreement with the spherical waveguide formulas than the 76-Hz 

results. Similarly, Bannister's direct great-circle path formulas do not agree as well with the 

spherical waveguide formulas as at 76 Hz. 

Magnitude plots of the HED field components E*e, H*e, and H^ under typical nighttime 

propagation conditions at 30 Hz are given in figures 5-13a, 5-13b, and 5-13c, respectively. In 

these plots, Bannister's total field formulas for E)e, H**e, and H*e agree to within 1 dB of the 

corresponding spherical waveguide formula results for pa > 2.76 Mm, pa > 2.83 Mm, and pa > 

4.69 Mm, respectively. Unlike the 76-Hz results, the 30-Hz data show that Bannister's total field 

formulas produce a better agreement with the spherical waveguide formulas at nighttime than in 

the daytime. The one exception to this observation is Eve, which shows a worse agreement at 

nighttime. The general improvement in the nighttime results at 30 Hz is probably attributed to 

the larger nighttime attenuation as indicated in table 5-1. 

Table 5-3 is a summary list of the ranges over which Bannister's total field formulas agree 

to within 1 dB in magnitude of the corresponding spherical waveguide formulas for both daytime 

and nighttime propagation conditions at 30 Hz. A comparison of tables 5-2b and 5-3 clearly 

shows that Bannister's total field results improve at the higher frequency. 
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Table 5-3. Ranges Over Which Bannister's Total Field Formulas Agree to Within 
1 dB in Magnitude of the Spherical Waveguide Formulas at 30 Hz 

Field 
Component 

Propagation 
Condition Range 

E? Daytime pa>2.1lMm (ßpa>2.23) 

Nighttime pa>3.10Mm (ßpa>2.22) 

HV; Daytime pa>4.55Mm (ßpa>3.15) 

Nighttime pa>2J6Mm (ßpa>1.9S) 

Eke 
Daytime pa > 4.55 Mm (ßpa > 3.75) 

Nighttime pa>2.76Mm (ßpa>1.9S) 

HP Daytime pa>4.52Mm (ßpa>3.12) 

Nighttime pa > 2.83 Mm (ßpa > 2.03) 
rrhe 
My Daytime pa > 6.44 Mm (ßpa > 5.30) 

Nighttime pa > 4.69 Mm {ßpa > 3.36) 

Plots of the computed magnitudes of the field components Eve, Hv*, £Ae, Hhe, and HAe 

i T Z P T 

under typical daytime propagation conditions at 300 Hz are given in figures 5-14a, 5-14b, 5-15a, 
5-15b, and 5-15c, respectively. The plots show that the interference pattern produced by the 
superposition of the two great-circle path fields attenuates rapidly with distance from the 
antipode. This observation is the result of the large value of attenuation at this higher frequency. 
The plots also show that Bannister's formulas produce a better agreement with the corresponding 
spherical waveguide formulas than at the lower frequencies. In particular, Bannister's total field 
results for E\e, H™, E*e, H*e, and H^ agree to within 1 dB of the corresponding spherical 
waveguide formula results for pa > 0.32 Mm, pa > 0.59 Mm, pa > 0.59 Mm, pa > 0.59 Mm, and 
pa > 0.82 Mm, respectively. Bannister's direct great-circle path formulas also produce a better 
agreement with the spherical waveguide formulas at 300 Hz than at 30 Hz and 76 Hz because the 
interference pattern does not extend to as great of a distance from the antipode as at the lower 
frequencies. 
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Magnitude plots of the HED field components E^e, H^e, and H^e under typical nighttime 

propagation conditions at 300 Hz are given in figures 5-16a, 5-16b, and 5-16c, respectively. 

Because of the lower attenuation at nighttime, the interference pattern produced by the two great- 

circle path fields extends to greater distances from the antipode. As a result, at nighttime, 

Bannister's total field results at 300 Hz do not compare as well with the spherical waveguide 

formulas as under daytime conditions. A similar observation was made at 76 Hz. In the 300-Hz 

plots, Bannister's total field formulas for E^e, Hhe, and H^ agree to within 1 dB of the 

corresponding spherical waveguide formula results for pa > 0.65 Mm, pa > 0.65 Mm, and pa > 

1.22 Mm, respectively. 

Table 5-4 is a list of the ranges over which Bannister's total field formulas agree to within 

1 dB in magnitude of the corresponding spherical waveguide formulas for both typical daytime 

and nighttime propagation conditions at 300 Hz. A comparison of tables 5-2b, 5-3, and 5-4 

indicates that Bannister's total field results improve with increasing frequency. 

Table 5-4. Ranges Over Which Bannister's Total Field Formulas Agree to Within 
1 dB in Magnitude of the Spherical Waveguide Formulas at 300 Hz 

Field 
Component 

Propagation 
Condition 

Range 

E\e Daytime /?a>0.32Mm (ßpa>2.35) 

Nighttime pa>0A0Mm {ßpa>2.11) 

n;e Daytime /?a>0.59Mm (ßpa>4.34) 

Nighttime yOfl>0.65Mm (ßpa>4.50) 

E* Daytime /?a>0.59Mm (/?/?fl>4.34) 

Nighttime pa > 0.65 Mm (ßpa > 4.50) 

Hf Daytime /?a>0.59Mm 0^?a>4.34) 

nighttime /?a>0.65Mm (ßpa>4.50) 
rrhe Daytime pa>0.82Mm (ßpa>6.03) 

Nighttime pa > 1.22 Mm (ßpa > 8.44) 

Table 5-5 is a list of the average normalized ranges (expressed in terms of ßpa) over which 

Bannister's total field formulas agree to within 1 dB in magnitude of the corresponding spherical 

waveguide formulas. The ranges have been normalized in order to scale them with respect to a 

wavelength in the waveguide. The ranges are averaged over the three frequencies discussed in 

this report, namely, 30 Hz, 76 Hz, and 300 Hz. The third column in the table lists the average 
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ranges for each field component under typical daytime and nighttime propagation conditions. 
The fourth row in the table lists the ranges averaged over daytime and nighttime propagation 
conditions for each field component. 

The third column of table 5-5 indicates, on the average, that Bannister's total field formulas 
for E™ and H^ produce better agreement with the spherical waveguide formulas at daytime 
than at nighttime. The opposite result is true for the other field components, H™, E¥, H1^. 

T *• r 

Note that the better agreement in the field components at nighttime was only observed at 30 Hz, 
where the nighttime attenuation is greater than in the daytime. The results in the fourth column 
of table 5-5 show that Bannister's total field formula for E™ provides the best agreement with 
the spherical waveguide formula and H^ produces the worst agreement. As mentioned, this 
observation is attributed to the fact that in the earth-flattening approximation for Pv(- cos 6), 
each successive derivative introduces additional error into the approximation. Also note in the 
fourth column of table 5-5 that HVJ, E^e, and H1? each produce a similar average agreement 
with the corresponding spherical waveguide formulas. This result is attributed to the fact that the 
range dependence of each of these components is proportional to the first derivative of 
Pv(- cos 0). In summary, table 5-5 clearly shows that the spherical waveguide propagation 
formulas are necessary for prediction of the ELF fields for ranges that are close to the antipode. 

Table 5-5. Average Normalized Ranges Over Which Bannister's Total Field Formulas 
Agree to Within 1 dB in Magnitude of the Spherical Waveguide Formulas 

(Averages Are Taken Over 30, 76, and 300 Hz) 

Field 
Component 

Propagation 
Condition 

Average 
Normalized Range 

Avg Norm. Range 
(Day and Night) 

E\e Daytime ßpa>2.29 ßpa>2.42 

Nighttime ßpa> 2.55 

n;e Daytime ßpa>3.95 ßpa>3.S0 

Nighttime ßpa>3.65 

Ef Daytime ßpa>3.95 ßpa>3.S0 

Nighttime ßpa> 3-65 

H1? Daytime ßpa>4.09 ßpa>3.SS 

Nighttime ßpa>3.61 
rjhe Daytime ßpa>5.55 ßPa>5.77 

Nighttime ßpa> 6-00 
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6. SUMMARY AND CONCLUSIONS 

ELF propagation formulas have been derived for dipole sources radiating in a spherical 

earth-ionosphere waveguide, where the waveguide boundaries are approximated as scalar surface 
impedances. The range dependencies in these formulas involve the Legendre function of the 

first kind of complex degree and order zero or one of its first two derivatives. Several 

approximations to the Legendre function were derived. Through use of the earth-flattening 
approximation to the Legendre function, it was shown how the spherical waveguide formulas 
reduce to Bannister's simplified propagation formulas. In addition, through use of another 
approximation to the Legendre function that is suitable for antipodal ranges, it was also shown 
how the spherical waveguide formulas reduce to formulas that are similar to the antipode- 
centered formulas that were previously derived by the author. Numerical results focused on the 
quasi-TEM mode, the only propagating mode in the 30-Hz to 300-Hz band. 

Comparisons of Bannister's formulas with the spherical waveguide formulas were made for 
VED and HED sources for the case where both the source and field points are located along the 
surface of the earth. The 300-Hz results have shown that Bannister's total field formulas 
produce a good agreement with the spherical waveguide formulas to distances within less than 
1 Mm from the antipode. This agreement degrades with decreasing frequency because of lower 
attenuation. It was also found that the agreement between the formulas is worse for the field 
components proportional to the derivatives of the Legendre function. Bannister's direct great- 
circle path formulas do not agree as closely with the spherical waveguide formulas because they 
do not account for the interference produced by the indirect great-circle path contribution in the 
vicinity of the antipode. 

This report also presented derivations of the quasi-TEM spherical waveguide formulas for a 
HED located above an anisotropic surface impedance. These modified spherical waveguide 
formulas are extensions of Wolkoff and Kraimer's formulas (references 4 and 5) and include the 
antenna pattern factors that were previously derived in reference 6. These formulas will be useful 
for the prediction of the EM fields radiated by the U. S. Navy's four transmitting antennas at 
antipodal ranges. 

At antipodal ranges, the spherical model of the earth-ionosphere waveguide may not be 
suitable because of the variation in the ionospheric reflection height along the great-circle paths. 
As a result, the spherical waveguide formulas need to be modified in order to account for the 
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variations in the propagation parameters along the direct and indirect great-circle paths as 

functions of solar elevation. Wolkoff and Casey (reference 15) present formulas for the effective 
propagation parameters along a nonuniform earth-ionosphere waveguide. A development of 

ELF propagation formulas for a nonspherical earth-ionosphere waveguide will be the subject of a 
future investigation. 



APPENDIX A 
ELECTROMAGNETIC FIELDS IN TERMS OF POTENTIALS 

IN SPHERICAL COORDINATES 

A.1 ELECTRIC AND MAGNETIC VECTOR POTENTIALS 

Consider a homogeneous, isotropic medium of permittivity e, permeability fi, and 

conductivity <T. In this medium, there exist electric current and charge distributions / and p, 
respectively, and fictitious magnetic current and charge distributions M and pm, respectively. For 

a time-harmonic dependence eJat, Maxwell's equations are written as follows (references 19,20, 

and 21): 

Vx£ = - joifxH - M, 

VxH = jweE + J, 

V E = 

VH = 

_P 
E ' 

Pm 

(A-la) 

(A-lb) 

(A-lc) 

(A-ld) 

In the above expressions, E and /f denote the electric and magnetic fields, respectively, CO = 2nf 

is the angular frequency, and e = e - jo Im is the effective permeability of the medium. The 

electric and magnetic fields can each be expressed in terms of a pair of vector potentials. The 

pair of vector potentials that are most commonly used are the magnetic vector potential A and 

the electric vector potential F. The magnetic vector potential is associated with electric sources 

(M= 0, pm = 0) and the electric vector potential is associated with magnetic sources (/= 0, 

p = 0). 

Consider the case when only electric sources exist (M = 0, pm = 0). From equation (A-ld), 

the magnetic field is solenoidal and can be represented as the curl of another vector^, 

(A-2) 

The multiplicative factor 1/fi has been included to conform with the conventional definition. The 

substitution of equation (A-2) into (A-la) yields 
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VX(E + JWA) = 0. (A-3) 

In expression (A-3), the term within the parentheses is irrotational and is, therefore, equal to the 

gradient of a scalar potential &e. Thus, 

E - -jcoA - V<Pe . (A-4) 

A negative sign in front of the potential has been included to conform with the convention. An 

alternate expression for the electric field can be obtained from expressions (A-la) and (A-2) as 

E = -±- (V x V x A - nj) . (A-5) 

The substitution of equations (A-2) and (A-4) into (A-lb) yields the general equation for the 

magnetic vector potential, i.e., 

V x V x A - k2A = - jwneV<Pe + ^J , (A-6) 

where k = co*J [ie is the wave number of the medium. From a theorem in vector calculus 

(reference 22), a vector is uniquely specified by giving its divergence and curl within a given 

region and its normal component over the boundary. Therefore, in the definition of the magnetic 

vector potential in (A-2), A is underdetermined because its divergence has not been specified. 

The specification of the divergence of A is referred to as the gauge condition (reference 23). The 

gauge condition chosen usually removes the scalar potential term from equation (A-6), thereby 

simplifying the equation. For the problems of interest in this report, spherical coordinates (r, 6, 

q>) are used and only radially-directed current sources are of interest. 

Consider the case when only magnetic sources exist (J= 0, p = 0). From equation (A-lc), 

the electric field is solenoidal and can be represented as the curl of another vector F, i.e., 

£ = -|VxF. (A-7) 

The multiplicative factor -1/e has been included to conform with the conventional expression. 

The substitution of expression (A-7) into (A-lb) yields 

Vx(fl + jcoF) = 0 . (A-8) 

A-2 



In equation (A-8), the term within the parentheses is irrotational and is therefore equal to the 

gradient of a scalar potential &h. Thus, 

H = -jwF-V<Ph . (A-9) 

A negative sign in front of the scalar potential has been included to conform to the convention. An 

alternate expression for the magnetic field can be obtained from expressions (A-la) and (A-7) as 

H = —t- (VXVXF-SM). (A-10) 
JWfXE V 1 

The substitution of equations (A-7) and (A-9) into (A-la) yields the general equation for the 

electric vector potential, thus, 

VxVxF-k2F = -jwiAeV<Ph+m. (A-ll) 

In a homogeneous source-free region (i.e., /=M= 0), the electromagnetic (EM) fields can 

be expressed in terms of both vector potentials. From expressions (A-5) and (A-7), the electric 

field is given by 

E = —^- VxVxA-iVxF. (A-12) 

From formulas (A-2) and (A-10), the magnetic field is given by 

H = ljVxA + -±— VxVxF. (A-13) 
f* jcofie 

Equations (A-12) and (A-13) are the general formulas for the EM fields in terms of the vector 

potentials in a source-free region. 

In the representation of the EM fields in terms of potentials, suitable expressions can be 

obtained from only one scalar component of both A andF. In spherical coordinates, suitable 

choices for A and F are given in terms of their radial components as 

A = rAr, (A-14a) 

and 

F = fFr, (A-14b) 
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where f denotes the unit vector along the radial direction (see figure 4-1), and the radial 

components Ar and Fr are scalars. The substitution of equation (A-14a) into (A-6) with J = 0 

yields 

V x V x (r Ar) - k\f Ar) = - jmiicV(pe . (A-15) 

Similarly, the substitution of (A-14b) into (A-11) withM= 0 results in 

VxVx(rFf)-k\fFr) = -ja^ieV®'' . (A-16) 

To eliminate the scalar functions &e and &h in equations (A-15) and (A-16), respectively, 

gauge conditions for A and F must be defined. To obtain the appropriate gauge condition for 

each vector potential, one must first look at the three spherical components of each vector 

potential equation. For example, in equation (A-15), the r, 6, and (p components are 

BAA i        d2Ar    J2A       .     „04** 
-T4-s 4 sin 6 ^  + —V- VV + k2Ar = jcofAe °f-, (A-17a) 
r2smd dd\ öd)    r2sin26 (>(p2 r <>r 

d2Ar . Qcpe 
^Q=-J^e-W, (A-17b) 

and 

d2Ar        .      „ e<Pe ,A ,- v 
Ö^=-W£-^T- (A-17c) 

The 0 and q> components of equation (A-15), given by expressions (A-17b) and (A-17c), 

respectively, are satisfied identically under the following gauge condition: 

i)A 
-^ = -j(O^0e . (A-18) 

The substitution of the above gauge condition into the radial component equation (A-17a) yields 

™r  . 1 + sinö^f  +   „   *        ^f + k2A=0. (A-19) 
48 J    r2 sin2 6 4cp2 r dr2     r2 sin 6 86 

The first term in the above expression can be rewritten as 

d2Ar _ 1 d r2 d[ 
,A')} Or2 " r dr dA , r )\ (A-20) 
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The substitution of (A-20) into (A-19) followed by multiplication by \lr yields 

r2 dr 
rll\A- 

dr\ r + 1        d 
r2 sin 0 dd 

sin0i(r l 
r2 sin2 6 

ö2K 
dcp' 2\ r 

4» 
r + k2 ^l = 0.(A-21) 

The above equation may be written more concisely as 

A, 
(v2 + *2)^ = o. (A-22) 

Therefore, AJr is a solution of the scalar Helmholtz equation. Following a similar procedure for 

equation (A-16) in spherical coordinates results in 

(v2 + £2)-/ = 0 

provided that the following gauge condition is satisfied: 

BF. 

