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ABSTRACT

The advent of inductively coupled plasma-atomic emission spectrometers (ICP-AES)

equipped with charge-coupled-device (CCD) detector arrays allows the application of

multivariate calibration methods to the quantitative analysis of spectral data. We have applied

classical least squares (CLS) methods to the analysis of a variety of samples containing up to 12

elements plus an internal standard. The elements included in the calibration models were Ag, Al,

As, Au, Cd, Cr, Cu, Fe, Ni, Pb, Pd, and Se. By performing the CLS analysis separately in each of

46 spectral windows and by pooling the CLS concentration results for each element in all

windows in a statistically efficient manner, we have been able to significantly improve the

accuracy and precision of the ICP-AES amdyses relative to the univariate and single-window

multivariate methods supplied with the spectrometer. This new multi-window CLS (MWCLS)

approach simplifies the analyses by providing a single concentration determination for each

element from aI1spectral windows. Thus, the analyst does not have to perform the tedious task

of reviewing the results from each window in an attempt to decide the correct value among

discrepant analyses in one or more windows for each element. Furthermore, it is not necessary to

construct a spectral correction model for each window prior to calibration and analysis:- When
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one or more interfering elements was present, the new MWCLS method was able to reduce

prediction errors for a selected analyte by more than 2 orders of magnitude compared to the worst

case single-window multivariate and univariate predictions. The MWCLS detection limits in the

presencerof multiple interferences are 15 rig/g (i.e., 15 ppb) or better for each element. In

addition, errors with the new method are only slightly inflated when only a single target element
. -.

is included in the calibration (i.e., knowledge of all other elements is excluded during

calibration). The MWCLS method is found to be vastly superior to partial least squares (PLS) in

this case of limited numbers of calibration samples.

Key Words: Inductively coupled plasma-atomic emission (ICP-AES), Classical least squares

(CLS), Multi-window classical least squares (IWWCLS),Quantitative elemental spectroscopy,

Multivariate analysis
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INTRODUCTION

Multivariate calibration methods for quantii’ative spectroscopy are highly developed and

have been used in infrared spectroscopy since the early 1980’s.1-5Early quantitative analyses of

inductively coupled plasmalatomic emission spectroscopy (ICP-AES) data could not take

advantage of these methods due to the univariate or minimal multivariate nature of the data when
.

single or small numbers of detectors were used. However, with the advent of array detectors, it

has become possible to incorporate these multivariate methods into ICP-AES data analysis.

Optical emission spectrometers equipped with charge-coupled-device (CCD) detector arrays

enable the simultaneous measurement of emission intensities for all wavelengths in the spectral

regions of interest.6-8 Excellent work has already-been performed in the area of multivariate

analysis of ICP-AES data,9-*5and van Veen and de Loos-Vollebregt16have presented a recent

review of the literature related to this subject. However, greater improvements are still possible

using multivariate methods previously developed for infrared spectral analysis. To date, the

commercial software available with ICP-AES instruments only allows multivariate methods to be

applied individually to discrete spectral windows centered near the peak of the emission line for

the analyte in a given window.9-*0This single-window multivariate approach limits the

realization of the full power of multivariate data processing methods for the rich atomic emission

spectra captured by the array detector. Current ICP-AES multivariate analyses can especially

gain in the area of the quantitative determination of trace elements when analyk emissions .

overlap emissions of elements not included in the calibration. ICP-AES can also take advantage

of the classical least squares (CLS) multivariate methods that rely on explicit additive linear

spectral models since the emission signals from ICP-AES tend to be additive and linear over a

lmge dynamic range. The application of various single-window CLS mtdtivariate methods to
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ICP-AES spectra has already been shown to improve prediction precision and detection limits

relative to univariate peak height methods with off-line spectral background correction.g-’o

One problem encountered with single-window multivariate methods is the question of

which window to use when multiple emission lines are present for a given element. The best

single window to employ depends on the amount of overlap between all elements in the
. . .-

calibration, the linearity of the emission intensities within a window, the overlap with spectral

lines of elements not included in the calibration, and the baseline variation present in the window

during analysis. When the emissions within a window experience the above complexities, the

analysis results can be quite different between each of the multiple windows used for analysis of

each element. Selecting the window yielding the most accurate and precise results for each

element in an unknown sample can be quite tedious, time consuming, and expensive. Moreover,

the best window can change from sample to sample for a given element.

An alternative to selecting just one window is to let the data automatically define a

statistically determined weighted average of the results from all windows such that the final

result is optimal.z The advantages of this multi-window approach include elimination of tedious

operator decisions, decreasing the detrimental effects of spectral overlap with elements not

included in the calibration, reduction of problems with nonlinear responses, and generation of a

single result for each element that will often have better precision and accuracy than possible

from the determination of each element’s concentration using-spectral data from any single

window. -

In this paper, we adapt the CLS methods developed for IR spectroscopy l-3and apply them

to ICP-AES data. A comparison of univariate, single-window CLS methods, and our newly

adapted multi-window CLS (MWCLS) methodwill be presented for several types of samples. It

..
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will be shown that the new methods improve the accuracy, detection limits, and quantitative

range. Additionally, the new analysis method decreases the number of dilutions required for

complex samples of widely varying levels of analytes. Finally, the new method can even provide

for the automatic detection and eventual quantification of elements not included in the original

calibration models.
. .-

EXPEF21MENTAL

Since one of the most challenging tasks facing the analytical atomic spectroscopist is the

quantitation of trace elements in material or environmental samples in the presence of major

concentrations of interfering elements, we prepared samples to evaluate the ability of various .

methods to handle these difficult cases. The element concentration ranges of one set of test

solutions were defined based on previous assays of electronic scrap that contained small

quantities of Resource Conservation and Recovery Act (RCRA) regulated hazardous metals

including Pb, Cd, As, Se, Ag, and Cr, and the precious metals Au, Pt, and Pd, in a compositional

mix of aluminum, iron, and copper alloys. Accurate determinations of the trace metal

concentrations were required to characterize the source materials as being, for example, either

hazardous solid waste or recyclable precious metal scrap. Another set of solutions was prepared

to represent the “inverse” composition consisting of trace base-metal contaminants in high-purity

precious metal alloys.

