

Eye Anatomy & Function

Dr Jie Zhang PhD Senior Research Fellow

Associate Professor Bruce Hadden LLD, FRACS, FRANZCO

External ocular appearance

Key Eye Functions

- Transmits and refracts light from the front to the back of the eye
 - Transparent light path
 - Includes structures that bend light (refract)
- Converts light energy into action potentials transmitted to brain

Layers and chambers of the eye

Anterior Chamber Posterior Chamber

Fibrous Tunic Vascular Tunic Nervous Tunic

Vitreous Chamber

Defining ocular segments

Anterior segment: Structures in front of vitreous: Cornea, iris, ciliary body, and lens

Posterior segment:

Vitreous, retina, choroid, optic nerve

Tear film layers and functions

Oil layer:

- Meibomian glands
 - Prevents evaporation

Water layer:

- Lacrimal glands
 - Lubricates
 - Allows blinking
 - Washes away debris
 - Forms smooth surface

Mucin layer:

- Goblet cells of conjunctiva
 - Attaches tear film to eye
 - Spreads water evenly

Cornea functions

Transmits light, transparent

- Collagen and matrix
 - Aligned
 - Spacing
 - Relative dehydration is maintained by endothelial cells
- No blood vessels

Refracts light +40-44 dioptres

- Curvature
- Has different refractive index from air

Corneal anatomy

Epithelium:

Barrier to fluid loss and pathogen penetration

Stroma:

Collagen, ECM, keratocytes

Endothelium:

Maintains relative dehydration

Dense innervation:

Most sensitive organ in the body Immune privilege Rapid tearing reflex

The cornea:

Transmits light
Refracts lights
Protects ocular interior

Structure of the crystalline lens

Crystalline Lens: Structure and function

- Composed of a, β, and γ crystallins (water soluble proteins)
- Transmission of light
- Refraction of light. +17 dioptres
- Variable refraction of light accommodation

Cornea 2/3rd and lens 1/3rd refracting power

Accommodation

Far objects:

Ciliary muscle relaxed
(↑ diameter)
Zonules tight
Lens flatter i.e.
distance

Near objects:

Ciliary muscle contracts

(\pm diameter)

Zonules relaxed

Lens increases in convexity
'accommodation' i.e. near

Accommodation video

accomodation

smbilalshahbukhari • 253K views • 10 years ago accomodation reflex.

- https://www.youtube.com/watch?v=p_xLO7yxgOk&list=WL&index=3&t=0s
- Search for accommodation reflex on youtube

Emmetropia, Myopia & Hypermetropia

Retinal Function

- Photoreceptors: conversion of light into action potentials
 - Cones. 6 million. High threshold to light. High acuity. Light adapted (photopic) vision. Colour vision- 3 types of cones: blue, green, red.
 - Rods. 120 million. Low threshold to light. Sensitive to movement. Dark adapted (scotopic) vision. No colour. Low resolution.
 - Synapse with bipolar cells → Retinal ganglion cells → Axons form the optic nerve.
 1 million fibres.

Spectral sensitivity ranges (nm)

S (Blue 2%) 400-500nm

M (Green 32%) 450-630nm

L (Red 64%) 500-700nm

RETINAL MICRO-STRUCTURE

Vitreous

Inner limiting membrane

Nerve fibre layer

Ganglion cell layer

Inner plexiform layer

Inner nuclear layer

Outer plexiform layer

Receptor nuclear layer

External limiting membrane

Inner and outer segments of photoreceptors

RPE

Choroid

Fovea is within the central macula

Superior Retinal Detachment

Optic nerve head and adjacent retina

(Masson's trichome)

Ciliary Body

- Attachment of zonules (suspensory ligament of lens)
- Accommodation. Ciliary body smooth muscle
- Secretion of aqueous humour: Ciliary epithelium
 - Provides nutrition for the (avascular) cornea and lens
 - Maintains intraocular pressure

Name these ocular structures

The Uveal Tract

The eye's vascular and immunological pool tris

Variable size of pupil (iris diaphragm) with light level with nearness of fixation

Ciliary Body

Aqueous, accommodation, zonule

Choroid

Nutrition of retina and sclera

The most vascular tissue in the body

Eyelids and conjunctiva

- 1. Skin
- 2. Muscles
- 3. Tarsal plate mechanical stability & Meibomian glands oil layer of tear
- 4. Conjunctiva

Attach eyeball to orbit & lids & permits rotation

Functions: Distribute tears, clear debris, cover eyes during sleep & prevent evaporation, protect from foreign bodies via the blink reflex

Eyelids and conjunctiva

Orbicularis oculi and eyelids

Eye movements

Extorsion/External rotation

Extra-ocular muscles

Extra-ocular muscles

Medial rectus.
 Adducts.

Lateral rectus. Abducts.

Superior rectus. Elevates.

Inferior rectus.
 Depresses.

• Superior oblique. Intorts. depresses, abducts.

• Inferior oblique. Extorts. elevates, abducts.

Innervation of extraocular muscles

Lateral Rectus Muscle →

"Abducts" → Innvervated by

Abducens nerve

= Cranial nerve 6

Superior Oblique Muscle →
Passes through the
"trochlea" →
Innervated by Trochlear
nerve = Cranial nerve 4

The other 4 muscles →
Produce "ocular movements"
→ Innervated by Oculomotor
nerve = Cranial nerve 3

Extraocular muscles video

Extraocular Muscles | Eye Anatomy

AnatomyZone 460K views • 3 years ago

Extraocular muscles - second video in eye anatomy series. Check out the 3D app at http://AnatomyLearning.com. More videos ...

Search for 'extraocular muscles eye anatomy' on youtube https://www.youtube.com/watch?v=f_rb6FMVHPk&t=7s

Tear production and drainage

Visual Pathway

Optic nerve

Optic chiasm

Optic tract

Lateral geniculate nucleus

Optic radiation

Primary visual cortex

Injuries to Visual Pathway

Cataract of the crystalline lens

Age of onset

Congenital Age-related

Location

Nuclear sclerotic Cortical Posterior Subcapsular

Cause

Age-related Traumatic Diabetic

Phacoemulsification cataract surgery

Capsulorrhexis

Phacoemulsification

Injection of foldable IOL

IOL in capsular bag

Intra-ocular lens (multifocal and toric)

Long thought extinct living takahē were rediscovered in an expedition led by Invercargill based ophthalmologist & ENT physician Dr Geoffrey Orbell near Lake Te Anau in the Murchison Mountains, in 1948.

Translational Vision Research

Department of Ophthalmology

The End

Material contained in this lecture presentation is copyright of The Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, and should not be reproduced without first obtaining written permission