(A-23) 

dr 
r _ = -jcofie<Ph . (A-24) 

Formulas for the EM field components in terms of Ar and Fr can be obtained through 

substitution of expressions (A-14a) and (A-14b) into (A-12) and (A-13). In spherical 

coordinates, the field components are given as follows: 

I2 

jwfiE \ ör2 E =     X     ' °~   • uV 
2+£  U , 

Ea = -^± 
d2Ar     !      !     dFr 

6    jcofXE r drdd     s r sin 9 dcp ' 

E  = 
1 i      ö2A,      !   OF, 

'+-1   "' v    joifXE rsinÖ drdip     gr 00 ' 

J(J0fi,E (^JFr- 
dA 

H  = l       1 e    ix r sin 0 ö<}9     jß^g r drd0 
r + .    1       ld2fr 

(A-25a) 

(A-25b) 

(A-25c) 

(A-25d) 

(A-25e) 

and 
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d2F, 
•P       jur  00     >«,«£ /"sine drd<p ' v > 

When Fr = 0, then Hr = 0, and the fields are referred to as transverse magnetic (TM) with respect 

to the radial direction. Similarly, when ,4 r = 0, then Er = 0 and the fields are referred to as 

transverse electric (TE) with respect to the radial direction. 

A.2 HERTZ VECTOR POTENTIALS 

An alternate set of vector potentials that are frequently used in EMs are the electric- and 

magnetic-Hertz vectors %e and fth, respectively. These vectors are defined in terms of the 

magnetic- and electric-vector potentials as follows (reference 20) 

A s jmfxejie, (A-26a) 

and 

F = ja>HEJth . (A-26b) 

Therefore, in the frequency domain, the replacement of A and F by the Hertz vectors amounts to 

nothing more than the inclusion of a complex constant factor. The substitution of the above 

definitions into equations (A-12) and (A-13) yields 

E = VxVxji«-jcofiVxjch, (A-27) 

and 

H = jcoE Vxjre + VxVxjr* . (A-28) 

The above formulas are the EM fields in a homogeneous source-free region in terms of the Hertz 

vectors. 

To represent the EM fields in spherical coordinates in terms of the Hertz vectors, suitable 

expressions can be obtained from only one scalar component of both A and F. Following 

expressions (A-14a) and (A-14b), the following are defined: 

jte = rne
r = frWe, (A-29a) 

and 
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jth = rjtk = rrWh . (A-29b) 

With the above definitions, the same procedure after expressions (A-14a) and (A-14b) is 

followed, resulting in 

VlWe + kzWe = 0, (A-30a) 

and 

W2Wh + k2Wh = 0 . (A-30b) 

The terms We and ¥** are sometimes referred to as the Debye potentials (reference 23). 

Formulas for the EM field components in terms of *Fe and Wh can be obtained through the 

substitution of expressions (A-29a) and (A-29b) into (A-27) and (A-28). In spherical 

coordinates, the field components are given as follows: 

Er=[€-2+k2)^e^ dr* 

_ l d\rWe)     jmpi dWh 

E  = 
!     d2(rWe) dWf 

<P~rsin0    drdcp    + JWfi   86   ' 

d2 

Hr=\-^2+k2   irW>l) 

_ jays dWe     ! d{rWh) 
e ~ sm0 ~dqT + ~r    3rd 6 

and 

H,= -J(0£ 
dWe 

+ 
j      d2(rWh) 

dd      rsind    drdq? 

(A-31a) 

(A-31b) 

(A-31c) 

(A-31d) 

(A-31e) 

(A-31f) 

In the above formulas, ne
r = rWe and Jijf = r Wh. When Jier = 0, the fields are TM with respect 

to the radial direction. Similarly, when JI
1

} = 0, the fields are TE with respect to the radial 

direction. 
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APPENDIX B 
SOLUTION OF THE HELMHOLTZ EQUATION 

IN SPHERICAL COORDINATES 

In spherical coordinates, it is shown in appendix A that the electromagnetic (EM) fields can 

be expressed in terms of the two Debye potentials, *Fe and Wh. In addition, at a source-free 

point, it was shown that these two scalar functions each satisfy the Heimholte equation, namely 

V2W + k2W = 0 . (B-l) 

In this report, because the transverse magnetic (TM) and transverse electric (TE) fields are 

derived for axisymmetric sources, the Debye potentials are determined under axisymmetric 

conditions. Therefore, under axisymmetric conditions, the Helmholtz equation is expressed in 

spherical coordinates as 

^i(r2^)+?4r«#new)+^=0' <w> 
where »P= Y{r,0). 

To solve equation (B-2), the separation of variables method is applied. In this method, let 

tF(r,0) = R(r)T(6). (B-3) 

The substitution of expression (B-3) into (B-2) followed with the multiplication of each side of 

the equation by r 2/RT yields 

('2§) + 7iOTH§H2'2 = °- ^ ±d_ r2dR 
R dr\     dr j ' Tsind dd 

The above equation can be rewritten as an r-dependent part on one side and a 0-dependent part 

on the other side, each of which can be set equal to an arbitrary constant v(v+l) resulting in 

1 jfc,f} + *., = ^ jfct g £). v(v+1). (B.5) 

Expression (B-5) can be decomposed into r-dependent and 0-dependent differential equations as 
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dr\    dr ' 
k2r2-v(v+l) R = 0, (B-6a) 

and 

iIFeÄsin0fi + ^+1)r = o (B-6b) 

The solution of equation (B-6a) is given by 

R(r)=Ah^\kr) + Bh^\kr), (B-7) 

where h^\kr) and h^\kf) are the spherical Hankel functions of the first and second kinds, 

respectively, of order v, and^4 and B are arbitrary constants. The spherical Hankel functions are 

expressed in terms of the cylindrical Hankel functions as (reference 24) 

h^(kr) = ^ HW m(kr), n = 1,2. 

The solution of (B-6b) is given as follows: 

7X0) = CPV(- cos 6) + DQJL- cos 0), 

(B-8) 

(B-9) 

where Pv and Qv are Legendre functions of the first and second kinds, respectively, of degree v 

and order zero. It should be noted that Pv is singular when its argument is -1 (6 = 0), while Qv is 

singular when its argument is ±1 (0= 0, ri). The minus sign has been included in the argument 
so that Pv is singular at 0 = 0. 

For the three radiating sources under consideration in this report, the EM fields are finite 
everywhere except at the source location (r = rs,6= 0). Therefore, Qv is not an acceptable 

solution of equation (B-6b) andD = 0. Thus, the substitution of formulas (B-7) and (B-9) into 

(B-3) yields 

V(r,6) = Ah^\kr) + Bh{2\kr) PJL-cos 8) (B-10) 

Two of the three constants A, B, and v are determined from the boundary conditions at the inner 

(r = a) and outer (r = a + h) surfaces. 
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APPENDIX C 
TRANSVERSE MAGNETIC (TM) AND TRANSVERSE ELECTRIC (TE) 

MODAL EXPANSIONS IN A SPHERICAL WAVEGUIDE 

Consider the spherical earth-ionosphere waveguide described in figure 1-1. The main interest 

of this report is the determination of the electromagnetic (EM) fields radiated in the waveguide 

(a = r = a + h) by a dipole source located along the north pole (0=0) of the spherical coordinate 

system. The waveguide is filled with air and has a permittivity e0 = 8.854 x 10"12 F/m, a 

permeability ß0 - An x 10"7 H/m, and an intrinsic wave number of k0 = cols/^0e0, where co is the 

angular frequency in radians per second (rad/s). The spherical waveguide boundaries along the 

earth (r = a) and the ionosphere (r = a + h) are characterized by scalar surface impedances. 

These impedances are approximations of the general tensor surface impedances that are more 

representative of these boundaries. However, the scalar impedances allow for tractable solutions 

of the field equations. 

In this appendix, the transverse magnetic (TM) and transverse electric (TE) modes that 

radiate in a spherical earth-ionosphere waveguide are derived under the assumption that the 

fields are axisymmetric. The axisymmetric TM modes are launched by a vertical electric dipole 

(VED) located along the north pole of the waveguide. Similarly, the axisymmetric TE modes are 

launched by a vertical magnetic dipole (VMD) located in the waveguide along the north pole. 

As shown in appendix H, the HED fields involve the superposition of both the TM and TE 

modes. 

C.1 TM MODES 

In appendix A, it is shown that the TM fields with respect to the radial direction can be 

obtained from the radial component of the electric-Hertz vector ne. Under axisymmetric 

conditions (?/?<p = 0), the EM fields are obtained from equations (A-31) and are expressed as 

Er-[dr2+k2o 
\ 

1 d dW< 
^ = -7SeIin^ <c-la> 

_ i d2(rWe) 
E9~T    drdd    > (C-lb) 
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and 

Hw = -J(0£o 
dWe 

W 
(C-lc) 

Note that the three remaining field components vanish, namely E(p = Hr-He= 0. In the above 

formulas, the scalar function *Pe is a Debye potential and is related to nf as 

me - _L 
*   ~  r (C-2) 

where We is a solution of the scalar Helmholtz equation given by (A-30a). The solution of the 

Helmholtz equation is derived in appendix B and is given by expression (B-10). This solution 

can be rewritten as follows: 

we — h^\k0r)+Be
vh^(k0r) Pv(-cos 0) (C-3) 

where Be
v and v are constants. The constants Bc

v and v are determined from the boundary 

conditions at the inner and outer boundaries of the waveguide that are given below. In expression 
(C-3), note that a constant multiplying h^\k0r) has not been included because it is unnecessary 

in satisfying the boundary conditions. 

Under the assumptions of a homogeneous, isotropic earth (inner sphere) and a homogeneous, 

isotropic ionosphere (outer region) of constant height h, the surface EM fields satisfy the 

following boundary conditions: 

Hr 

and 

ER Z = —- 
«    H 

<r 

(C-4a) 

(C-4b) 
r-a + h 

where Zg and Ze denote the surface impedances along the air-earth and air-ionosphere interfaces, 

respectively. The substitution of the field component expressions (C-lb) and (C-lc) into the 

boundary conditions (C-4a) and (C-4b) yields 

j_ dz{rWe) 
«     drdd = JweJZ 

dwe 

8 ~W (C-5a) 

and 
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I      d\rWe) 
(fl + Ä)     3rd 9 r = a + h 

= -J^£oZe 
dWe 

~le~ (C-5b) 
r = a + i 

Note that the 6 derivatives in the above boundary conditions are continuous across each 
interface. In addition, the surface impedances Zg and Ze are each constant along the surfaces r: 

a and r = a + h, respectively. Therefore, the boundary conditions (C-5a) and (C-5b) reduce to 

I    d(rWe) 
kQa      dr jAeW

e (C-6a) 

and 

I        d(rWe) 
k0(a + h)      dr = -jAWe\ J   e        \r = a + h ' 

(C-6b) 

where Ag = Z^r\0 and Ae = ZJr\0 denote the normalized surface impedances of the inner and 

outer boundaries, respectively, and 7]0 = \J\I0/E0 is the intrinsic impedance of free space. 

The substitution of expression (C-3) for *Fe into the boundary condition (C-6a) can be solved 
for Be

v to yield 

uh^\u) 

ue        du -jAgh<$\ug) 

K= 
l   d[uhV>(u) 

(C-7a) 

«o        du 
-jAghV\ug) 

where u = kjr and ug = k0a. Following a similar procedure, the substitution of expression (C-3) 

for *Fe into the boundary condition (C-6b) can be solved for Be
v to yield 

U; 

uh<U{u) 

du + j^\ut) 

K= (C-7b) 

u- 
uhW(u) 

du + 7V?(»*) 
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where ut = k0(a + h). The TM field components must satisfy the boundary conditions (C-4a) and 

(C-4b) simultaneously. Therefore, the constant Be
v in expression (C-7a) is set equal to (C-7b) 

and yields 

uh^Xu) 

du -jAM\ug) 

uh<2Xu) 
du 

d uh^Xu) 
ui du + JAeh\lX"l) 

-;V(>,>/ H 

= 1.     (C-8) 

+ ßjl(y)("l) 

The above expression denotes the characteristic or modal equation for the TM modes in a 

spherical earth-ionosphere waveguide. The solution of expression (C-8) yields a discrete set of 
eigenvalues Vn, where n denotes an integer index and corresponds to a particular mode. 

Given the infinite number of discrete eigenvalues that satisfy the characteristic equation (C- 

8), xVe can be expressed in terms of a modal expansion as 

We = 2 ^ (r,0) = 2 A% R% («) Pv (- cos 0) 
71 = 0 

where Rt  is defined as 

V V 
n = 0 

(C-9) 

Re
v(u)^h[}Xu) + Be

vh^(u) (C-10) 

In addition, Ae   is referred to here as the modal excitation coefficient and depends on the source 
n 

strength. The modal indices n in expression (C-9) correspond to the TM mode indices for the 

parallel-plate waveguide model as defined in section 2.1. Expressions for the modal expansions 

of the TM fields are determined through the substitution of the formula (C-9) into equations 

(C-l) and are given as follows: 

Er = IT 2 K v,,(v„ + D K (") pv (- cos Ö) > 
n = 0 

F -^ y Ae -j 
n = 0 

d_ 
du uRi (//) de Pv(-cos0), 

(C-l la) 

(C-l lb) 

and 
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Hv = - jcoe0 2 K K (") äfl Pv (- c°s ö) 
n = 0 '»    V '30    V 

(C-llc) 

The expression for Er was obtained through use of the relation 

&M rti?Xk/j\ = *2£i> h^Xkjr), m = 1,2 . (C-12) 

The above formula can be obtained from expression (B-6a) through the following equivalence: 

A. 
dr 

r2 fr h^j) d2 

~r' dri 

C.2 TI : MODES 

rh^\k0r)], »i=l,2 (C-13) 

In appendix A, it is shown that the TE fields with respect to the radial direction can be 

obtained from the radial component of the magnetic Hertz vector nh. Under axisymmetric 

conditions (?/?<p= 0), the EM fields are obtained from equations (A-31) and are expressed as 

MlM^-TiOTH^ 30 
(C-14a) 

_ i d2(rWh) 
e~ r    drdO    ' 

and 

dWh 

(C-14b) 

(C-14c) 

Note that the three remaining field components vanish, namely H(p = Er = EQ = 0. In the above 

formulas, the scalar function *Fe is a Debye potential and is related to n^ as 

U/A-^> 
^   ~ r (C-15) 

where Wh is a solution of the scalar Helmholtz equation given by (A-30b). The solution of the 

Helmholtz equation is derived in appendix B and is given by expression (B-10). The application 

of the solution (B-10) to equation (A-30b) yields 

ipf h^\k0r) + Bh
vh^\k0r) Pv(- cos 0) (C-16) 
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where B\ and V are constants. The constants Bh
v and v are determined from the boundary 

conditions at the inner and outer waveguide boundaries that are given below. As was previously 

mentioned for the TM modes, a constant multiplying h[}\kor) has not been included because it 

is unnecessary in satisfying the boundary conditions. 

Under the assumptions of a homogeneous, isotropic earth (inner sphere) and a homogeneous, 

isotropic ionosphere (outer region) of constant height h, the TE surface EM fields satisfy the 

boundary conditions 

Z  = 
Ht 

(C-17a) 
r = a 

zu = - 
Ht 

(C-17b) 
r-a + h 

where Zg and Zh denote the surface impedances along the air-earth and air-ionosphere interfaces, 

respectively. The surface impedances Zg and Zh given above are generally different from those 

corresponding to the TM modes given in expressions (C-4a) and (C-4b) because of the 

anisotropy of the earth and ionosphere. In this report, the earth and ionosphere are each 

represented as a constant surface impedance that is independent of the mode index, with the 

surface impedance of the ionosphere different for TE and TM modes. 