Test solutions were prepared from National Institute of Standards and Technology (NIST)

spectrometric solution standard reference materials (SRM’S) or high-purity NIST-traceable stock

solutions from commercial suppliers. Dilutions were made gravimetrically using a computer-

controlled balance, For those stock solutions certified in volumetric concentration units (pg/mL),. .
.. ..
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densities were measured in order to convert concentrations to units of ~@g (i.e., parts per

million, ppm).

Two sets of calibration standards and a set of validation mixture samples were prepared

gravimetrically. One calibration set contained 12 single-element solutions at 100 pg/g. The

other calibration set contained four mixed-element standards (Cal-1, Cal-2, Cal-3, and Cal-4).
.

Multi-element validation samples were prepared to simulate samples with compositions of

interest in our laboratory. Several of the validation samples contained elements at concentrations

greater than present in the calibration samples in order to test the ability of the various models to

extrapolate beyond the range of the calibration sample concentrations. Table I presents nominal

element concentrations for all samples other than the 100 ug/g single-element calibration set.

Actual reference concentrations were determined to four significant figures. The mixed-element

calibration set was designed to avoid spectral interferences among elements in the same solution

and was used to calibrate the spectrometer using the instrument-supplied calibration software.

The single-element calibration sample”set was used to build the MWCLS calibration models.

Because the instrument software allowed a maximum of ordy 10 calibration standard entries, the

12 standards in the pure-element calibration set could not be used for calibration when using the

instrument software.

During the preparation of the calibration and validation samples, stock solutions of each

element in nitric acid were selected wherever possible. However, Au and Pd stock solutions

were available only in hydrochloric acid. These elements could not be mixed with Ag in the

same solution. Therefore, Sample 1 contains Ag at 0.1 pg/g but does not contain Au or Pd.

Sample 2 has a similar composition to Sample 1 but contains Au and Pd at 0.25 pg/g with no Ag.

Sample 3 is similar to Sample 2 but contains Pt as an “unknown” element not included in any
.. ..

6

- “,

->-. , ,m. . . , , . , . . . . ... . . . .c,~.., . . . .. .,, . .,-. ,., ,.. . . . . . .. . . . . . . . . -- .—. —



s
t ,

calibration sample. Likewise, Sample 4 and Sample 5 are similar in composition except that 4

~g/g Pt has been added to Sample 5. Both Samples 3 and 5 contain Pt as an element that remains

unmodeled in all calibration models since Pt was not present in either calibration sample set. A

multi-element “control” sample was prepared with all elements (except Ag and Pt) present at 10

pg/g to check the linearity of the calibration curves. A separate control sample with -10 pg/g Ag
.

was also prepared so that the multi-element and Ag samples together represent the complete 12-

element set of calibration elements. Mg was added to each test solution as an internal standard

prior to final dilution with 2% HN03. The final Mg concentration in each sample was nominally

4 ~g/g but the exact concentration was recorded to correct the Mg intensities for small

“concentration differences in the Mg internal standard. The emission spectra for each sample “

could then be normalized to the intensity of the concentration-corrected Mg internal standard

emissions. Mg was chosen as an internal standard since it has four strong emission bands, two

from atomic and two from excited ion states.

All calibration standards and test samples were analyzed using a Perkin Elmer (PE)

Optima 3000 ICP-AES equipped with an autosampler. The design and performance

characteristics of the Echelle grating optical system and segmented-array CCD (SCD) detector

have been described in the literature.6-8 The instrument operating parameters and sampling times

are shown in Table II. The detector arrays used for these analyses are presented in Table III. The

segmented pixel arrays (spectral windows) listed in Table III are defined by the wavelength of the

major element emission line detected in that window. The SCD detector has 224 windows

available, but only data from windows containing the major peaks for the 12 elements used in the

calibration and the Mg internal standard were examined. After intensity correction for the Mg

. .
. .
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internal standard, a total of 46 windows (3088 pixels) were selected for inclusion in the MWCLS

analysis of each element in each sample.

The low,resolution mode of the spectrometer (without scanning) provided a minimum of

14 pixels in each window. However, this number of pixels did not provide enough

measurements per window to optimize the MWCLS methods when 12 elements plus baseline
. .

components were included. A minimum of 16 spectral intensities is required for our MWCLS

analysis; 12 for the elements included in the calibration, 3 for a quadratic baseline, and at least

one to determine the spectral residuals necessary for calculating a weighted average of the results

from each window. Therefore, the spectrometer was operated in the high-resolution scanning

mode so that each window would contain at least 56 pixel measurements. In the scanning mode,

a spectrometer mirror is used to move the plasma image in four incremental steps across the

detector array, with a pixel intensity reading taken at each step.