The substitution of the field component expressions (C-14b) and (C-14c) into the boundary 

conditions (C-17a) and (C-17b) yields 

Qiph Zg d2(rWh) 
drdd 

(C-18a) 

and 

3Wh ;i2 

■ a + h 
(a + h)     drdd 

(C-18b) 
r = a + h 

Note that the 6 derivatives in the above boundary conditions are continuous across each interface. 

In addition, the surface impedances Zg and Zh are each constant along the surfaces r = a and 

r = a + h, respectively. Therefore, the boundary conditions (C-18a) and (C-l 8b) reduce to 
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J— iph I    d(rWh) 
r = a~ k0a     dr 

(C-19a) 

and 

J—iph I        d(rWh) 
r = a + h      k0(a + h)      dr r = a + h 

(C-19b) 

\ 

where Ag and Ah = Zhlr\0 denote the normalized surface impedances of the inner and outer 

waveguide boundaries, respectively. 

The substitution of expression (C-16) for *Fh into the boundary condition (C-19a) can be 
solved for B^ to yield 

uh^{u) 

du -jjrh(^ 
B A_ (C-20a) 

uh^Xu) 
du 

_/J_ 
J A„ *?(«,) 

where u and ug were defined in the TM mode derivation. Following a similar procedure, the 

substitution of expression (C-16) for *Fh into the boundary condition (C-19b) can be solved for 

B* to yield 

uhM(u) 

du 
u = U; h 

Bh
v = 

\uhV\u) 

(C-20b) 

du + J^\Ul) 
u = u. h 

where ut was defined in the TM mode derivation. Note that expression (C-20a) for the TE field 

amplitude coefficient B^ is equivalent to expression (C-7a) for the TM field amplitude 

coefficient Be
v if Ag is replaced by \IAg. Similarly, expression (C-20b) for B^ is equivalent to 

expression (C-7b) for Be
v ifAe is replaced by \/Ah. Because the TE field components must 

satisfy the boundary conditions (C-17a) and (C-17b) simultaneously, the constant B^ in 

expression (C-20a) is set equal to expression (C-20b) and yields 
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KÄ<V
2)(«) 

du -jjrhi>8
) 

uh{}\u) 
du J A      v K V 

ul^\u) 

du ■j-k-Ww 
= 1. (C-21) 

ulfiXu) 
du + y'j-A(>/) 

The above expression denotes the characteristic or modal equation for the TE modes in a 

spherical earth-ionosphere waveguide. Note that the above TE characteristic equation is 

equivalent to the TM characteristic equation (C-8) if Ag is replaced by \IAg and Ae is replaced by 

VAh. The solution of equation (C-21) yields a discrete set of eigenvalues v  , where m denotes 

an integer index and corresponds to a particular mode. 

Given the infinite number of discrete eigenvalues that satisfy the characteristic equation 
(C-21), Wh can be expressed in terms of a modal expansion as 

m m 
«"'= 2  ^ (r,6) =IA*  R* {II) Pv (-cos d), 

m=\        "' m = ' 

where R^ («) is defined as 
m 

(C-22) 

(C-23) 
m nf 

In formula (C-22), A\   is the TE mode excitation coefficient and depends on the source strength. 
m 

The modal indices m in expression (C-22) correspond to the TE mode indices for the parallel-plate 

waveguide model as defined in section 2.2. Expressions for the modal expansions of the TE fields 

are determined through the substitution of formula (C-22) into equations (C-14) and are given as 

7 uu 

Hr = it 2 A*   v,„(vm + 1) /?* («) Pv (- cos 0), 
m = 1 

»e = TfJ/liK<">]M/V-cos8) 

and 

£, = 7'^0 2 A{ Äj (H)^P, (-COS 0) . 
" ... _ 1 m m V O m 

Note that the expression for Hr was obtained through use of formula (C-12). 

(C-24a) 

(C-24b) 

(C-24c) 
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APPENDIX D 
PROOF OF ORTHOGONALITY OF RADIAL FUNCTIONS 

In appendix A, it is shown that the transverse magnetic (TM) and the transverse electric (TE) 

fields in a spherical waveguide can be expressed in terms of the Debye potentials We and 

*Fh, respectively. In appendix C, it is shown that the radial dependence of each Debye potential is 
given in terms of a function Rv(u), u = kj, which satisfies the following differential equation: 

42^) + ["2-V(V+1) *v = o. (D-l) 

The above equation may be rewritten as 

MAHJ + ["2-v(v+l)]i?v = 0. (D-2) 

To prove the orthogonality of the TM mode radial functions, consider the radial functions 
Rpiu) and Re

v{u) corresponding to two different TM modes that satisfy the following differential 

equations: 

/2 u-h(uRe,)+[u2-^+v}%=° (D-3a) 

and 

u 
du2\ («*«) +[«2-v(v+l)]i?$ = 0. (D-3b) 

From formulas (C-6), the boundary conditions satisfied by each TM mode radial function are 

given as 

!   d(uReJ 
Ug du 

= frß'M , (D-4a) 

1 d(uReJ 
ui     du 

= -jARlfu), (D-4b) 

where ug = k0a, ut = kja + h), 77 is a complex eigenvalue that satisfies the TM mode 

characteristic equation (C-8), and Ag and Ae denote the normalized surface impedances of the 
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inner and outer boundaries, respectively. If equation (D-3a) is multiplied by R^u) and equation 

(D-3b) is multiplied by Rf.(u), the difference of the resulting equations yields 

»fi^K)-K)^K)= v(v+l)-^(ji<+l) R'„K (D-5) 

If the above formula is integrated over the height of the waveguide followed by integration by 

parts, the following is obtained: 

<^)iK)    '-K)i(«Ä; V(V+1)-JI(P+1) 
Ju.. 

(u) du. (D-6) 

The application of the boundary conditions (D-4) to the above result yields the following 

orthogonality relation: 

r ju, 
RHu)Re

v{u)du = 0 , fi*v (D-7) 

Because the above result is independent of 6, the radial functions may be replaced by the 

corresponding Debye potentials, i.e., 

f Ju. 
We^u,6)W^u,d)du = 0 , 11* v . (D-8) 

To prove the orthogonality of the TE mode radial functions, consider the radial functions 

^(M) and Ry(u) corresponding to two different TE modes that satisfy the differential equations 

(D-3a) and (D-3b), respectively, where the superscript e is replaced by h. From formulas (C-19), 

the boundary conditions satisfied by each TE mode radial function are given as 

1   d(uR*) 

"7     du = x*S(,lP. (D-9a) 

and 

!   d(uR§ 
du 

(D-9b) 
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where Ah denotes the normalized surface impedance of the outer boundary and 77 is a complex 

eigenvalue that satisfies the TE mode characteristic equation (C-21). If the procedure below 

expressions (D-4) is followed for the two TE radial functions RHu) and RHu), the result 

obtained is 

K)5Kr"'-K)iK 
u-ut 

V(V +1) - JUCJU +1) ("l Rh^u)Rh
v{u 

Ju„ 
) du , (D-10) 

The application of the boundary conditions (D-9) to the above result yields the orthogonality 

relation 

f Ju. 
Äj(«) ä*(») du = 0 , n * v (D-ll) 

Because the above result is independent of 0, the radial functions may be replaced by the 

corresponding Debye potentials, i.e., 

Ju. 
W*(u,0) V*(u,d) du = 0 , }x * v . (D-12) 

The orthogonality relations (D-7) and (D-ll) are valid provided that the surface impedances 

of the inner and outer boundaries are independent of the mode indices. If the above procedure is 

applied to two radial functions R*(u) and RHU) , corresponding to one TM mode and one TE 

mode, respectively, it is readily seen that these functions are not orthogonal. Therefore, the TM 

and TE mode Debye potentials are not orthogonal with respect to each other. (The evaluation of 

the integrals (D-7) and (D-ll) for p = vis presented in appendix I.) 
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APPENDIXE 
EXCITATION COEFFICIENTS FOR TRANSVERSE MAGNETIC (TM) 

AND TRANSVERSE ELECTRIC (TE) MODES 

In the derivation of the modal expansions of the electromagnetic (EM) fields in a spherical 

waveguide given in appendix C, each term in the expansion includes an excitation coefficient. 

Each modal excitation coefficient depends on the source strength and provides a measure of the 

coupling into that mode. In this appendix, the excitation coefficients corresponding to the 

transverse magnetic (TM) and transverse electric (TE) modes in a spherical waveguide are 

derived. The excitation coefficients for the TM modes are applied in the derivation of the vertical 

electric dipole (VED) fields in appendix F. In addition, the excitation coefficients for the TE 

modes are applied in the derivation of the vertical magnetic dipole (VMD) fields in appendix G. 

E.1 TM MODES 

Consider a VED of moment/? = / dl that is located at the radial distance rs = a + zs along the 

0=0 axis of the spherical earth-ionosphere waveguide shown in figure 1-1. As shown in 

appendix F, the differential equation for the electric Debye potential *Pe is given by 

(v2 + ^) w
e = — 

J<°£Or! 
ö(r-rx), (E-l) 

where 6 denotes the Dirac delta function. The solution of the above differential equation at 
source-free points (#• ? rs) is derived in appendix C, section C.l, and is given in terms of a modal 

expansion as 

00 

Ve{rß) = 2 K Re
v («) Pv (- cos 0), 

n = 0       n      n 

where Re
v has been defined as 
n 

(E-2) 

(E-3) 

In the above formulas, n denotes the mode index, u = k0r, Ae   is the excitation coefficient of the 
n 

nth TM mode, Be
v  is a constant that is given by either expression (C-7a) or (C-7b), h^\u) and 
» n 

hy(u) denote the spherical Hankel functions of the first and second kinds, respectively, of order 
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v„, and Pv denotes the Legendre function of the first kind of degree vn and order zero. The 

complex constant v„ is determined from the solution of the characteristic equation (C-8). 

From appendix D, the orthogonality condition for the TM mode radial functions is given by 

(U'Re
v{u)Re

v{u)du = \Re
v \2ömn, (E-4) 

Ju "' " II " II 

where  Re
Vn   denotes the L2 norm of Re

v  as defined in appendix F, ug = k0a , ut = k0(a+h), and 

<L„ is the Kronecker delta defined as "mn 

R j ! '  m = n re e\ 
d>nn = \0,mi:n • ^ 

If each side of expression (E-2) is multiplied by Re   and then integrated with respect to u, the 
m 

application of the orthogonality condition (E-4) to the resulting equation yields an expression for 

the mode excitation coefficient Ae
v , namely 

K - I  v - ,   , 1,2 n   ("' We{r,B) Re
v (//) du , « = 0, 1, 2,.... (E-6) Ai = 

Re
v VPv(-cos6) 

II "1 n 

It is difficult to determine Ae
v  from equation (E-6) because We(r, ff) is not known. 

To determine the excitation coefficients A\,  in formula (E-6), let 6 approach zero, resulting in 

lim        We(r,6)Re
v{u)du v_ 

1 g 

ACy" = II Re II2 lim P, (- cos d) " ^E_7') \Kvn\ e^o   V 

Because both the numerator and denominator are singular at 6 = 0, the above expression is an 

indeterminate form. Then, from Magnus and Oberhettinger (reference 25), 

sin V„JI        0 
lim P (- cos 0) = —=A- In 62. (E-8) 

Before proceeding with the evaluation of the numerator, one needs to look more closely at the 

behavior of the Debye potential in the vicinity of the source. 
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The Debye potential x¥e can be expressed as the sum of a particular solution W* and a 

homogeneous solution W% of the differential equation (E-l). The particular solution satisfies the 

inhomogeneous equation (E-l) and the homogeneous solution satisfies the Helmholtz equation 

(^ + ^o) ^h = 0 • The homogenous solution W% is finite for all points within the spherical 

waveguide and W* is singular at the source point r = rs. Therefore, in the vicinity of the source, 

the particular solution W* is the primary influence of *Fe and, thus, 

lim We= lim We= lim WeAr,6). (E-9) 
r^*r. r-*r.     "6--0 

For a VED of moment;? lying in free space, the solution of equation (E-l) is given by 

(reference 23) 

We(r,6) = We
s{rß) = —£ =— , (E-10) 

where 

1/2 
R = \r-r\ = 

s r2 - 2rrs cos 8 + r2 (E-ll) 

From the above formula, it is easy to see that Wt is singular at r = rs. 

Because the integrand in the numerator of formula (E-l) is finite everywhere except at the 
source point (r = rs, 9 = 0), its only contribution to the integral is from the immediate 

neighborhood of the source point. Therefore, expression (E-l) can be simplified to 

rJl + s) frs(l + e) 
.  De.   .   lim We(r,8)dr 

A'"~    \Re"l2 limPv(-cos0)       ' (E_12) 

V„ 0^0       Vn 

where u has been replaced by k0r and e « 1. Note that Re
v (u) has been replaced by Re

v (us) 

because it is finite at the source point. The substitution of W*(r,d) in formula (E-10) into the 

integral of equation (E-l 2) yields 

lim 
e 

i Vf(r,8) dr = —-?-  lim ^— dr . (E-l3) 
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From Sommerfeld (reference 26), let 

r = r(l+il) (E-14) 

where - £ < 11 < e , e « 1. The substitution of formula (E-14) into expression (E-11) gives 

R = r„ 1-2(1 + ?7)cos 0 + (l + rj): 
1/2 

(E-15) 

As 0-> 0, cos 0 = 1- 02/2. Therefore, i? may be approximated as 

11/2 
R*r„ 1 -2(1 + rf) (1-0^/2) + (1 + ?])' 

?72 + (l + ?7) 02 1/2 
s r vV+0: 

(E-16) 

where the last approximation was made because 77 « 1. Therefore, with the above approximation 

fori?, the numerator of the integrand in expression (E-13) can be approximated as 

rWB 1 (E-17) 

The substitution of formulas (E-14), (E-16), and (E-17) into (E-13) yields 

lim ¥°(r,0)dr = -      F 

j4ntoe0rs e 
(E-18) 

From a table of integrals (reference 27), 

di] 

\Jr}2+ e: 
= ln ?7 + V'?j2 + 02 (E-19) 

The application of formula (E-19) to the integral in (E-18) yields 

dr] 

vV+02 = ln £ + <Je2+d: -In - e + \/e2 + Ö: (E-20) 

For 0 « e, the following approximation can be made: 

V/£2+02 = e Vl + CÖ/e)2^ e l+4-(0/£): = £ + 
e2 

1£ 
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Therefore, from the above, the following is obtained: 

£+</e2+d2 s2e + —. 
2e ■ 

and 

-e+\/e2+62e —. 
2e 

The substitution of the approximations (E-21a) and (E-21b) into formula (E-20) yields 

(E-21a) 

(E-21b) 

f vV+02 ^        2£j       \2e)       {    62/2e    j 

a In (2e): 

0< 
= ln(2e)2-ln02 

If the limit of the above result is taken as 6 -> 0 (with e finite), then 

dr] 
lim 

sjr)2+6: 
■= -ln0' 

(E-22) 

(E-23) 

The above limit is the same as the one given by Sommerfeld (reference 26), but differs in sign 

from the one given by Wait (reference 1). The substitution of the above result into formula 

(E-18) gives 

lim *7(r,0) dr = - In 62 . (E-24) 

The modal excitation coefficients Ae   can now be obtained through substitution of the 
n 

limiting results (E-8) and (E-24) into expression (E-12), resulting in 

Ae =rnoP l K K) 
v-     4rc  sin V„JI I pe |2 , n =0,1,2,..., (E-25) 

where J]0 = sj fi0le0 is the intrinsic impedance of free space. It should be mentioned that the 

above result differs in sign from the one given by Wait (reference 1). 

E-5 



E.2 TE MODES 

Consider a VMD or, equivalently, an infinitesimally small loop of electric current with axis 
along the radial direction that is located at the radial distance rs = a+zs along the 6 = 0 axis of 

the spherical earth-ionosphere waveguide shown in figure 1-1. As is shown in appendix G, the 

differential equation for the magnetic Debye potential *¥h is given by 

(v2 + kl)wh = -^-ö(r-rs), (E-26) 

where m is the current moment of the loop and 8 denotes the Dirac delta function. The solution 
of the above differential equation at source-free points (r ? rs) is derived in appendix C, section 

C.2, and is given in terms of a modal expansion as 

W\r,6) = I A*  R* (u) P9 (-cos 0) , (E-27) 

where R1! (u) is defined as 
m 

Rh{u)^h^{u) + B'i hf{u) . (E-28) 
m m m m 

In the above formulas, m denotes the mode index, Ah-   is the excitation coefficient of the mth TE 
m 

mode, and B\   is a constant that is given by either expression (C-20a) or (C-20b). The complex 
m 

constant vm  is determined from the solution of the characteristic equation (C-21). 

From appendix D, the orthogonality condition for the TE mode radial functions is given by 

f! R* («) R]l (u) du = IÄ* P bmn, (E-29) 
JUg 

where   Rl    denotes the L2 norm of R^,   as defined in appendix G and 8mn is the Kronecker 

delta defined in expression (E-5). If each side of expression (E-27) is multiplied by R%   and 
Al 

then integrated with respect to u, the application of the orthogonality condition (E-29) to the 

resulting equation yields an expression for the mode excitation coefficient A\ , namely 
m 

4 = I,    ,  in    1  P' W"(r^ Rll (") du , m = 1, 2, 3,...   . (E-30) 

1       '" 1 "' 

It is difficult to determine Ah-   from equation (E-30) because ¥h(r, 6) is unknown. 
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To determine the excitation coefficients A\  in formula (E-30), let 6 -» 0. Then, 

lim   ("' W\rß) R>1 («) du 
Q-*0Ju m 

A*m      InA [2 lim P^(-cos0) ' (E"31) 

\Kvm\ e-*o   v- 

Following the same procedure as for the TM mode excitation coefficients, the magnetic Debye 

potential *Fh satisfies the inhomogeneous differential equation (E-26) and can be expressed as 
the sum of a particular solution W^ and a homogeneous solution Wjf. The term Wff is finite for 

all values of 6 and r within the spherical waveguide and W* is singular at the source point r = rs. 

The particular solution W% of equation (E-26) is the same as the magnetic Debye potential for a 

VMD in free space and is given by (reference 20) 

W\r,d) = Ws
h(r,6) = -£*- ^^- , (E-32) 

where R is given by expression (E-l 1). 

Because the integrand in the numerator of formula (E-31) is finite everywhere except at the 
source point (r = rs,6= 0), its only contribution to the integral is from the immediate neighbor- 

hood of the source point. Therefore, expression (E-31) can be simplified to 

.   Bk,   ,  lim   I Ws
h(r,d)dr 

Ah       _ "     Vm      i s   fp   0?\ 

*»        Iff* I2 limP„(-cos0)       ' v       ; 

where u has been replaced by k0r and e « 1. Note that #{f («) has been replaced by R1! (u) 
m m 

because it is finite at the source point. If the procedure described in appendix E, section E.l, is 

followed, the integral in expression (E-3 3) reduces to 

rr (1 + e)                                   //j 
lim W?(r,6)dr = In d2 . (E-34) 

The modal excitation coefficients A|   can now be obtained through substitution of the 
m 

limiting results (E-8) and (E-34) into expression (E-33), resulting in 
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km       i        *{(«,) 
Al =--f-^  „   "'  ,-  , m =1,2,3, ..■■ (E-35) vm       4r   smvm3t   p*   2 v       ' 

V II       "' I! 

It should be noted that the above result differs in sign from the one given by Wait (reference 1). 
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APPENDIX F 
DERIVATION OF VERTICAL ELECTRIC DIPOLE (VED) 

ELECTROMAGNETIC (EM) FIELDS 

In this appendix, the electromagnetic (EM) fields radiated by a vertical electric dipole (VED) 

in a spherical earth-ionosphere waveguide are derived through the use of the spherical wave 

formulas derived in appendixes A and C. The fields can be expressed in terms of a transverse 

magnetic (TM) mode expansion. 

F.l MODAL EXPANSIONS OF EM FIELDS 

Consider a radially-directed electric dipole of moment/? = I dl that is located at the radial 
distance rs = a+zs along the 6 = 0 axis of the spherical earth-ionosphere waveguide shown in 

figure 1 -1. The electric dipole can be mathematically expressed in terms of the electric current 

density vector / as 

J = fJr = rpd(r-rs), (F-l) 

where f is the unit radial vector, r and rs denote the position vectors of the observation and 

source points, respectively, and 8 denotes the Dirac delta function. The function S(r - rs) has the 

SI units of m"3 and can be represented in spherical coordinates as 

ö(r-rs)ö(d) 
°(r ~ r*) - —^—o  =—7T~ • (F-2) v       sJ       2jir2sin0 v     ' 

The spherical coordinate system is illustrated in figure 4-1. Note that 

ö(r-rs)dv=l, (F-3) 

where the integration domain extends over all space. 

///■ 

To determine the expressions for the EM fields radiated by the VED, one must first obtain the 

differential equation for the electric Debye potential *Fe within the spherical waveguide (defined 

by the region a<r< a+h) with an excitation current given by expression (F-l). From equation 

(A-6), appendix A, the differential equation for the magnetic vector potential A is given by 

VxVxA-k2
0A = - j(Ofi0e0V®e + fij, (F-4) 
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where ß0 is the permeability of free space, e0 is the permittivity of free space, k0 = co/JT^ is 

the wave number in free space, and <X>e is the electric scalar potential. Following the procedure 

shown in appendix A, section A.l, if one sets A = r A   and applies the gauge condition given in 

expression (A-18), the differential equation for ,4 reduces to 

(v2 + *2)^ = -^, (F-5) 

where V2 is the Laplacian operator. It should be mentioned that with the gauge condition (A-18) 

chosen and with only a radial component of electric current, the 8 and q> components vanish on 

each side of equation (F-4). From the definition (A-26a), the magnetic vector potential component 

Ar can be expressed in terms of the radial component of the electric Hertz vector nc
r as 

From the definition (A-29a), the electric Debye potential *¥e is expressed in terms of ne
T as 

We = ^L. (F-7) 

The substitution of formulas (F-6) and (F-7) into (F-5) yields 

{v2 + k2\we = --A-J-i . (F-8) 
J O 

For the VED excitation with current density given by (F-l), the differential equation (F-8) 

becomes 

fv2 + kA We = - . P     d(r - r) . (F-9) 
V °J J(0E

0
rs s 

It should be noted that on the right side of the above equation, r has been replaced by rs because 

the expression vanishes everywhere except at r = rs. The solution of the above differential 

equation at source-free points (r ? rs) is derived in appendix C, section C. 1, and is given in terms 

of a modal expansion as 

00 

we(r,d) = 2 K K w pv (-cos 0)» (F-10) 
„ = 0       "       " 

where n denotes the mode index, Re   is defined in formula (C-10), u = k0r, Ae   is the excitation 

coefficient of the nth TM mode, Be,  is a constant that is given by either expression (C-7a) or (C- 
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7b), h^\u) and h^\u) denote the spherical Hankel functions of the first and second kinds 
n n 

respectively, of order vn, and Pv denotes the Legendre function of the first kind of degree v„ 

and order zero. The complex constant V„ is determined from the solution of the characteristic 

equation (C-8). The modal excitation coefficients Ae   depend on the source strengthp/ae0rs. 
n 

The term Ae   is derived in appendix E, section E. 1, and is given by 
n 

Ae
v=l7[2-^-±  „   "  ,.   , n = 0, 1, 2,..., (F-ll) vn     4rr  sin vji    »e   2 '   ' v       ' 

V 

where % = J fije0 is the intrinsic impedance of the free space. In expression (F-ll), II Re
v II 

denotes the L2 norm of Re
v and is defined as 

l R6y - I ■ \ /   lu     [ReVn(U)f dU      '   n= 0'  X' 2' - ' (F"12) 

where w^ = k0a and «,- = &0(a+/z). 

The EM fields radiated by a VED are given in formulas (C-l 1) with modal excitation 

coefficients given by expression (F-ll). Therefore, the VED EM field components in spherical 

coordinates are given as 

E7 = mw 2 z42V^) KPO cos 
T       4rsu  n^0    sinvwJi    \Re \2    v"       v" K        ' 

1    R$Sus) d E" -WK^Wf &"*■<">] JB "v.(- - ") • ff-l3b) 

and 

II       Vn || 

In the above formulas, the superscript ve refers to a VED source. 

Following Wait (reference 1), the effectiveness of a source can be characterized by an 

excitation factor Ae
n and the height variation of the fields by the height-gain function Ge{z) ■ 

These quantities are defined as follows: 
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kh K («.) 

\K. 
, n =0,1,2,.. (F-14) 

and 
K (u) 

Qet7\ = «      /; = 0  1  ° (F-15) 

where z = r - a is the radial distance measured from the surface of the spherical earth (see figure 

1-1). Following Galejs (reference 2), a z-dependent normalized impedance is defined as 

-pVC 
JL 
du uRl 00 

/norfe n 
uK («) 

/; =0,1,2, (F-16) 

The application of the definitions (F-14) to (F-16) to the VED formulas (F-13) yields 

K6 = ^ 2 V"    " +     ^, Gfo) Gfc) Pv (- cos 0), r      2hrsu ~0   sin vnn      "    "   s     "       v« 

00 ,, 

*£ = ^& 2. ^~ ^ 4fc) Gfo) G&) ^ Pv„(- cos 0), Ihr s ,—Q sin V„JI 

and 

//r=^-2 <P     2rsh 7^0 sin v„Jt 
1      Ae

nG
e

n{zs)G
e

n{z) ^Pv(-cos 6) 
Öd 

(F-17a) 

(F-17b) 

(F-17c) 

The above expressions are similar to those given by Wait (reference 1) and Galejs (reference 2). 

The radial variations in the formulas for each of the above field components may be 

approximated in order to make them suitable for numerical computation. 

If the VED and the field point are each located on the inner boundary of the waveguide 
(earth's surface), thenzs = z = 0 or, equivalently, rs = r = a. Thus, 

Gl(zs) = Ge
n(z) = G^0)=l, n =0,1,2, (F-18) 

In addition, from equation (C-6a), the z-dependent normalized impedance Ae
n{z) defined in 

expression (F-16) reduces to 

Ae
n{z) = Ae

n{0)=-A     n =0,1,2,..., (F-19) 
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where Ag = Z^T)0 denotes the normalized surface impedance of the inner boundary. The 

substitution of the above simplifications into the VED field expressions (F-17) gives 

£ve _  fooV   V   Vn(Vn + 1) 
T     lhau   ^Q   sin vn% Ae

nPv{-cos 0): 

T?Ve - 1      Ai — Pv(-cosd), 
2ha   w = 0 sin v„Jt    n dd   v» 

and 

H 
<P " 2ha „4o sin V„JI "" 00 * v« 

1      At — Pv(-cos0). 

(F-20a) 

(F-20b) 

(F-20c) 

F.2 QUASI-TEM FIELDS 

The tables of section 4.1 show that in the ELF band, all modes are nonpropagating except the 

n = 0 mode. This mode is often referred to as the quasi-transverse EM, or quasi-TEM, mode. If 

only the quasi-TEM mode is considered, the VED fields for a source and receiver each located at 

the surface of the inner sphere (earth) are given as 

*'     2haug    sinv0Ji   A°rV  cost)): 

r-ive 
Ea   = 

VoPA 
•g    1 

0 2ha    sin vji    ° dd   V ' ' 

and 

Tve-    P 1 
f     2ha sin vji    ° 38   V ' 

(F-21a) 

(F-21b) 

(F-21c) 

The above field expressions are of primary interest in this report. 
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APPENDIX G 
DERIVATION OF VERTICAL MAGNETIC DIPOLE (VMD) 

ELECTROMAGNETIC (EM) FIELDS 

In this appendix, the electromagnetic (EM) fields radiated by a vertical magnetic dipole 

(VMD) in a spherical earth-ionosphere waveguide are derived through the use of the formulas 

derived in appendixes A and C. The fields can be expressed in terms of a TE mode expansion. 

Consider a radially-directed magnetic dipole of moment K dl that is located at the radial 
distance rs = a + zs along the 6 = 0 axis of the spherical earth-ionosphere waveguide shown in 

figure 1 -1. The magnetic dipole can be mathematically expressed in terms of the magnetic 

current density vector M as 

M = fMr = fKdl Ö(r-rs) , (G-l) 

where f is the unit radial vector, r and rs denote the position vectors of the observation and 

source points, respectively, K denotes the magnetic current, and 8 denotes the Dirac delta 

function. Because an infinitesimal dipole of magnetic current is equivalent to an infinitesimal 

loop of electric current (where the loop and dipole axes are parallel) through the relation Kdl- 
jcofi0 Ida (references 19 and 20), where / is the loop current and da is the differential area 

enclosed by the loop, equation (G-l) may also be written as 

M = f jnpjn ö(r - rg), (G-2) 

where m = I da is the current moment of the loop. 

To determine the expressions for the EM field radiated by the VMD, one first needs to obtain 

the differential equation for the magnetic Debye potential *Fh within the spherical waveguide 

(defined by the region a<r< a+h) with an excitation current given by expression (G-2). From 

equation (A-l 1), the differential equation for the electric vector potential F is given by 

VxVxF-k2
0F = - ja)ßoeoV0h + eQM, (G-3) 

where 0h is the magnetic scalar potential. Following the procedure shown in appendix A, 

section A.l, by setting F = fFr and applying the gauge condition (A-24), the differential 

equation for F reduces to 
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\ F M 
V2 + ^^=-*0-F

L- (G-4) 

It should be mentioned that with the gauge condition (A-24) chosen and with only a radial 

component of magnetic current, the 6 and (p components vanish on each side of equation (G-3). 
From the definition (A-26b), the electric vector potential component Fr can be expressed in 

terms of the radial component of the magnetic Hertz vector nh
r as 

Fr = Jf^oEoJIr  ■ (°-5) 

From the definition (A-29b), the magnetic Debye potential *Fh is expressed in terms of nh as 

n h 
Wh = -^. (G-6) 

The substitution of formulas (G-5) and (G-6) into (G-4) yields 

(v2 + kAwh = --J— ^ . (G-7) 

For the VMD excitation with current density given by expression (G-2), the differential 

equation (G-7) becomes 

(v2 + k2
0) Wh=-^- ö(r - rs) . (G-8) 

It should be noted that on the right side of equation (G-8), r has been replaced by rs because the 

expression vanishes everywhere except at r = rs. The solution of the above differential equation 

at source-free points (r ? rs) is derived in appendix C, section C.2, and is given in terms of a 

modal expansion as 

00 

W\r,6) = 2 A% R\ (U) P9 (- cos 6), (G-9) 

where m denotes the mode index, R1'   is defined in formula (C-23), A\   is the excitation 
m m 

coefficient of the mth TE mode, B1!   is a constant that is given by either expression (C-20a) or 
m 

(C-20b), and the complex constant vm is determined from the solution of the characteristic 

equation (C-21). The modal excitation coefficients A| depend on the source strength mlrs. The 
m 

term A\   is derived in appendix E, section E.2, and is given by 
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Ah   _ , m = 1,2,3, (G-10) 

In the above expression,  R%    denotes the L2 norm of R%   and is defined as 

\R-   ■ IK G?M (G-ll) 

where ug = k0a and ut = &0(a+/z). 

The EM fields radiated by a VMD are given in formulas (C-24) with modal excitation 

coefficients given by expression (G-10). Therefore, the VMD EM field components in spherical 

coordinates are given as 

Sin V„,Jt       \r>h   t2      v- v™ 
Tjvm _      lcom    "V1 

^   ~_4Tw A 'm*      \R * m " m 
(G-12a) 

Hlm = - 
k2jn i    *W d 
Arsu~x  sin vmii Ink |2 d« «<(«)] ^.(-008 0), 

and 

2„.     °° 

(G-12b) 

(G-12c) 

In the formulas (G-12), the superscript vm refers to a VMD source. Following Wait (reference 1) 

and Galejs (reference 2), the excitation factor Ah
m, height-gain function G*(z), and z-dependent 

normalized impedance A*L(z) for TE modes are defined as 

AhJ-A R$ (» J 
m      o 

R h   |2 
, m = 1,2,3, (G-13) 

G"^Ä'm = 1'2'3'-' (G-14) 

and 
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4* (z) - - 
pvm 

■n0 //r = -7 
«*J (/<) 

mode m 
_d_ 
du 

uR» (//) 
, m =1,2,3, (G-15) 

The application of the definitions (G-13) to (G-15) to the VMD formulas (G-12) yields 

zjvm _ _   ,vo' 
r   ~   Ikrji 

kjn   v  vm(v,„ +1)    *    j. i, 
'"V "      ' yl£ G^ G* (z)P-(-cos 0), 

,» m =!    sin VWJI. 