The instrument workstation operating system is SCO (Santa Cruz Operation) UNIX,

Open Desktop, running Perkin Elmer’s Optima 3000 software, version 1.40. The software

provides several modes of data collection and processing that can include the application of

various background correction methods. One very usefid feature of the software is that the raw

intensity data can be stored and subsequently reprocessed with different background correction

methods. Thus, a direct comparison can be made between alternate spectral correction methods

applied to the same data set. In order to compare PE Optima data processing techniques with our

multivariate.analysis software, it was necessary to develop software to access the raw data files

stored by the Optima software in binary format. The interface program reads the PE spectral files

and generates a single file of spectra and concentrations compatible with the Sandia National

Laboratories’ multivariate software package (PLS2000). The Sandia software is written in the
. .
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Array Basic language supported by GRAMS from Galactic Industries Corp. Although there were

obvious spectral gaps between the array segments selected for these analyses (Table LII),the

spectra were interpreted as a continuous series of pixels, from low to high wavelength, to avoid

display incompatibilities with the multivariate software.

The complete set of calibration standards and test solutions was analyzed in triplicate
.

through the course of one autosampler run. Each set was randomized internally with the

exception of the multi-element calibration standards run at the beginning of each set to establish

a continuously updated calibration curve for the instrument-supplied software. The subset of

multi-element standards was internally randomized so that the run order was different for each of

the triplicate analyses. Blank solutions (2% HIW3) with and without the Mg internal standard

were inserted at regular intervals in the run to monitor changes in the spectral baseline.

Analyses with the MWCLS method used sample spectra with the first-run blank

subtracted from all subsequent spectra. Relative intensities of the Mg internal standard were

based upon shot-noise weighted CLS predictions (see Theory Section). The first sample in the

run was used as the calibration standard for the CLS Mg prediction and was assigned a relative

Mg intensity of 1.0 for the average of two of the spectral bands of Mg (280.2 nm and 285.2 rim).

These two bands were the most representative of the variations of the majority of emissions from

the 12 elements used as analytes. Simultaneous linear baseline fits were included in the CLS

determinations of the relative Mg intensities for all other sample emission spectra. These relative

intensities were also corrected for the actu~ concentrations of the internal Mg reference in each

sample. During subsequent CM analyses for the 12 analytes, each sample spectrum was divided

by the concentration-corrected relative Mg intensity to correct for intensity fluctuations between

sample spectra.
.

. .
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After the spectra were collected, it was discovered that many were contaminated by

carryover of some of the elements from previous samples. This carryover problem was later

found to be a result of the specific ICP spectrometer operating conditions used. The carryover

complicated the analysis of the spectra and may have limited the calibration results from the PE-

Optima multivariate spectral analysis method.
.

THEORY

Univariate Analysis

Emission intensities were measured for standards and samples in each window using the

Optima softwtie. The emission line peak location for each window is determined by the Optima

software using a parabolic fit of the most intense pixel reading and the two adjacent points. The

emission intensity measured at the peak pixel corrected for the background intensity is then used

for calibration and analysis. The auto-background correction feature of the software was used to

correct for baseline shifts due to spectral overlaps. This feature utilizes an off-line background

correction technique that employs a search algorithm to find the baseline intensity for a given

spectral window by measuring-the slope of the emission background away from the peak. The

“baseline” intensity is then subtracted from the peak intensity, and the resulting net intensity is
\

ratioed to the concentration-normalized internal standard (Mg) emission intensity. A two point,

linear regression calibration was established for each element for each of the segmented arrays

listed for that element in Table III using the 100 pg/g standard for that element and the 2% HN03

blank solution with the Mg internal standard present. The instrument-supplied univariate

calibration methods were used directly for the univariate methods presented in this paper.

Multi-Component Spectral Fitting (MSF) . . .- ,.
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The “Multi-component Spectral Fitting” (MSF) is an Optima 3000-supplied multivariate

CLS method that models the sample spectrum as a linear combination of pure-element spectral

profiles in each spectral window?-]o MSF operates independently within each spectral window

(array segment) so that a separate model is constructed for each window. The models are

constructed in advance of the analysis with pure-component solutions each at 100 pg/g, and the
.

models presume that all components in the “unknown” sample are known. Baselines are

incorporated in the model by including the baseline from the blank in the CLS fitting procedure.

The PE-Optima MSF software uses the 4 multi-element calibration standards (see Table ~ to

update earlier MSF calibration models during the experimental acquisition of all the sample

spectra. Again, the Mg internal standard emission intensities were used to normalize intensities

for instrument variations.

Multi-window CLS Method

The basic MWCLS method has been presented previously for IR spectral analyses.*-3A

detailed mathematical description of the algorithms, as specifically adapted for ICP-AES

analyses, is included in the Appendix. The algorithm assumes a linear additive model for each

spectral window. During CLS calibration, least-squares estimates of each element’s spectrum in

each window were obtained using the 36 pure-element calibration standards spectra (12 pure-

element samples at -100 pg/g run in triplicate). These estimated pure-element spectra have

higher signal-to-noise ratios than an individual pure-element sample spectrum since they are

derived from multiple calibration spectra. In practice, CLS calibration models could be derived

from mixture solutions of elements to be calibrated. This calibration requires that the number of

independent calibration standards equals or exceeds the number of elements modeled.