Hvm=jk0m v        j        A »»    r±h(r. \ nh Gm(:.s)G?n(z)^P,(-cos8), 
2hrs „f^ sin vmx 4*(z) "*^' ~«^' 30 

and 

«P 2^/*    ^ sin V,„JT, 
/l'" ^«^ U>»U) 30 rV   COS °J 

(G-16a) 

(G-16b) 

(G-16c) 

The above expressions are similar to those given by Wait (reference 1) and Galejs (reference 2). 

The radial variations in the formulas for each of the above field components may be 

approximated in order to make them suitable for numerical computation. 

If the VMD and the field point are each located on the inner boundary of the waveguide 

(earth), then zs = z = 0 or, equivalently, rs = r = a. Thus, 

Gm^s) = G,«(Z> = G£(°) =U m =1,2,3,..., 

and the z-dependent normalized impedance A*Jz) reduces to 

(G-17) 

^(z) = A*(0) = -4p, rn =1,2,3,... (G-18) 

The substitution of the above simplifications into the VMD field expressions (G-16) gives 

kjn    NH  vm(vm+l)    h fjvm _ _   ,vo' 
'   ~    2hau g nlTi    sin vm% 

</\(-cos0): 

jkjn 
M° ~    2haA 

1 
g m- 

di sin vmJt    '" 30 ^^A-J-cosÖ), 

and 

Fvm _ _ JVpkjn 

<*> 2ah 
1 

\ sin V,„JC    '" 30 <äöM-««fl) 

(G-19a) 

(G-19b) 

(G-19c) 

The above field expressions are of primary interest in this report. 
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APPENDIX H 
DERIVATION OF HORIZONTAL ELECTRIC DD?OLE (HED) 

ELECTROMAGNETIC (EM) FIELDS 

In this appendix, the electromagnetic (EM) fields radiated by a horizontal electric dipole 

(HED) in a spherical earth-ionosphere waveguide are derived from the vertical electric dipole 

(VED) and vertical magnetic dipole (VMD) fields through the use of the reciprocity theorem. 

The expressions for the nonradial field components involve both TM and TE mode expansions. 

H.1 MODAL EXPANSIONS OF EM FIELDS 

The Lorentz reciprocity theorem (references 19 and 20) relates a response at one source due 

to a second source to the response at the second source due to the first source. Consider two sets 
of impressed line-current sources (Ih K{) and (I2, K2) excited at the same frequency/, where/ 

and K refer to electric and magnetic line currents, respectively. The EM fields produced by (/l5 

K{) are (Et, H{) and the fields produced by (72, K2) are (E2, H2). If the line currents lie in a 

linear, reciprocal medium, the reciprocity theorem applies and is given as 

f \Et ■ I2dl2 - Hx • K2dl^ = f [E2 ■ lxdlx - H2 ■ K.dl^j, (H-l) 

where dlx and dl2 denote the differential length vectors along line current sets one and two, 

respectively. 

To derive the fields produced by a HED, consider the two coordinate systems defined in 

figure H-1. In this illustration, the coordinates (x, y, z) refer to those of the HED, and the primed 

coordinates (x',y', z') refer to those of the VED (case 1) and VMD (case 2). The origin of each 

coordinate system lies at a point on the earth's surface, with the x-y andx'-j/planes each lying on 

the tangent plane defined at their respective origins. The distance a6 is the great-circle path length 

between the origins of the two coordinate systems, where 0is the polar angle defined in figure 

1-1. The reciprocity theorem is applied for two different cases. In case 1, anx-directed HED with 

electric dipole moment /j dlx is located at coordinates (x, y, z) = (0, 0, zr) and a z "-directed VED 

with electric dipole moment I2 dl2 is located at coordinates (x', y,,z') = (0, 0, zs). In case 2, an 

jc-directed HED with electric dipole moment 7j dlx is located at coordinates (x, y, z) - (0, 0, zr) 

and a z'-directed VMD with magnetic dipole moment K2 dl2 is located at coordinates (x\y\z') = 

H-l 



(0, 0, zs). The radial component of electric field Eh
T
e produced by the HED is determined from 

reciprocity in case 1 and the radial component of magnetic field Hh
T
c produced by the HED is 

obtained from reciprocity in case 2, where the superscript he refers to a HED source. 

VED (Case 1) 
VMD {Case 2) 

Figure H-l. Coordinate Systems Defined in the Application of the Reciprocity 
Theorem for Determination of the HED Fields 

To determine Eh
r
e, consider case 1 in figure H-l. The application of the reciprocity theorem 

(H-l) to the HED and VED sources yields 

?he E'[%x' = 0, y' = 0, z' = zs) I2 dl2 = E\e
x{x = 0, y = 0, z = zr) I, d^ , (H-2) 

where Eh£{x' = 0, / = 0, z' - zs) is the vertical (radial) component of electric field from the HED 

evaluated at the VED location and Ev
2
e

x(x = 0,y = 0,z = z ) is the JC component of electric field 

from the VED evaluated at the HED location. Setting /j J/j = I2 dl2, expression (H-2) reduces to 

^he i  i ££(/ = 0, i = 0, z' = zs) = E\c
x{x = 0, y = 0, (H-3) 
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-,he, The left side of equation (H-3) can be expressed in spherical coordinates as Elr(r = rs, 6, q>), 

where the spherical coordinates of the source point are (r, 8) = (rr, 0) and the spherical 

coordinates associated with the field point are (rs, 8, <p). Similarly, the right side of equation 

(H-3) can be expressed in spherical coordinates as - E^ir = rr, 6') cos q>, where the spherical 

coordinates of the source point are (r, #0 = (rs, 0) an<* the spherical coordinates associated with 

the field point are (rs, 8', (p*), where 0'= 8 and 6' = - 0. The projection of E™g, onto the x axis 

is illustrated in figure H-2. Note that the azimuthal dependence is missing as an argument of 

£20' because the VED fields are axisymmetric. 

y 
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Figure H-2. Electric Field Component E%ß> Radiated by a VED (Source 2) 
Projected onto the x-Axis at the HED (Source 1) Location 

If the above spherical coordinate substitutions are applied to equation (H-3), then 

?he E™(rs,d,<p)=-Ev
e
e,(rr,e')coscp, (H-4) 

where the source numbers have been dropped. With the radial coordinate of the VED given by 

r = rs and the coordinates of the field point given by (rr,8^), from formula (F-15), EV
Q, is 

expressed as 

E*(rr ff)J^t± ^L_ *£j> MuK («) 
snr  n = 0 u = ur 

wPv(-cosd'), (H-5) 

where ur = k0rr The substitution of expression (H-5) into (H-4) yields 
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E*\rs,e,cp) = - ja>PoP 
4rsUr 

COS Cp 
y     1     RySus)  d 
^-0sinv„Ji \Re |2  du uRe

v (u) 
86 7Pv(-cos0').(H-6) 

The above formula applies for an x-directed HED located at (r, 6) = (rr, 0) and the field point at 

(rs, 6, <p). If the HED is located at (r, 6) = (r5,0) and the field point coordinates are (r, 6, <p), then 

rs is replaced by r and rr is replaced by rs in expression (H-6), resulting in 

uK («) 

n = 0 01" V /?.' 
^RlMjQPrircase),  (H-7) 

where 0'= 0and Ö/Ö0'= - 5/50. 

To determine Hjfe, consider case 2 in figure H-1. The application of the reciprocity theorem 

(H-l) to the HED and VMD sources yields 

Hh
1fa' = 0,y' = 0,z' = zs)=-E™(x = 0,y = 0,z = zr)^± (H-8) 

where H^x' = 0, / = 0, z' = Zs) is the vertical (radial) component of magnetic field from the 

HED evaluated at the VMD location and E™(x = 0,y = 0,z = zr) is the x component of electric 

field from the VMD evaluated at the HED location. The left side of equation (H-8) can be 

expressed in spherical coordinates as H*e
r(r = rs, 6, (p), where the spherical coordinates of the 

source point are (r, 6) = (rr, 0) and the spherical coordinates associated with the field point are (rs, 

6, 0). Similarly, the right side of equation (H-3) can be expressed in spherical coordinates as 

Ev^,{r = rr, 8') sin cp, where the spherical coordinates of the source point are (r, #0 = (rs, 0) and 

the spherical coordinates associated with the field point are (rs, 6', <p^), where #'= 0and q>' = - cp. 

The projection of E™', onto the x axis is illustrated in figure H-3. Note that the azimuthal 

dependence is missing as an argument of E™', because the VMD fields are axisymmetric. 
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► x 

Figure H-3. Electric Field Component E^ Radiated by a 
VMD (Source 2) Projected onto the x-Axis at the 

HED (Source 1) Location 

If the above spherical coordinate substitutions are applied to equation (H-8), then 

(H-9) 

where the magnetic dipole has been replaced by the equivalent infinitesimal electric current loop 
of moment I2 da2, where K2 dl2 =jcoß012 da2. With the radial coordinate of the VMD given by 
r=rs and the coordinates of the field point given by (rr, #0> from formula (G-12c), E2", is 
expressed as 

Ev
2;-(rr,6') = - 4r„ 

1 
^sinv^Ji \Rh 2RHur)jw PA-cos 6') 

86' 
(H-10) 

The substitution of expression (H-10) into (H-9) yields 

*fr, 8. ¥) -$? *> , ± ^- Ä *}.<«,) ±, P,(- cos ff), (H-l 1) 
OT=1 m- {R* 
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where pj = Ix dlv The above formula applies for an ^-directed HED located at (r, 0) = (rr, 0) 

and the field point at (rs, 6, <p). If the HED is located at (r, 6) = (rs, 0) and the field point 

coordinates are (r, 0, (p), then rs is replaced by r and rr is replaced by rs in expression (H-l 1), 

resulting in 

H>- "• ■>"=- ¥sin f 2 -skji SS R'-iu} ™ p*±-cos 6) •      (H"12) 

where &'= #and dldd'= - dldd, and the subscript 1 has been removed. 

The remaining field components for a HED source can be determined from the Debye 

potentials as given by equations (A-31). Because the Debye potentials for a HED have not yet 

been determined, they must be derived from the radial field components given by expressions 
(H-7) and (H-12). From equations (A-31a) and (A-31d), the radial field components are 
expressed in terms of the Debye potentials as 

d 2 
E;={^2+ki](rye), (H-13a) 

and 

The     I d 2 
Hr; = ^ + kij(rWh), (H-13b) 

where *Fe and Wh denote the electric and magnetic Debye potentials, respectively. Given the 
expressions for Er

e an 

and Wh are as follows: 

expressions for Er
e and Hr

e in formulas (H-7) and (H-12), respectively, suitable forms for *F' 

V' = cos(p 2^ A% Ke
v(u)- 

w = 0      n      " 

and 

We = COS <p 2 K Re
v (U) -rx Pv (" C0S Q) . (H'14a) 

n-Q n       vn 00 n 

Wh = sin q> 2 A* Ri («) ^ P^ (- cos 0), (H-14b) 
lfl—\ i» i» 00 m 

where Ae
v and A*   denote the TM and TE mode expansion coefficients, respectively. 

From the relation (C-12), 
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rRe
v («) 

v (v + 1) 
-**-* }-R%{u) ,«=0,1,2,... (H-15a) 

and 

dr2+k2°l 
rR* («) 

v (v   + 1) wV^      ' fl* 00 , i» =1,2,3, (H-15b) 

The substitution of expressions (H-15a) and (H-15b) into (H-14a) and (H-14b), respectively, 

yields 

7 *i 

E* = -# cos <p 2 A^v vM( vn + 1) Rl (u) M Pv (- cos 0) , 
n = 0 

and 

H* = -f sin <p 2 A % vm(vm + 1) Ä* («) ^ P, (- cos 0) . 
m= 1 

A comparison of formulas (H-7) and (H-16a) shows that 

uRe
v («)" 

4« _ W0P l 

3_ 
du 

s    v„(v„+l) sinv„ji \Re 
n = 0, 1,2,.... 

(H-16a) 

(H-16b) 

(H-17a) 

Similarly, a comparison of formulas (H-12) and (H-16b) yields 

A*  =- 1 koP 1 
4   %(v  +1) sinkst |ÄA |2 

, m= 1,2,3,... (H-17b) 

The substitution of expressions (H-17a) and (H-17b) into (H-14a) and (H-14b), respectively, 

yields 

r 

We = °     COS Q9 ZJ 
n = 0 

1 1 
«#* (") 

v«(v«+1) sinv„Jt hj« 

•>> 

^(M)M^(_COS0) ^' (H-18a) 
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and 

R'l (w.) ■v^-s' ^h . .   d 

1v(v(„+l) siniyt \Rh |2    vm     30 
RUu)-^P9(-cosO) .       (H-18b) 

From formulas (A-31), the remaining HED field components are given in terms of the Debye 

potentials as 

he_1 d\rWe)    jtoii0dVh 

e " r    drdd       sin 0   dtp  ' 

Fhe_     l     d2(rWe)    .       ay* 
<P ~ rsind    drdcp   + Wo   de   » 

6 ~ sin0   dtp      r    frdd     ' 

and 

„A,      •      dwe [     t     3W) 
v       J     °  dd      rsmd    drdcp 

(H-19a) 

(H-19b) 

(H-19c) 

(H-19d) 

The substitution of the Debye potential expressions (H-18) into the HED field formulas given 

above yields 

E 
he_Jk2o'tloPCOS<P\? 1 1 

_3_ 
du uRi (u) 

+ 

4usu        f^o vn(y„ + 1) sin V„JI 

jwn0k0p cos q> y 

Ä5 

" = "s   d 
du uRt (//)   —~ P„ (- cos 0) v»     J 302    v" 

1 i    RlW ok..a 
4sin0       tffx v(vm+l) sinvW!Ji l^A 

/^(//)^Pf,j-cos0),        (H-20a) 

,Ac _    ./«^0P sin (p 

_3_ 
3// wflf, (»0 

4rsu sin 0 /fTo vB(vn + 1) sin vHii Äv. 

" = ",   3 
du uRi («) ^M-cos0) 

jtofijcj) sin <p fl£ 00 1        "VJ'  DA 
^i vm(v, +1) sinv,„Ji I^A |2    v„,      öö 

/?5(W)T7ö^(-COS0),       (H-20b) 
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„he    koP sin q> 
tla   = 

_9_ 
du uRe

v («) 

9      4rs sin 6 ^ v„(v„ + 1) sin vnit I /?« I2 V    90 
u = u'Re

v(u)^Pv(-cosd) 

kQp sin 99 <K)   d 
4r      Ä vm(vw+ 1) sin vmrc |ää 12 ö« 

«/?{(«) —^(-cosö),      (H-20c) m    J 90       m 

and 

# 
he _ k0P cos y Y j j 

_9_ 
9« 

4r5      Ä) v„(v„ + 1) sin vn% 

uRe
v («) 

-! „ U~Us Re
v («) —=■ Pv (- COS 0) 

i?e P v"     902   v« 

£0P cos (p y l l      Rhvn
{us)  9 

4rsin0  ^ vm(vm+l) sinvmJt \Rh p 9« 
M4(")l^Pv(-COSÖ)  • (R-20d) dd 

Formulas (H-20) show that, unlike the VED and VMD fields, four of the six HED field 

components involve the superposition of both TM and TE modes. 

Following Wait (reference 1) and Galejs (reference 2), the HED formulas can be expressed in 

terms of the excitation factor, height-gain function, and normalized impedance defined in 

expressions (F-14) to (F-16) and (G-13) to (G-15). The application of these functions to the 

HED formulas (H-7), (H-12), and (H-20) yields 

Eh
r
e = ^£ COS V 2 ^L Aen ^) Gen(Zs) Gen(z) 1_ p^ cog Q) ? (H-21a) 

he_    jk0t]0p cos (p 
£ö -" 2Ä 2       ,   \i, -J— K Afcs) AnW G»(^) GnW i Pv (~ COS Ö) « = 0 V„(V„ + 1)  Sin V„Jt     n n    s       n       QQZ     V„ 

+ jnjcoPcosy Y       1 1     „A ,.* 
2h sin 0 ^ GJ(z,) G*(z) -Q0 P9n(~ cos 0),       (H-21b) 
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00 

u„    jcou„p sin w x^i i i d 
'I =    9/, L ft     2-      , *      , -J— ^, 4fo) 4<(z) Ge

n(zs) Ge
n{z) M Pv (- cos 0) v Z/isint»     nfov^+l) sin vnn "   5    "        "   s     "     do   \. 

wjc„psmw V1 1 1 i,     u u       dl 

H,** = -^ «»»-^a^ A» G^G^^ !>,.(-«» fl)        , (H-21d) 

00 

hp       Jk„P sin 09 vi i i d 
H7 = - V, «in 0    2       ,   *,, -J— K K^s) Gfcs) G<(Z) M Pv (- COS 0) 2/tsint/   ,T?ovM(vn+l) sin V/;JI d0   % 

+ £4™? y —i— _L_ At _j_ Gi(:, Gto ii 
2»    Ä w» sv A>" ^ G*->G»0 ä5* V-cos e) • ^ 

„he fioP COS <? 
CO , o 

?cos cp x~i i i cr 
ÖTT^ 2-      ,  *    n -X— K Kks) Ge

n(zs) G'„(z) —2 Pv (- cos 0) ~/?        » = ov„(vr+l) sin v„3t J d02     " 

7 °° 

The above expressions are similar to those given by Wait (reference 1) and Galejs (reference 2). 

The radial variations in the formulas for each of the above field components may be 

approximated in order to make them suitable for numerical computation. 

If the HED and the field point are each located on the earth's surface, then zs = z = 0. 

Therefore, the height-gain functions reduce to 

Gfcs) = Gi,(-) = Gi,(°) =1, w =0,1,2  (H-22a) 

and 

Gm^ = GnW = G»z(°) = 1 , w = 1, % 3,... . (H-22b) 

In addition, the z-dependent normalized impedances Ae
n{z) and A^n(z) defined in expressions 

(F-16) and (G-15), respectively, reduce to 
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A<H(z) = A<(P) = -Ax, n =0,1,2, 

and 
\h{-\ _ Ah A"(z) = AnJ0) = -A(>, m =1,2,3, m^'        m 

(H-23a) 

(H-23b) 

The substitution of the above simplifications into the HED formulas (H-21) gives the following: 

A 00 

He VgAgP V 1 Ae E. ;rrA- cos (p /\ -z-^ Al   „„ 2/ia ^ j™^ sin vnJi    n dd 
An^PV(-^d), (H-24a) 

„he &oVoAiP COS <p 

+ 

2/i 

JVokoP cos <P 

oo 2 

2  * K —^ P  (-cos 0) 
rovB(v,+ l) sinvKJt    «Ö02   V 

^4 A*  ^77 P« (" COS 0) , in 1/   ¥      m Aft     v_v ' » 2Ä sin 0     ^ vm(vm + 1) sin vmx    « 00 (H-24b) 

„te    Jo>V0Ap sin q? 

v 2A sin 0       -^ vB(v„ + 1) sin vn%    n dd   v„ 

JVokoP sin <p ^ 1 1        . u   d2 

2h S -^— Ah
m —=■ P-, (- cos 0), (H-24c) Ä vm(v+D sinvOTJt    »302   vm^ ^        ; 

00 

Hre = -^rsin(P^l -=-^—^ ^P^C-cos©), r 2«a       ^ .i™, sin vjn    m 86   vmv y' OT=1 ""' •m" 
(H-24d) 

tin    - e 2Ä sin 0     ^ Vw(v^ + 1} sin Vn%    n dd   vn 
hrzK^PA-cosB) 

jk0p sin <p 1 1    Ah     d 

2hA g     n7Tivm(vm+l)sm 4: A*  ~ P„ (- COS 0) , 
V„,Jl     m AQ2     v™ ' ' 

and 

#; = 
MP 

COS
 v 

2Ä ,7To vM(vM + 1) sin v„Jt    n 00 
1 ^^v <"«»*> 

jk0p cos y y _ 
2hAs sin 0 ^ vm(vm + 1) sin vmx "» 00 ' *»' 

1 ^—^Ä^J-cos©) 

(H-24e) 

(H-24f) 

H-ll 



H.2 QUASI-TEM FIELDS 

The tables of section 4.1 showed that in the ELF band, all modes are nonpropagating except 

the n = 0 TM mode. This mode is often referred to as the quasi-transverse EM, or quasi-TEM 

mode. If only the quasi-TEM mode is considered, the HED fields for a source and receiver each 

located at the surface of the earth are given as 

A A € 

Eh
r
e = - -A£—- ^— -™ Pv (- cos 0) cos cp , (H-25a) r 2ha      sin vji öd   v« v v J 

7he_   fio-nAPK      i i     _9; 
v0(v0+ 1) sin v0Jt  dd' 

Ee = 2Ä TTT^TTT „:„.. , 7^2 Pv„(~ cos ö) cos <P» (H-25b) 

,,e    jmp0AjpAe
0        1 i i       ö 

£„ = -^r ~ ~ — ^-n -to pv (- cos Ö) sin cp, (H-25c) ?' 2/i v0(v0 + 1) sin V0JI sin 6  d0   V '       v' v ' 

H,e = ^VA» 1 -1 -L- A Fv (_ cos 0) Sin v , (H^Sd) 
vo(vo + 1) sin V0JI sin Ö  OP   '» 

and 

< = 7/r°tfAg°     ,  *    „ —— 4^ ^ (-cos Ö) cos V • (H-25e) ? 2/i        v0(v0 + 1) sin V0JI  50'   V '        v v J 

Note that the radial magnetic field component Hh
r
e is not listed above because it is expressed 

only in terms of TE modes. 

H-12 



APPENDIX I 
THIN-SHELL APPROXIMATION TO THE 
RADIAL DEPENDENCE OF THE FIELDS 

The spherical waveguide formulas derived in appendices F, G, and H involve the Legendre 

function of the first kind for the 6 dependence and the spherical Bessel functions for the r (radial) 

dependence, where each function is of complex order. Exact and approximate representations 

for the Legendre function are presented in appendices J and K. Galejs (reference 2) has 

presented an approximate formula for the radial variation of the fields under the condition h Ir « 

1. This approximation, referred to as the thin-shell approximation, is suitable in the extremely 

low frequency (ELF) band and provides results of qualitative accuracy in the very low frequency 

(VLF) band. In this appendix, a derivation of the thin-shell approximation is presented and 

applied to obtain approximate solutions of the transverse magnetic (TM) and transverse electric 

(TE) mode characteristic equations. Thin-shell approximations for the mode excitation factors, 

the height-gain functions, and the z-dependent normalized impedances are also presented. 

1.1 APPROXIMATE SOLUTION OF THE RADIAL DIFFERENTIAL EQUATION 

In appendix B, it is shown that the radial dependence of each Debye potential is given in 
terms of a function Rv(u), u = k0r, which satisfies the following differential equation: 

*"£'♦ (kor)2-v(v+l) Rv=0 . (1-1) 

As shown in appendix B, two linearly independent solutions of the above differential equation 
are given by the spherical Hankel functions of the first and second kinds, h^\u) and h(2\u), 

respectively. Consider the following function: 

Wv(r) = rRv(k0r) . (1-2) 

The substitution of the above function into equation (1-1) yields the following differential 
equation for W (r) '■ 

w>)+ k2
0-^p± Wv(r) = 0  . (1-3) 
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For r^8 or for fields in a thin shell of hlr « 1, the radial variable r that appears in brackets 

in the above equation may be approximated by its average value f in the shell that is given by 

r == f = a + e, (1-4) 

where e = h/a« 1. The application of the above approximation into the differential equation (I- 

3) yields 

W;(r) + k2
rvWv(r)*0, (1-5) 

where 

If | v| » 1, then from formulas (K-26) and (K-27), 

v(v+l)s(&7)2 , (1-7) 

where k is the wave number in the 6 direction. From the approximations (1-4) and (1-7), krv in 

formula (1-6) is approximated as 

*2r,«*;-7r4T2"*;-*2 i-irH»-*2' e/fl«1 • (I"8) 

(1 + f) 
From the final expression in the above approximation, krv can be interpreted as the wave number 

in the radial direction. Also note that the above approximation slightly underestimates the radial 

wave number for all values of r. 

The solution of equation (1-5) is given by 

Wv(r) - A ejk-r + B e~jk^r, (1-9) 

where A and B are arbitrary constants. From definition (1-2), Rv is approximated as 

WJr)        eJkrJ        e-JkrS 
Rv B —£-1 m A ^-=— + B e—^- . (MO) 

V f y y 

A comparison of the exact solution (B-7) for Rv with the approximation given above yields 

//(»-^, (I-Ha) 

and 
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hV\u)* 
-lhrJ 

a-nb) 

The above approximations are used to solve the TM and TE mode characteristic equations that 

are derived in appendix C. 

1.2 APPLICATION OF THIN-SHELL APPROXIMATION TO TM MODES 

Consider the characteristic equation for the TM modes given in expression (C-8). The 

application of the thin-shell approximation (1-1 la) to the derivative terms in formula (C-8) that 
involve h^\u) yields the following: 

v v '    k„ dr\   r   )     k„     r    ' (1-12) 

and 

d[uh^\u) 
du = h«Xu) + uhyXu)*(i+jknr) 

,JkrS 
a-i3) 

Following a similar procedure for h^\u), from approximation (1-1 lb), gives 

d uhf{u) 

du «  1 ■fin?) 
e-J*rS 

(1-14) 

The substitutions of the thin-shell approximations (1-11), (1-13), and (1-14) into the quotients in 

equation (C-8) yields 

uhf(u)] 
du -jAhfXuJ 

uhW(u)] 

du JAMlXu) 

±-j(krv + Ak0) 

i + j(krv-Ak0) 
-J2krva 

(k„+Ak 

k   -A k rv       g   o 

S    °   \ e-WrS 

and 

(I-15a) 
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du + jAeh{}\ui) 

uh<$Ku) 
du + JAth?)(«i) 

1 
(a + h) + Kkrv + \ko) 

1 
(a + h) -Mrv -W 

J2kja+h) 

. _ / krv + Aeko | ej2kja+h) 

\krv-Aeko 
(I-15b) 

The final forms of approximations (I-15a) and (I-15b) are suitable because \la « 1. The 

substitution of the above quotients into the TM mode characteristic equation (C-8) yields 

krVn-\
ko] 

krvn + AJ<o 
krV-

Aeko 

J2krv h 
»   a 1 = ^■/'2"7r      w = 0   1   2 a-i6) 

In the above equation, the index n corresponds to the order of the TM mode. Note that there are 

an infinite number of solutions to the above equation. 

The TM mode characteristic equation (1-16) may be rewritten as 

1 + K.lf1 + ^l=e-^„/-»») , II = 0,i,2,.... 
l-Kn\l-Zn 

(1-17) 

where Kn and £„ are defined as 

AJc„ 
K.. = 
"" k. 

(1-18) 

a-i9) 

In the above expressions, note that a subscript has been added to the radial wave number to 

indicate the mode index. The natural logarithm of equation (I-17) yields 

ta i±f.+Inl
1 + c. 

I-*. rdn =-J2[krv„h->'*)> "=o,i,2, a-20) 
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In the ELF band, the spherical waveguide boundaries appear as nearly perfect electric 
conductors. Therefore, \Ag\ « 1 and \Ae\ « 1 and the following conditions are valid: 

Kl«1' |£j«i • (1-21) 

From reference 27, 

ta'£f) = 2 »T4 + s2U + j], IJCUI a-22) 

The application of the approximations (1-21) and (1-22) into the TM mode characteristic equation 

(1-20) results in 

^■^-f+^n + f- --J[krvn
h-njt)  •  « = 0,1,2,.... (1-23) 

The substitution of the variable definitions (1-18) and (1-19) into the above equation yields the 
following quartic equation for k    : 

Krv„      h   Krv„ 
K\ + Wo 

h kl. - 
j(A3

g + A3
e)k

3
0 

3h = 0 , n = 0, 1, 2, (1-24) 

Approximate solutions of the above equation for the quasi-TEM mode (n = 0) will be determined 

separately from the higher-order TM modes. 

From the parallel-plate waveguide results given in section 2, it is known that the quasi-TEM 

mode (n = 0) is the only propagating mode over most of the ELF band. If n = 0, the quartic 
equation for k     given above reduces to the following quadratic equation for k7 

7v„ 

k4 M. + Wo 
h kl. - 

j(A3 + A3
e)k

3
0 

3h = 0 (1-25) 

A solution of the above equation is 

A    - 7(V4)*0 
2Ä 

1 + 
j4k0h {Aj + Aj) 

3   (VU2 

1/2 

(1-26) 
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Because the earth is more highly conducting than the ionosphere, the following simplification is 

allowed: 

(A3 + A3
e)                     3AAe 

— — = A + A ^—— s A - ^A 
8 e> g e 

(1-27) 

The substitution of the above approximation to the solution (1-26) yields 

2/i 
1 + J4kJl 

\-J-f-{Ae-2Ag) 

h 
Aek0h « 1. (1-28) 

The above result corresponds with expression (87) on page 89 of Galejs (reference 2). Note that 

as A -> 0 and A -» 0, corresponding to perfectly conducting boundaries, then k 

k s k , resulting in a purely TEM mode as described in section 2. 

0 and 

For the higher-order TM modes (n # 0), if only the first-order term in the series expansion (I- 

22) is applied to the TM mode characteristic equation (1-20), the following quadratic equation for 
krv  is obtained: 

hi   -ML h     - 
"'„     h    "'„ 

j(As + Ae)k0 

h 
= 0 , «=1,2,3,..., (1-29) 

Note that a factor of k2    has been removed from the original quartic equation because this 
n 

yields the trivial solution k      = 0. A solution of equation (1-29) is given by 

1 + 
j4(Ag+Ae)k0h 

(im)2 

1/2 ' 

rut 
h 

KA,+Ae)ko 

nn ,\Aek0h\« 1 ; «=1,2,3,.... (1-30) 

The above result corresponds with expression (88) on page 90 of Galejs (reference 2). Note that 

the first term in the above expression corresponds to the cutoff wave number for the TM modes 

in the parallel-plate waveguide with perfectly conducting walls as given in formula (2-15). 
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To determine the thin-shell approximations for the excitation factor Ae
n, the height-gain 

function Ge
n{z) >an^tne ^-dependent normalized impedance Ae

n(z) for the TM modes as defined 

in expressions (F-14), (F-15), and (F-16), respectively, one must fust obtain the thin-shell 

approximation for the constant Be  that appears in the radial function Re that is defined in 

formula (C-10). The constant Be   is given by either formula (C-7a) or (C-7b). The substitution 
n 

of the thin-shell approximations (1-11), (1-13), and (1-14) into formula (C-7a) yields 

Be  B- 

1+j{krvn
a-Agkoa 

l-j(krva + Agk0a 
ej2krvn

a t n = 0,1,2, 

Therefore, the thin-shell approximation to the radial function Re  is 

(1-31) 

Jkrv/ 
Re

v («) m ^^r 

l+j[krvn
a-Agkoa) 

1-j[krvn
a + Agkoa 

-jkrv (r-2a) 

, " = 0,1,2, (1-32) 

The thin-shell approximation for the height-gain function Ge(z) is obtained through substitution 

of the approximation (1-32) into (F-15) and is given by 

GHz) a cos krv z -   r^ / n rvn      I kTVa    J 

A k \ ngKo 
krvn j 

sin£rv z , n =0, 1,2,... a-33) 

Note that in the above expression, r - a has been replaced by z, the vertical distance above the 

earth. At ELF, the second term in the above expression is much less than the first term, resulting 

in the following: 

Ak0 
Ge{z) « cos k    z +j -jf— sin k    z , n = 0, 1,2,.. 

n Krv 'vn a-34) 

The above result corresponds with expression (93) on page 93 of Galejs (reference 2). 