..
..
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During the CLS prediction phase, all pure-element spectra from the calibration plus a

choice of polynomial baselines up to third order are simultaneously used in a CLS prediction step

for each spectral window. For the prediction results presented here, a quadratic baseline was

selected and simultaneously included in the CLS prediction with the 12 pure-element spectra

estimated during the CLS calibration. In addition, we performed a weighted least squares
.

prediction that assumes the spectral noise is shot noise limited (i.e., the noise increases as the

square root of the signal). The weighting primarily affects the concentration estimates of

elements with the largest emission intensities.

CLS prediction is performed separately for each spectral window, which allows for a

different quadratic baseline to be fit for each spectral window of each sample spectrum. The

result is a series of 46 determinations (one for each window used in the analysis) for each

element in each sample. The final concentrations reported for a given sample are based upon a

weighted average”of the 46 concentrations for each element obtained from the 46 windows. An

element’s weight for a given window is proportional to the reciprocal of the product of the “

diagonal term for that element in the inverse covariance”matrix and the residual spectral variance

for the window (see the Appendix for details). In other words, the weights used in the weighted

average concentration for each sample are based upon the inverse of the signal-to-weighted-noise

variance for each element in each window. The weighted-noise variance is proportional to the

sum of squared spectral residuals for the weighted CLS fit for each window and, therefore, this

noise variance term is the same for all elements in a given window. The signal variance is

derived from the inverse of the covariance matrix and is effectively the square of the net-analyte

signal17(i.eo,the portion of the analyte sign~ orthogonal to all other calibration element signals

that may be present in the spectral window) for each element. The net-agalyte signal differs for

12
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each element in each window and is a function of both the strength of the element’s signal and

the degree of overlap with interfering elements. More intense element signals tend to yield larger

weights. However, greater overlap of emissions in a given window reduces an element’s net-

analyte signal, causing a reduction in the weight used in the weighted average concentration for

the element in that window. If spectral residuals are large in a given window due to 1) the
. .-

presence of unmodeled elements, 2) nonlinear responses, 3) spectrometer drift, or 4) inadequate

modeling of the baseline, then the weighting for all elements in that window will be reduced

relative to a window where the spectral residuals are small.

The weighting by the inverse variance of the signal-to-weighted-noise results in weights

that vary over 16 orders of magnitude for the 46 windows and samples considered here. Thus,

the weighted average serves the purpose of efficiently minimizing the influence of windows with

either little or no net analyte signal or large spectfal residuals due to model inadequacy. The use

of the weighted average eliminates the need for operator selection of the windows. A single

result is reported that represents a statistically efficient summary of the results from all windows
.

included in the analysis.

Because carryover of some elements from one sample to the next was a problem, special

methods were required to minimize the effect of carryover in the pure-element spectra estimated

during CLS calibration. The carryover was observed to be present with six of the 12 elements

used in the calibration and caused elements experiencing carryover to be present in all calibration

.
samples, in“allvalidation mixture samples, and in all blank samples except the first blank sample.

The presence of these carryover elements in all samples caused the carryover element spectra to

be present at low levels in the CLS-estimated pure-element spectra. Therefore, after our initial

MWCLS calibration, the amount of each carryover element in each estimated pure-element. .
..
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spectra was determined by a separate CLS determination of the carryover element’s

concentration in each of the 12 ClX-estimated spectra. The carryover element concentrations

were determined using only the primary windows for the carryover element and those spectral

regions within the windows that were not visually contaminated by overlap with the other 11

elements. This concentration-correction procedure was performed one element at a time.
.

New CLS estimates of the pure-element spectra were then generated after the

concentration of a given carryover element was determined in all 12 of the CLS-estimated pure-

element spectra. A second CLS calibration was then performed using the original CLS-estimated

pure-element spectra and a calibration concentration matrix that-included the new CLS-estimated

concentrations of the-carryover element. The CLS-estimated pure-element spectra obtained from

this second CLS calibration contained no visual contamination of any of the 12 estimated pure-

element spectra by the selected carryover element. This procedure was repeated for the other five

elements experiencing carryover problems. The final iteration resulted in CLS-estimated pure-

element spectra exhibiting no carryover contamination above the spectral noise level. These

corrected pure-element spectra were used in the MWCLS predictions of all validation and blank

samples. Because of the presence of the carryover problem, all sample spectra must be

considered contaminated to some small degree by one or more of the six elements experiencing

carryover. Therefore, the computation of detection limits and the determination of low

concentrations with real samples are restricted to the six elements not experiencing carryover

(i.e., Al, As, Cr, Ni, Pb, and Pal).

‘RESULTS AND DISCUSSION

.. . ...
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Figure 1 presents the superimposed emission spectra of all calibration and validation

samples, The spectra cover the region from 167 to 420 nm but are presented by pixel number

rather than wavelength since there are both gaps and overlaps between the 46 spectral windows.

Figure 2 demonstrates the carryover problem with Cu, which exhibited the greatest

degree of carryover of the 12 elements investigated. Repeat samplings of a 100 pg/g Cu solution,
.

interspersed with 6 consecutive samplings of a 2% HN03 blank solution, demonstrated that the

carryover can be as much as 0.2 ~g/g Cu over the approximately 10 min. interval between Cu

samplings. Figure 2 clearly demonstrates the magnitude of the problem when the ICP auxiliary

flow rate of 0.5 liter/rein Ar was used and suggests that the contamination can extend over

multiple samples since the time spacing between samples was similar to that used in the study. It

was later determined that carryover could be eliminated by operating the ICP at an auxiliary Ar

flow rate higher than the default setting of 0.5 IJmin used for the study. Figure 2 also shows the

results of a second analysis of the same sample set obtained using an ICP auxiliary flow of 1.0

liter/rein Ar. The Cu signal-to-noise ratio was essentially the same in both cases with no loss in

sensitivity at the higher flow setting. Because an internal Mg standard was not run in these Cu

carryover tests, correction for system drift was not possible, and a slight drift of the baseline

intensities was observed in Fig. 2 for both flow rates. Since a higher auxiliary flow will “lift” the

plasma off the sample injector tip in the ICP torch configuration, it may be that the “carryover”

observed with the lower flow setting is the result of deposition and release of atomized copper on

the injector tip from the 100ug/g Cu sample.

The power of the MWCLS method is demonstrated by’the following discussion using a

simplified three-window As analysis. Arsenic is selected because one of its windows contains an

emission from the unmodeled Pt element and another As window is almost completely overlaped
.. ..
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with a Pd emission line. Fig. 3A shows all 12 of the pure-element emission spectra (each at -

100 pg/g) in the three As windows. The unmodeled Pt emission is not shown since its emission

spectrum was not present in any calibration spectrum. Fig. 3B shows the same 12 emission

spectra scale expanded in the intensity axis so the degree of spectral overlap can be seen more

clearly. There is nearly direct overlap of As and Pd emissions in the first As window. The.

MWCLS algorithm generates separate As concentrations for each of the three windows in Fig. 3.

The final As concentration is determined by a weighted average of the three As concentrations as

described in the Appendix. When As i$ the only element in the calibration and prediction

samples, then the relative weights for the pure As element sample are 35%, 31%, and 34% for”

the 189.0 nm, 193.7 nm, and 197.2 nm bands of As, respectively. These weights are dominated
,

by the relative signal strengths of the three As bands rather than the magnitude of the spectral

residuals since the sum of squared spectral residuals are similar in magnitude for each window.

However, if the other 11 elements are included”in the calibration model along with As, the

weights for analysis of a single-element As sample become 4%, 42?10,and 549Z0for the same three

windows, respectively. The first band has greatly diminished influence because of the As and Pd

overlap at 189.0 nm. Thus, the net-analyte signal for As is reduced for this window, and the

result from the first window is given relatively low weight during prediction of As in samples.

Fig. 4A shows the three As spectral windows for a validation sample containing As at

1.00 pg/g. This sample contained 11 of the 12 elements included in the MWCLS calibration

model. In addition, it contained a Pt impurity at 4 pglg that was not included in the calibration

(Sample 5 in Table 1). Fig. 4B shows the individual spectral residuals using a 12 element CLS

model (without Pt) applied to each As window for this multi-element sample with unmodeled Pt

present in the second As window. The CLS As determinations from the.individual windows for.. ..
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this sample are 1.02 pg/g, 1.13 pg/g, and .01 pg/g, for the 189.0 nm, 193.7 nm, and 197.2 nm

As bands, respectively. Therefore, a simple average of the results from all windows (i.e., 1.05

pg/g) would degrade the accuracy of the As predictions. Due to the large spectral residuals in the

second window, the weights for this band are greatly reduced in the As determination. The

weighting is now 10.5%, 0.5%, and 89% for the three windows, respectively. Thus, the CLS.

prediction of this sample is nearly unaffected by the presence of an unmodeled Pt emission, and

the weighted average predicted As concentration is 1.01 pg/g while the reference As

concentration is 1.00 pg/g. For accurate predictions, at least one of the As windows must follow

the linear additive CLS model. The weighted average As result was automatically defined by the

CLS calibration model and the characteristics of the sample spectrum. The final prediction result

required no decisions or input by the analyst, a significant advantage for the rapid ICP-AES

analysis of complex multi-element samples.

Figure 4C demonstrates another advantage of the MWCLS method. If we examine the

CLS spectral residuals for each window in Fig. 4B, we observe that window 2 has experienced a

problem that was not encountered in either window 1 or window 3. The problem with window 2

could be the presence of emission from an element not included in the calibration or the problem

might be due to nonlinearity in the spectrum of this sample. Unfortunately, the spectral residuals

in Fig. 4B do not indicate the source of the large residuals in the second window since the least

squares fit using 12 elements in the model for each window causes the spectral residuals to

become more random. However, the MWCLS approach allows an alternate method of.

reconstructing the measured spectrum to yield a more informative residual spectrum. The CLS

calibration generates precise estimates of the pure-element emission spectra. The MWCLS

prediction yields more accurate element concentrations. Therefore, reconstructing the measured. . ...
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spectrum can be performed by multiplying the estimated pure-element spectra by their MWCLS

estimated concentrations and summing the contributions from all elements in the model. Since

the weighted-average prediction results are generally unaffected by unmodeled interfering

emissions, the resulting residual spectrum obtained by subtracting this new reconstructed

spectrum from the measured spectrum should simply represent any unmodeled emissions and
.

spectral noise. The spectral residuals resulting from this latter calculation are presented in Fig.

4C~ Note that the resulting residual spectrum is now quite different and indicates clearly the

presence of an uncalibrated impurity emission located at 193.7 nm. Checking the elements

having an emission at this wavelength allows us to detect and identify a Pt impurity in the

sample. Once we have identified the impurity element, we could quantify its concentration by

running a calibration standard for the uncalibrated Pt element. Thus, significant interpretation

advantages flow from the MWCLS analysis.