II II0 
The thin-shell approximation for the square of the L2 norm of Re ,  Re     , is obtained Vn     II « I 

through substitution of the approximation (1-32) into the definition (F-12) and is given by 
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fa- 

Re r s k 
JkrvJ 

L 
l+j(krva-Agkoa} 

l-j[krva + Ak0a 

-jkn. (r-2a) 
dr 

?2 -J—leJ 
2k... \ 

2k„. h 
1   - 2Ä 

\+j[krva-Agk0a 

l-j(krvn
a + As

koa 

+ 
2k, 

l+{krV°-\
koa) 

\-j[krva + Ak0a 
(e-j2k"J'-l)     ,„ = 0,1,2,.. (1-35) 

If the square of approximation (1-32) is evaluated at r = a, then 

Re
v{u,) 

2    e 
j2kn, a 

r2 1-2 
l+jfkrva-Agk0a 

1-jlk    a + Ak0a 
+ 

1 + j(krv„a ~ Agkoa 

l-j[krvn
a + Agkoa 

n = 0, 1, 2, (1-36) 

The thin-shell approximation for the TM mode excitation factor Ae
n is found through the 

substitution of approximations (1-35) and (1-36) into the definition (F-14), resulting in 

sin2*„,A      sin2krvh 

"    \        -2k„.h      \   2k,„h 

lA/oV 

(*".") 

+ P~\ko 
k2

rva 

+ \l-cos2kn,h 
k~°)[k™.h 

+ JA8ko 
k2

rvh 
, « = 0,1,2, (1-37) 
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Note that in the ELF band, k    h -* 0, | A. | « 1, and | Ae | « 1, and, therefore, the above result 
n ° 

reduces to Ae„ = 0.5. 

The z-dependent normalized impedance for TM modes, Ae
n{z), has been defined in formula 

(F-16). The substitution of definition (C-10) and the thin-shell approximations (1-13), (1-14), and 

(1-31) into the numerator of formula (F-16), in appendix F, yields 

du uRe
v(u) *(l + jkrvr 

Jkrvr l+j(krva-Agk0a 

l-J\krv„a + AR
koa 

(WV 
-jkrv (r -2a) 

a-38) 

The substitution of approximations (1-32) and (1-38) into expression (F-16) gives 

-k. (z+a)Agk0a + jz cos krvz-j 

K(z) * 
1 + \krv (z+a))[krv a)-jAk0a sin krv z 

k0(z+a) krva cos krvz -[l- jAgk0a^ sin kTVz 

n = 0, 1,2,.... (1-39) 

Note that for points on the surface of the earth, z - 0, the normalized impedance reduces to 

4S(0) =-4r 

1.3 APPLICATION OF THIN-SHELL APPROXIMATION TO TE MODES 

Consider the characteristic equation for the TE modes as given in expression (C-21). As 

mentioned in appendix C, the TE characteristic equation is equivalent to the TM characteristic 
equation (C-8) if Ag is replaced by \IAg and Ae is replaced by \IAh. Therefore, with the 

appropriate substitutions applied to the approximate TM mode characteristic equation (1-16), the 

TE mode characteristic equation is given by 

(krVAg + k0] [kr„Ah + kQ , eJ7kf9jl s i = ej2mn ^m=h2^ ^ 
k - A — k   \\ k - A, —k rv     g        o I \    rv„   h       o 

a-40) 

In the above equation, the index m corresponds to the order of the TE mode. Note that there are 

an infinite number of solutions to the above equation. 
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The TE mode characteristic equation (1-40) may be rewritten as 

1 + K m 
l-K. 

= e-j2(k-m
h-'nJT), ,n= 1,2,3,..., a-4i) 

where K    and t,   are defined as m ^>m 

K\„ = 

k - A n'„,   8 
m       k. 

and 

£»- 
krv.,Ah 

(1-42) 

(1-43) 

In the above expressions, note that a subscript has been added to the radial wave number to 

indicate the mode index. The natural logarithm of equation (1-41) yields the following: 

lni^U'1 + s m 
l-K, i-£ m j 

= - j2(krVJi - true], m - 1, 2, 3,... (1-44) 

In the ELF band, because the spherical waveguide boundaries appear as nearly perfect electric 
conductors, then |4g| « 1 and |4Ä| « 1, resulting in the following conditions: 

ff«!«1'   £ «1. a-45) 

The application of the approximations (1-22) and (1-45) into the TE mode characteristic equation 

(1-44) results in 

K3 t3 

*f._ + -# + ^m + ^ *-j[kr-h-nmy m= 1,2,3, k m       3   T '/n T   3 (1-46) 

The substitution of the variable definitions (1-42) and (I- 43) into the approximate TE mode 

characteristic equation (1-46) yields the following cubic equation for k -, : 

(^ + *D 
3k: 

k% + 
(\ + Ai) + jh krv =fi"x, m~ 1,2,3,... (1-47) 

The application of the conditions (1-45) to the above equation results in a negligible cubic term in 
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krV   resulting in the following approximate solution: 

h 1- 
k0h , m= 1,2,3, a-48) 

The above result corresponds with expression (90) on page 90 of Galejs (reference 2). Note that 

as A -» 0 and Ah -» 0, then k „ -* m^r/Ä, corresponding to the cutoff wave number for the TE 

modes in the parallel-plate waveguide with perfectly conducting walls as given in formula (2-32). 

Also note that if m = 0, then kr9   = 0 and the TE fields are not excited. 

To determine the thin-shell approximations for the excitation factor Ah
m, the height-gain 

function G^(z), and the z-dependent normalized impedance A^(z) for the TE modes as defined 

in expressions (G-13), (G-14), and (G-15), respectively, one must first obtain the thin-shell 

approximation for the constant B\  that appears in the radial function R\   that is defined in 
m vm 

formula (C-23). B%   is given by either formula (C-20a) or (C-20b). The substitution of the thin- 
m 

shell approximations (1-11), (1-13), and (1-14) into formula (C-20a) yields the following: 

B* =- 
Ag + j{kr,aAg-k0a 

As-{kr*m
aA8 + koa 

j2k„-, a ,,   _   „ 
eJ   rv™ , m= 1,2,3, a-49) 

Therefore, the thin-shell approximation to the radial function Rh   is 

JkrvJ 
R$(.u)*- 

Ag + j[kr,aAg-k0a 

As-J\kr*a\ + koa 

-ßrv (r-2d) 
m= 1,2,3, a-50) 

The thin-shell approximation for the height-gain function G^z) follows directly from Ge
n(z) 

with Ag replaced by l/Ag. Therefore, from formula (1-34), 

G^(z) m cos krV z + j A   °    sin k    z, m =1,2, 3,... 
m e   rv m 

°        m 
a-5i) 

The above result is applicable at ELF and corresponds with expression (99) on page 94 of Galejs 

(reference 2). 
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The thin-shell approximation for the TE mode excitation factor Ah
m follows directly from 

Ae
n with A„ is replaced by 1/zL. Therefore, from formula (1-37), 

m 

IA k     \2 sin2*ri> h\ 

-2k~h 1- 
k0a 

+ P
A

t 
k0a 

(Ak - ^ 

\ 
1 + 

l 
sin2£,, h\ 

m 

2k„h 

JAA .   JA* 
*A 

i + 
koaj 

l-cos2JL„ h , m =1,2,3, (1-52) 

Note that in the ELF band, £ A -* 0 and with the conditions (1-45), then Ah
m -> 0. Therefore, 

the TE modes are weakly excited in the ELF band. The z-dependent normalized impedance for 

the TE modes, A'fn{z), is obtained through inversion of the formula (1-39) for Ae
n{z) and with Ag 

replaced by l/Ag and is given as follows: 

-k0(z+a) 

Ah(z) 

Agkr,ma cos k„z - (Ag - jk0a] sin k^ 

"ri> (z+a)k0a + jzA coskr9 z + j 4,+^W-^ sink rv„ 

m = 1, 2, 3,..., (1-53) 

Note that for points on the surface of the earth, z = 0, the normalized impedance reduces to 

41(0)—4r 
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APPENDIX J 
LEGENDRE FUNCTION Pv(-cos 6) AND ITS DERIVATIVES 

The range dependencies of the spherical wave propagation formulas derived in this report 
involve the Legendre function of the first kind Pv and its first two derivatives. In this appendix, 

both exact and approximate formulas for Pv are presented. The exact formula is expressed in 

terms of an infinite series. The approximate formulas for Pv are restricted to particular ranges of 

the argument. Comparisons of the exact and approximate formulas for Pv are given for several 

values of v that correspond to particular propagation conditions. 

J.l ASYMPTOTIC APPROXIMATION 

A traveling wave representation of the spherical wave formulas derived in this report is 
obtained from the first term in the asymptotic series for Pv{- cos 0). From Erdelyi (reference 28), 

if | v | » 1, Im{ v} > 0, and 0 is not near 0 or n, a suitable asymptotic approximation for Pv(- cos 0) 

is 

Pv(-cos0) 
jt (v + 1/2) sin 6 

1/2 
COS (v + 1/2)(JI - 0) - si/4 (J-l) 

If the cosine is expressed as the sum of two complex exponentials, the above approximation 

becomes 

Pv(-cos0) 1 
2x (v + 1/2) sin 0 

1/2 
exp j(v+ l/2)(jt-0)-;ji/4 

+ exp -j(v + 1/2)(JC - 0) + y'jc/4 (1-2) 

The asymptotic formula (J-2) may be rewritten as the superposition of two waves traveling in 

opposite directions as 

Pv(-cos0) 1 
jlnka sin 0 

1/2 
eJktm[e-jkp + je-jkPi-\   ^ (J-3) 

where 

k.ß-ja**^ (J-4) 
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In the above formulas, k is the wave number in the earth-ionosphere waveguide, ß = 2idX and a 

are the phase and attenuation constants, respectively, and X is the wavelength. In addition, p - 
ad and pt = 2na - p are the direct and indirect great-circle path distances from the source to the 

receiver, respectively, as shown in figure 4. Note that there is a 90° phase advance acquired by 

the indirect great-circle path wave as it passes through the antipode (0 = 7t). 

As shown in appendices F, G, and H, the range dependencies of many of the field expressions 

involve either the first or the second derivative of Pv(- cos 6) with respect to 6. From equation 

(J-3), the asymptotic formulas for the first and second derivatives of Pv(- cos 6) with respect to 

0are 

d ■SQPJT COS 0) 

and 

dd: 

jka 
2it sin 0 

Pv(-cos0)~- 1 

1/2 
Jkan e-Jkp_je-M (J-5) 

2/JT sin 0 
(ka)3'2 eJkm 

e-JkP + j e-fiPi 
(5-6) 

The above formulas are based on taking only the derivative of the exponential sum in expression 
(J-3) because this is the dominant spatially varying part of the asymptotic formula for Pv(- cos 0). 

Note that there is a 90° phase advance in the indirect wave in the first derivative formula and a 

90° phase decrease in the indirect wave in the second derivative formula. 

The asymptotic formulas (J-3), (J-5), and (J-6) are useful in the determination of the relative 

phase differences between the direct and indirect great-circle path fields. For ELF propagation 

formulas based on the earth-flattening approximation, each indirect great-circle path field 

component is obtained from the corresponding direct great-circle path component through 
replacement of p by pt and with an appropriate phase adjustment as obtained from the asymptotic 

formulas (J-3), (J-5), and (J-6). From these asymptotic formulas, the phase adjustments for the 

indirect great-circle path fields are given in the table J-l. Note that the spherical components r 

and 6 of the fields are replaced by the equivalent cylindrical components z and p, respectively. 

This replacement is made because table J-l is applied to the formulas based on the earth- 

flattening approximation that are presented in cylindrical coordinates in section 3. 
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Table J-l. Phase Adjustment Terms for the Indirect Great-Circle Path Fields 

Source Field Component(s) Primary Range 
Dependence 

Phase Adjustment 
Term 

VED Pv(-cos0) 

^Pv(-cosÖ) 

j 

-j 

HED ■"z> ^f» "p 

bp» "q> 

^Pv(-cos0) 

^(—0) 

-j 

j 

J.2 APPROXIMATE SERIES FORMULA SUITABLE IN THE VICINITY OF 
THE ANTIPODE 

In the previous section, the asymptotic formulas for Pv(- cos 0) and its first two derivatives 

are not valid for 0 near 0 or n (i.e., for field points located near the source or the antipode). 

Therefore, these formulas are not suitable for observation points lying in the vicinity of the 
antipode. MacDonald (reference 29) has derived an approximate formula for Pv that is valid 

when its argument is at or close to one and is, therefore, valid in the vicinity of the antipode. 
MacDonald's formula for Pv(- cos 0) is given as 

Pv(- cos 0) = J0(rj) + sin2(^j ^ J^rj) - J2{rj) + | J3(rj) + o sin4^e 
,    (J-7) 

where 

t] = 2(v + 1/2) sin(^£) = 2ka sin(^=^) . (J-8) 

In expression (J-7), Jn denotes the Bessel function of the first kind and order n. Note that 

formula (J-4) is applied in expression (J-8). Expression (J-7) can be simplified through the use 

of the following recurrence relation (reference 24) 

Jn+l(z) - "X" Jn(z) ~ Jn-l(z) ' (J-9) 

where n is a positive integer or zero, andz is an arbitrary complex constant. The application of 

the above relation to the first bracketed term in formula (J-7) yields 
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i Jfa) - J2(V) + I J3(V) = I J0(*?) - J- (l + ,,2) J^) . (J-10) 

For observation points in the vicinity of the antipode, {n- 6)12« 1 and 

sin(^O)-^. (J-ll) 

As a result, 7] can be approximated as 

i^kpa,   fe1)«!, (J-12) 

where pa = a(7t-9) is the great-circle path distance from the antipode to the field point (figure 

4). The substitution of expression (J-10) and approximations (J-l 1) and (J-12) to the two leading 

terms in the series (J-7) yields 

Pv(- cos 0) *J0(kPa) 1 + 1     Pa 
12V a 

Pala 

24ka 
\ + {kPaf}jl{kPa) ,   Pa«\ . (J-13) 

For field points in the vicinity of the antipode, the first term in the series (J-13) is dominant. 
Therefore, for small pa, consider only the leading term of the above series, i.e., 

Pv(- cos 6) s J0(kpa) 1 + 1     Pa 
12V a (J-14) 

In the above approximation, the second term within the brackets accounts for the curvature of the 
earth as pja increases. From Wait (reference 1), the bracketed term in formula (J-14) can be 

approximated as 

12V a 
Pala 

sin pala 

1/2 

(J-15) 

where the error in the in the above approximation is O [(pa/a )4]. The substitution of the above 

approximation into formula (J-14) yields 

Pv(-cos0Wo(*pa) Pala 

sin pja 

1/2 

(J-16) 
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In the above formula, J0(kpa) corresponds to the range dependence for a flat earth and the 

square-root term accounts for the curvature. Therefore, formula (J-16) is an earth-flattening 

approximation to Pv(- cos 6) that accounts for curvature and is valid for field points located in 

the vicinity of the antipode. 

The approximation (J-16) has been applied in the development of some antipode-centered 

ELF propagation formulas that were previously derived by the author (reference 7). From 
formula (J-16), the first and second derivatives of Pv(- cos 6) with respect to 9 are 

d -^ Pv(-cos d)* lea J^kpJ Pala 

sin pja 

1/2 

(J-17) 

and 

dd- 
Pv(- cos B)*- (ka): Jo^Pa)--^-J^Pa) Pala 

sin pja 

1/2 

(J-18) 

The approximate formulas for Pv(- cos 0) and its first two derivatives as given in expressions (J- 

16), (J-17), and (J-18) are required in order to reduce the vertical electric dipole (VED) and 

horizontal electric dipole (HED) spherical waveguide formulas to the corresponding antipode- 

centered ELF propagation formulas presented in section 4.3. 

J.3 INFINITE SERIES FORMULA 

The Legendre function of the first kind and degree v and order zero, Pv, is related to the 

hypergeometric series Fas (reference 24) 

Pv(z) = Fl-v,v+l;l;^ (J-19) 

where Pis given as 

F(a   h-r-7\-f   {a)n(b)nZ"_       T(c)        y   P(a+») r(b+n) Z
n 

K'   '   '^    «^o    (c)n    n\ ~ r{a) r(b) „4-0       r(c+n)        n\ 
(J-20) 

In the above series, r denotes the gamma function and (• )„ denotes Pochhammer's symbol 

defined as 
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(z)„ = 
1,  « = 0 

z(z+l)(z + 2) ... (z + n-1),  n=l,2,3,.. 
(J-21) 

With the recurrence formula for the gamma function given by I\z+l) = z T\z), Pochhammer's 

symbol can be expressed in terms of the gamma function as 

_ r(z + n) 
{<■)„ -    p(zj     > n-0, 1, 2, 'I    ^5   *"5 (J-22) 

According to Abramowitz and Stegun (reference 24), the hypergeometric series (J-20) converges 

for \z | < 1. From expressions (J-19) and (J-20), Pv(- cos 6) is given by 

1 + COS V yri 
Pv(-cos0) = F-v,v+l;l; ^   =^- 

1 + cosö       Ä (-v)n (v+l)„ (1 + cos d)" 

71 = 0 2" (A;!)2 (J-23) 

Therefore, in the evaluation of Pv(- cos 0), the hypergeometric series (J-23) converges for 

O<0=7t. 