Fig. 5 shows the MWCLS prediction ability for Al at concentrations ranging from Oto

300 pg/g in samples that contain as many as 11 other elements at a variety of levels from Oto 150

pg/g. The overall standard error of prediction (SEP) for Al concentration for these samples is

limited by source fluctuations for the high concentration samples rather than by spectral signal-

to-noise ratios. Thus, the higher precision potential of the MWCLS procedure is not generally

realized with high concentration analytes even when all elements are known and included in the

analysis. However, the MWCLS procedure can yield a dramatic improvement in the ability to

accurately determine trace elements in the presence of interferences.

. The improvement in low-level determinations is even more dramatic when one or more

interfering elements in the samples are not included in the calibration. The improvement using

the MWCLS analysis is readily demonstrated in Table IV. Table IV shows the PE-Optima
.. ..
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univariate, PE-Optima MSF, and the MWCLS methods applied to the same selected validation

sample spectra. The results are shown for the determination of the minor elements in the

selected multi-element samples and are presented as the average value for the triplicate analyses

and the standard error of the mean for the three replicate measurements. The replicates span 10

to 16 hr of elapsed time and, therefore, include the effects of spectrometer drift over this time
.

period. In general, the predicted concentrations for the major elements were close to the known

values and are not shown. The two PE-Optima models perform reasonably well for some

element windows shown in Table IV. Surprisingly, the univariate method does almost as well as

the MSF model in some cases, indicating that some of the overlaps are most likely sloping

backgrounds and not direct emission overlaps. For the predictions of the elements shown in

Table IV, neither PE model performs well in all wavelength windows, and it is not apparent

which array yields the correct result without prior knowledge of the element concentration.

The ease of analysis and improved accuracy of the MWCLS method are demonstrated for

a few samples with trace elements present as shown in Table IV for Ag, Pb, and Pd. First, only a

single weighted-average result is reported for each element based upon all 46 windows used in

the analysis. The MWCLS prediction results when all 12 elements are included in the CLS

calibration model (MWCLS-12) are always more accurate than the average of the PE-Optima

univariate or MSF predictions and more accurate than the individual window results in every

case except for As in Sample 4. In addition, Table W presents MWCLS results that represent

models with only a single element in the model (MWCLS-1). Even though the other 11 elements

are not included in the model, the MWCLS-1 approach is only slightly degraded by the absence

of the other elements in the CLS models. In fact, none of the MWCLS-1 predictions in Table IV

are degraded to the level of the MSF models that include all 12 elements in the calibration. .
.. . .-.
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models. The ability of the MWCLS- 1 models to perform accurate predictions in the presence of

multiple unmodeled elements derives from the simultaneous use of all 46 spectral windows with

the final prediction result reported as the weighted average concentration of all windows. As

mentioned previously, accurate results are expected if just one of the windows containing the

analyte element emission is free of interference or if any unmodeled emission can be adequately
.

fit by the separate quadratic baseline included in the CLS analysis of each spectral window.

The MSF models should work better than is evidenced here. The models were developed

in advance of the sample analyses, and it is possible that some wavelength drift or other source of

spectrometer drift occurred during that interval. Calibration samples were run during the study to

update the MSF model, b’utthe updating may not correct for all sources of system drift. It is

likely that with the knowledge gained from these initial PE analyses, “proper” wavelength

selection, and further refinements of the MSF pure-component models, we could eventually

develop more accurate MSF results for these materials. This is how spectroscopists have

historically done method development. The new NIWCLS method circumvents this tedious,

time-consuming process and directly yields accurate results without analyst intervention.

Table V presents the average predictions of all single and multi-element samples

whenever the listed target element was not present in the sample. Table V shows only results

from those six elements experiencing no carryover. This table represents the ability of the

various models to detect the absence of elements when one or more other elements are present in

the samples: The closer the numbers are to Orig/g in Table V, the better a given model has

succeeded in eliminating the detrimental effects of spectrally interfering elements in the samples.

Table V not only includes the PE-Optima univariate, PE-Optima MSF, and 12-eIement multi-

window CLS results (MWCLS- 12), but it also includes the MWCLS- 1 case where only the target
., ..
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element has been included in the calibration model. This latter case represents a very severe and

extreme case where the CLS model does not include the effects of overlapping spectral

interferences. Both univariate and MSF methods report the results individually for each window,

demonstrating that prior knowledge of the analyte concentration or presence of interfering

elements must be known to properly select the best window to report results. Even if the best
.

window can be selected with the univariate and MSF methods, it is observed in Table V that the

MWCLS-12 method almost ‘alwaysoutperforms even the best single-window predictions using

either the PE univariate of MSF methods. The MSVCLS-12method always provides lower

standard deviations for repeat predictions. k addition, the degradation in accuracy is not very

great for the MWCLS-1 method that includes only the target element in the calibration model. In

fact, only for As does the MSCLS-1 model underperform the precision of the PE MSF method

for the best window, and in this case, the relative difference in prediction is not statistically

significant. These results clearly demonstrate the power of the IWWCLSmethod to mitigate the

detrimental effects of unmodeled interferences in the sample spectra.

The analyses of our data give the opportunity to estimate detection limits for each element

in the presence of modeled and unmodeled interferences. Usually the method for calculating

detection limits is based upon analysis of blank solutions without interferences present. *8-20

These standard methods of determining detection limits are not used here since they are overly

optimistic for the analysis of real samples with interferences. If we obtain the standard

deviations of each element for all samples with the element absent but with one or more

interferences present, then we can estimate detection limits for our real samples in order to

compare the detection performance of each analysis method. Table VI presents the average 30

detection limits for the six elements not experiencing carryover using the same models and. .
.. ..
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sample analyses presented in Table V. Here the range of detection limits given for the single-

window methods represents the analyte windows yielding the best and worst detection limits

using the set of windows normally used for each target element determination. These detection

Iimits are the detection limits expected for these real samples with interfering elements present in

the samples. Obviously, these reported detection limits depend on specifics of the actual
.

samples, that is the intensity and numbers of overlapping emission bands. The results in Table

VI only demonstrate detection limits expected for the elements and samples included in this

study. Nevertheless, the results clearly demonstrate the superiority of the MWCLS method even

when all interfering elements are left out of the calibration model. The measured 30 detection

limits in Table VI demonstrate that the MWCLS-12 method aIways outperfoi-ms the univariate

and MSF methods. In fact, in the worst case example using the poorest window for Pb, the

MWCLS-12 model outperforms the MSF method by a factor of nearly 200. Only in the case of

As does the best window MSF model slightly beat the detection limit of the MWCLS-1 method

that includes only the single target element in the calibration model. The MWCLS-1 prediction

algorithm applied to As cannot recognize problems with the presence of Pd interference since the

direct overlap between As and Pd emissions in the 189.0 nm window does not cause an inflation

of spectral residuals when both As and Pd are present. Therefore, CLS cannot detect a problem

with this window if Pd is present in the sample but not included in the calibration model.

Finally, since partial least squares (PLS) methods generally outperform traditional CLS

methods, we applied standard PI-S methods to these same data. In both CLS and PLS

calibrations, only the 36 single element 100 @g samples spectra were included in the calibration

(12 samp]es repeated in ~p]icate within a 16 hr period). PM analyses were applied to dl 46

windows and also applied only to those windows normaI1yused for qualifying the target
.-
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element. For the PLS analysis applied to all 46 windows, PLS sometimes performed extremely

poorly even for high concentration elements (e.g., As, Pb, and Se) resulting in essentially no

predictive ability. For the other elements, the PLS predictions were generally good when their

concentrations were high, but were very poor for all elements when they were present at

concentrations. PLS calibrations based upon only the target element windows showed.

low

improvement over the 46 window PLS calibrations, but still the PLS prediction results did not

compare favorably to the MWCLS predictions for the minor components. The poor performance

of PLS was due to a combination of factors including the calibration design, the small number of

calibration samples, the difficulty in PLS modeling the baseline drift overlarge spectral ranges,

and the inability of the PLS model to handle the carryover problem.

CONCLUSIONS

We have demonstrated that the lvfWCLS method applied to ICP-AES spectral data has

significant quantitative and qualitative advantages over standard univariate and single-window

CLS (i.e., PE-Optima MSF) analysis methods. The MWCLS method even significantly

outperforms standard PLS methods. In the best case, the newly applied MWCLS method

improves detection limits by more than 2 orders of maghitude relative to the commercial MSF

method. Accuracy, precision, and detection limits have all been demonstrated to be better with

the MWCLS method. The new method has also been demonstrated to be relatively immune to

unmodeled interferences. Thus, the requirement that all interfering elements be included in the

CLS calibration is removed. In addition, the analyst is freed from the tedious and time-

consuming task of deciding which target element windows to select when each window yields

different analytical results. It is also evident that the’new MWCLS methods can reduce the need
..

23

;,,.,=. . . ‘.. , .,, ,. -,,,,,?. . T?=7i7—~— .- . . .,, ... . .. --- ,.. ,,:+.. :.. ., ...- :---v~.. ... .;!..- ; —7% . . .—. --- —.



. .

for running preliminary survey analyses of unknown samples followed by either the pretreatment

of the samples to eliminate interfering elements or the generation of better matched calibration

samples. Although not shown in this paper, it is expected that when sample concentrations

become very large, then nonlinear self-absorption effects will degrade the linear behavior of the

stronger emission lines. The MWCLS methods described here will eliminate the need for.

analysis of serially diluted samples to cover the range of both major and minor species. The

latter result is expected since the saturation of an emission line will change its shape and cause

the spectral residuals to be relatively large for any saturated bands. Therefore, the MWCLS

weighted average result will automatically shift emphasis in the weighted average to the more

linear lower intensity bands. This shifting of analysis emphasis to the more linear bands has been
.

demonstrated to improve accuracy for MWCLS analysis of II? spectra at high concentrations of

NzO in air.21

The results presented in this paper lead us to speculate that, in the fiture, calibrations

generated for all 70 of the elements measured with ICP-AES could be included in a global

instrument model to achieve at least semi-quantitative results without the need to run any

standards. Since multivariate methods are known to be very sensitive to instn.iment drift and

instrument differences, studies to evaluate the reasonableness of the above speculation are

needed and are currently underway in our laboratory.
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APPENDIX. Weighted MWCLS Algorithm

For this discussion, bold upper-case letters represent matrices, vectors are given lower-

case bold letters, and scalars are indicated by lower-case. letters in italics. We use the convention

that all vectors are written as column vectors so row vectors are expressed as transposed column.

vectors. The linear additive classical least squares model can then be written as

Y=BX+E (1)

where Y is then x p matrix of p spectral intensities of then samples in the calibration set, X is

the m x p matrix of p spectral intensities representing them pure-component spectra at unit

concentration, B is then x m matrix of concentrations of the n sam-piesfor each of the m spectral

components, and E is the n x p matrix of spectral errors representing spectral noise and possibly

model error. Generally in statistical models, the B matrix represents the estimated coefficients

while the X mat~x represents the independent variables. However, during CLS calibration and

prediction, the parameter being estimated in Eq. 1 changes. Rather than charging notation

between CLS calibration and prediction to remain consistent with the standard statistical

notation, we chose to keep the notation constant. Since our first description of the multi-window

CLS approach dealt only with prediction, we maintain the notation used in the Appendix of Ref.