The derivative of Pv(- cos 6) with respect to 6 is given as 

— P (- 
d(- cos 6) 

cos 6) = Pv(- cos 6)       de       = Pv(- cos 6) sin 6, (J-24) 

where the prime denotes the derivative with respect to the argument - cos 6. From equation 
(J-24), the second derivative of Pv(-cos 6) with respect to 9 is given as 

^Pv(-cos« = ^ P(- cos 0) sin 0 = Pv(- cos 0) cos 0 + sin 0 -^ Pv(- cos 0) 

= PA- cos 0) cos 0 + Pv(- cos 0) sin20 (J-25) 

From the series formula (J-20), the first and second derivatives of the hypergeometric series are 

(J-26) ^F(a,b;c;z) = ^-F(a+l,b+Uc+l;z) , 

and 

AL 
dz2 F(a, b; c; z) =     |g '2 F(a +2, b +2; c +2; z) (J-27) 
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From equations (J-19), (J-26), and (J-27), the first and second derivatives of Pv(-cos 0) with 

respect to the argument - cos 0 are given as 

P'v(- COS 6) =  *<V+1) pj-y +1, y +2; 2; 1+^*6 \ , 

P;(.cos9) = !^J.v+2)V+3;3;i±Mö)   . 

(J-28) 

(J-29) 

The substitution of equations (J-20) and (J-28) into (J-24) yields 

dd 
Pv(-cos0) = 

v(v+l) 
sin 6% 

n = 0 

(-v+l)w(v+2)n(l+cosö)" 
2nn\ («+!)! (J-30) 

Similarly, the substitution of equations (J-20), (J-28), and (J-29) into (J-25) yields 

d2 

dd 
jPv(-cose) = 

_ v(v+l) cos 
(-v+l)„(v+2)n(l + cosÖ)" 

,nro 2»»! («+!)! 

(_V)   (V+1) 
+ —A  sinz e2 

» = 0 

(-v+2)w(v+3)w(l+cose)" 
2nn\(n+2)\ (J-31) 

In the evaluation of the spherical wave propagation formulas derived in this report, the Legendre 

function and its first two derivatives are computed from formulas (J-23), (J-30), and (J-31). 

Before computing the Legendre function and its first two derivatives from the series formulas 

given above, a discussion of numerical convergence is in order. As an example, consider the 

propagation parameters for the quasi-TEM mode at 76 Hz that are given in table 5-1. Under 

daytime conditions, V=11.7+j0.880. Table J-2 provides a listing of the number of iterations 

required for the series formulas to convergence to 15 decimal places for various values of 6. The 

table shows that the number of iterations required for each function to converge increases with 

distance from the antipode (0 = 7t). As 6 -> 0 (source point), the number of required iterations 

increases rapidly. This behavior is expected because formulas (J-23), (J-30), and (J-31) are 

ascending series in the argument (1 + cos 6). In summary, for 0not too close to zero, not much 

CPU time is required in order for these series formulas to converge. 
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Table J-2. Number of Iterations Required for the Infinite Series Formulas for Pv(- cos 6) and 
its First Two Derivatives to Converge to 15 Decimal Places with v = 11.7 +j 0.880 

0(deg) Pv(-cos0) IPv(-Ö) j^/VC-cose, 

10 3414 3827 4240 

30 423 454 486 

50 160 168 176 

70 84 87 89 

90 51 52 53 

110 34 34 35 

130 24 24 23 

150 17 16 16 

170 11 10 10 

The series formulas for the Legendre function and its first two derivatives can be used to 

check the accuracies of the approximate formulas (J-16), (J-17), and (J-18). Figures J-l show 

plots of the real and imaginary parts of the Legendre function and its first two derivatives as 
computed by the series and approximate formulas given as functions of the polar angle 0a 

measured from the antipode, where 6a = n - 6. 

The ranges of validity of the approximate formulas for the Legendre function and its first two 

6 derivatives as given in expressions (J-16), (J-17), and (J-18) can be determined through 

comparison with the infinite series (exact) formulas. Figures J-la and J-lb show comparisons of 

the magnitude and phase, respectively, of the exact and approximate formulas for Pv(-cos 6) as a 

function of 0a for v = 4.75 —j 0.440. This value of v corresponds to typical daytime propagation 

conditions at 30 Hz as given in table 5-1. Figures J-2 and J-3 show similar comparisons for 

dP (- cos 8)ld6 and d2Pv(- cos 8)ldd2, respectively. The plots show that the exact and 

approximate formulas are in excellent agreement out to 9a = 45°. Beyond this angle, the 

approximate formula for the second derivative starts to slowly depart from the exact formula. 

For example, at 6a = 45.1°, the approximate formula for the second derivative differs by 0.067 

dB in magnitude and 0.95° in phase with the exact formula. In comparison, at 6a = 90°, the 

approximate formula for the second derivative differs by 0.46 dB in magnitude and 8.32° in 

phase with the exact formula. At 0a = 170.1°, the approximate formula for the second derivative 

differs by 2.18 dB in magnitude and 69.6° in phase with the exact formula. The approximate 
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formula for dPv{- cos 6)ldd shows better agreement with the exact formula than the second 
derivative and the approximate formula for P^-cos 6) shows an even better agreement. This 
observation is attributed to the fact that each successive derivative of the approximate formula 
for P^-cos 6) introduces additional error into the result. The approximate formula for P^-cos 6) 

does not start to noticeably depart from the exact formula until 6a = 150°, where the formulas 
differ by 0.14 dB in magnitude and 2.26° in phase. 

Comparison plots of the exact and approximate formulas for Pv(-cos 6), dP (- cos 6)ldd, 

and d2Pv(- cos d)ldd2 as a function of 6a are given in figures J-4, J-5, and J-6, respectively, for 
v= 15.9 -j 1.32. This value of v corresponds to daytime propagation conditions at 100 Hz as 
given in table 5-2. In these plots, the oscillations near the antipode are considerably damped 
because of the larger attenuation at this higher frequency. Each of these plots show a noticeable 

improvement in agreement as compared to the previous value of v. For example, at 9a = 90°, the 
approximate formula for the second derivative differs by 0.012 dB in magnitude and 1.88° in 
phase with the exact formula; and at 0a = 150°, the approximate formula for the second 
derivative differs by 0.065 dB in magnitude and 6.47° in phase with the exact formula. As in the 
previous set of plots, the approximate formula for dPv(- cos 6)1 dd shows better agreement with 
the exact formula than the second derivative, and the approximate formula for Pv(- cos 0) shows 
an even better agreement. Further examination of the approximate formulas at other ELF 
frequencies indicates that the accuracies of the approximate formulas for Pv(- cos 0) and its 
derivatives improve with increasing frequency. 
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Figure J-l. Comparison of the Infinite Series (Exact) and Approximate Formulas 
for Pv(- cos 0) for v= 4.75 -j 0.440; (a) Magnitude; (b) Phase 
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Figure J-2. Comparison of the Infinite Series (Exact) and Approximate Formulas 
for dPJ- cos B)ldd for v= 4.75 -j 0.440; (a) Magnitude; (b) Phase 
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Figure J-3. Comparison of the Infinite Series (Exact) and Approximate Formulas 
for d2Pv(- cos 6)/dd2 for v= 4.75-j 0.440; (a) Magnitude; (b) Phase 
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Figure J-4. Comparison of the Infinite Series (Exact) and Approximate Formulas for 
PA- cos 0) for v= 15.9 -j 1.32; (a) Magnitude; (b) Phase 
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Figure J-5. Comparison of the Infinite Series (Exact) and Approximate Formulas for 
dPv(- cos 6)/dd for v= 15.9 -j 1.32; (a) Magnitude; (b) Phase 
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Figure J-6. Comparison of the Infinite Series (Exact) and Approximate Formulas for 
d2PJ- cos d)/dd2 for v= 15.9 -j 1.32; (a) Magnitude; (b) Phase 
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APPENDIX K 
EARTH-FLATTENING APPROXIMATION 

As shown in appendix A, the electromagnetic (EM) fields in a spherical earth-ionosphere 

waveguide can be expressed in terms of two Debye potentials. At a source-free point, each of 

these potentials satisfies the scalar Helmholtz equation. As shown in appendix B, the Helmholtz 

equation can be solved in spherical coordinates by the separation of variables method in which 

the range or 6 dependence is expressed in terms of a function T(6), which satisfies the following 

differential equation: 

0 + cotö|I + v(v+1)r = o. (K-l) 

In equation (K-l), v(v+l) is the separation constant. As shown in appendix B, for a source 

located at 6 = 0, the solution of equation (K-l) that is finite at the antipode (6 = ri) is given by 

7X0) = CPV(- cos 0) , (K-2) 

where Pv is the Legendre function of the first degree v and order zero, and C is an arbitrary 

constant. Both exact and approximate formulas for Pv(-cos 0) are given in appendix J. 

In the earth-flattening approximation, the polar angle 6 in equation (K-l) is replaced by the 

range variable p, where p = a6 and a is the radius of the earth. Note that p is the direct great- 

circle path distance along the spherical earth that connects the source and the field points (see 

figure 3-2). The replacement of 0by pla in equation (K-l) yields 

d2T + 

where the constant s is defined as 

»•**P- (K-4) 

In his estimation of the error involved in the earth-flattening approximation, Pekeris (reference 

12) assumed that T(ff) can be expanded in the following asymptotic series: 

CO 

7X0) = T(pla) = 2 (as)-2n T2n(p) = T0{p) +(as)-2T2(p) + (as)~4 T4(p) + .... (K-5) 
B = 0 
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The series expansion of cot(p/a) is given by (reference 27) 

(K-6) 

The substitution of the series expansions (K-5) and (K-6) into the differential equation (K-3) 

followed by the multiplication of s ~2 yields 

d2T, 
dx2 f- + (as)~2 —f + (as)~4 —r4- + ... 

dx2 dx2 

1    x        1     x3 

3 (as)2    45 (asy 
djj> 
dx 

+ (as) ■2dT2 

dx + (as) -4^4 
dx 

+ 

+ \-2 T0 + (asyzT2 +(asy*T4+... = 0 (K-7) 

where x = sp. Following Pekeris (reference 12), the coefficients of like powers of (as)"2 are 

equated to obtain a system of simultaneous differential equations. The first three equations are 

given as 

L(T0) = 0 

dT„ 
W^H? 

and 

„, y3   dT„       r dT7 
K 4;~45  dx     3  dx 

where the differential operator L is given as 

L = 4t + i-f+l. 

(K-8a) 

(K-8b) 

(K-8c) 

dx2    x dx 
(K-9) 

The solution of equation (K-8a) is 

T0(p) = H(2)(.p) . (K-10) 

The above formula gives the range dependence for a planar earth (with a source located at p = 0) 

and represents the earth-flattening approximation. To obtain the solution of equation (K-8b), let 
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us consider the following differential equation that is valid for any cylindrical Bessel function 

Zn(x) of arbitrary order n: 

xnZn{x) = %TX[
XnZnM (K-ll) 

The above result was obtained from Koo and Katzin (reference 13). Note that Zn(x) refers to the 

Bessel function of the first kxndJ„(x), the Bessel function of the second kind Yn(x), the Hankel 

function of the first kind H^\x), or the Hankel function of the second kind H^\x). With the 

assumed time-harmonic dependence ofeJm and an outward propagating wave from the source, 

Zn(x) = Hjf\x) in the present application. 

The substitution of Zn(x) = H^\x) and n = 2 into formula (K-l 1) yields 

The derivative of x2 H^\x) is given by 

(K-12) 

A 
dx x2H?\x)] = x2H^'(x) + 2xH?Xx), (K-13) 

where the prime denotes the derivative with respect to the argument. The substitution of the 

recurrence relation (reference 24) 

H^\x) = HfXx)-^HfXx), 

into equation (K-13) yields 

^ [x2 HifXx)] = x2 H[2\x) = -x2 H^'(x) . (K-14) 

The substitution of the above result into expression (K-12) gives 

x2H^Xx)] = -4xH^\x) 

If H^\x) is replaced by T0(p), formula (K-l5) may be rewritten as 

(K-15) 

-±x2H?\x) X dTo 
3   dx (K-16) 

A comparison of expressions (K-8b) and (K-16) shows that 
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T2(p) = -±(sp)2H?\Sp), (K-17) 

where x has been replaced by sp. 

The substitution of formulas (K-10) and (K-17) into the asymptotic series (K-5) yields 

T{pla) m H^Xsp) - -jL (%)2H?\Sp) + O(g)4 . (K-18) 

In the above equation, the first term corresponds to the model of a flat earth and the remaining 

terms are corrections for curvature. Therefore, the earth-flattening approximation is given by 

T(p/a) B HfXsp) . (K-19) 

The earth-flattening approximation is valid when the great-circle path distance p is small 

compared with the earth's radius a. In particular, Pekeris (reference 12) found that the earth- 

flattening approximation is correct to within 2% of the exact value for ranges out to about half 

the radius of the earth. It should be noted that this result is independent of the frequency. 

Next one needs to determine the constant C in formula (K-2) so that 7(0) can be related to 

Pv{- cos 0). To obtain C, let 0 -> 0 on each side of expression (K-2), giving 

lim T{d) = C lim PA-cos 6) . (K-20) 

From equation (K-18), 

jimo T(0) = plimo T(pla) = ^ H^\sp) . (K-21) 

From Abramowitz and Stegun (reference 24), 

plimo H^(sp) = - j f ln(5P) - - j f In p . (K-22) 

From appendix E, formula (E-8), 

lim Pv(- cos d) = ^^ In 02 = ^f^ ln(g) - ^f^ In p . (K-23) 

The substitution of the limits (K-21), (K-22), and (K-23) into expression (K-20) gives 
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c = i  
j sinvii (K-24) 

From expressions (K-2), (K-18), and (K-24), 

^=r(^r(f).Ä?W-X(f)V..P), (K-25) 

where the error in the above approximation is 0(p la )4. From formula (J-4), the wave number k 

in the earth-ionosphere waveguide is given by 

k^ß-ja = ^^ 

If|v|»l,then 

(v+l/2)2^v(v+ 1) . 

(K-26) 

(K-27) 

The above result is generally valid in the ELF band. The application of the above approximation 

to definitions (K-4) and (K-26) results in the following approximation: 

s&k, IvI » 1 . 

Therefore, expression (K-25) can be approximated out to order (p la )2 as 

Pv(-cos6>) 

(K-28) 

j sin vji 
^H^\kp)-^)2H^\kp), Ivl » 1 . (K-29) 

The above formula is similar to the one applied by Wait (reference 1) in his development of ELF 

propagation formulas. The formulas differ by a factor of/'. 

For | kp | » 1, the Hankel functions in expression (K-29) can be replaced by the first term of 

their respective asymptotic expansions: 

»»-^ 
-j(kp - it/4) 

and 

HP«Vie"*'"' 
The substitution of the above approximations into formula (K-29) yields 

(K-30a) 

(K-30b) 
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j sin vji 
2_  e-Mp-nl4) 

nkp 
1 + WP 

12 U Ivl» l,l£pl» 1 (K-31) 

From Wait (reference 1), 

6 
sin 6 

1 + 12 ' (K-32) 

where the error in the above approximation is 0(64). The application of the above approximation 

to expression (K-31) results in 

PJ- cos 6)       ... I   ~STa 
-4-.  e HV\kp) J -J^j- ,  Ivl » 1, IM » 1 , 

j sin VJI °     r V  sin p/a ^ 
(K-33) 

where the asymptotic approximation in expression (K-30a) has been replaced by H^(kp). In 

the above approximation (K-33) for Pv(- cos 8), H^\kp) corresponds to the range dependence 

for a flat earth and the square-root term is the correction for curvature. As was noted following 

approximation (K-29), expression (K-33) also differs with the one derived by Wait (reference 1) 

by a factor of/'. Formula (K-33) is referred to as the earth-flattening approximation with 

curvature correction for Pv(- cos 6). 
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