2 based upon CLS prediction. Therefore, during CLS calibration the matrix X is estimated and

the B matrix represents the independent variables. During prediction, B is estimated and X

represents the independent variables.

During classical least squares calibration, we solve for the least squties estimated pure-

component spectral matrix X. The least squares solution to Eq. 1 is

.. ..
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‘

~= (BTB)-’BTY

The Y matrix can be centered first (i.e., the column mean

.

.
(2)

of Y is removed from each row of Y)

to improve computational precision and to remove a spectral intercept at each wavelength.

Alternatively, an intercept term can be fit at each wavelength by adding a column of ones to the

B matrix. The dimensions of X will then be (nz+l) x p. If the spectra are first corrected for an

internal reference, then the column of ones in the B matrix should be replaced by the inverse of

the scaling parameter obtained from the internal reference peak.

It is assumed that E is a noise matrix that is a random observation from a probability

distribution that has a mean of zero and a variance of c?V, where Visa known p x p matrix and

c? can be estimated from the spectral residuals. Then the weighted least squares estimate of X

can be obtained one wavelength at a time as described in Reference 3. Once the least-squares

estimate of X is obtained from the calibration, then this ~ matrix can be used for concentration

prediction of a sample Spectmm Y (vector of dimension 1 x P). The ~ ma~x can ~SObe

augmented by a row of ones to account for spectral offsets, a row of evenly incremented integers

for linear baselines, and a row of squared integers for quadratic baseline corrections to the model.

The latter two rows should be mapped from -1 to 1 to provide better computational precision.

The model for predicting sample concentrations from the unknown sample spectrum, y, is then

y=%T~+e. (3)

Note that the convention of presenting vectors as column vectors retierses the order of Eq. 3

relative to that of Eq. 1. The weighted least squares estimate of the sample concentrations, ~, is

~= (iv-’x’)-’(xv-’y) (4)

The m x m covariance matrix of ~ is

26
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C(ji)=C’(iv-’xT)-’

and the unknown & is estimated by

.

(5)

52= (YTV-’Y) -B’(m-’y) (6)
p–m

We assume here that the errors are independent but with different variances at each wavelength
.

for each spectrum. In the case of independent errors, V is diagonal and can be easily inverted by

inverting its diagonal elements. For shot-noise limited detectors encountered in our ICP-AES

data, the diagonal elements of V can be estimated for each sample spectrum y by using the

elements yi at each wavelength i as the diagonal elements of V since the variance of the shot

noise increases directly with the spectral intensity.

The above CLS prediction can be performed separately for each spectral window. The

result is a series of w concentrations, one for each component in each of the w windows. The

final calculated concentrations for each analyte can be formed by a weighted average of the

concentrations found for each analyte in each window. The least-squares estimated

A A

concentration for component j in the l?’ window is ~~j. The mat~x (~’v-lx)~ ‘1 is used to

estimate the variance of ~~j. Let s# be thejti diagonal element of (XTV-lX)k-’ corresponding

to fiki. The S: diagonal element represents the inverse of the summv squared net-an~yte

signal for Component in the kti window. An estimate of & for window k, i.e., df, can be

calculated using Eq. 6. c?: represents a summary statistic proportion~ to the squared sPectral

residuals in window k for the sample spectrum. The method to estimate the relative

concentration of component j in the mixture is to take a weighted average of the ~~j’s where the

. .
.. ..
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weight is the reciprocal of the product of S: and 6:. The reported summary concentration for

component from all windows is given by

y(pwj/(s)* d:))

fij = ‘“w
~(1/(s# *d:)
‘=1

.

(7)

..

Eq. 7 gives highest weight to those windows where component has its largest net-analyte

signals and that also exhibit small spectral residuals (i.e., those windows that follow the linear

additive model and include in the calibration model all components with intensity in the

window), Thus, this weighted average concentration is a statistically efficient measure of thejth

component concentration in the sample.

,.
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Table I. Nominal concentrations of elements in solutions

Cal-1 Cal-2 Cal-3 Cal-4 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Control 1 Control ~

(Pdg) (w%) (pglg) (pgfg) (~glg) (pg/g) (pglg) (~glg) (pg/g) (~glg) (~gfg)

Ag 100 0 0 0 0.1 0 0 0 0 0 10
Al 100 0 0 0 300 300 300 1 1 10 0 ““
As o 100 0 0 1 1 1 1 1 10 0
Au o 100 0 0 0 0.25 0.25 30 30 10 0

.

Cd 100 0 0 0 1 1 1 1 1 10 0
Cr o 0 100 0 20 20 20 1 1 10 0
Cu o 0 100 0 100 100 100 1 1 10 0
Fe o 0 0 100 150 150 150 1 1 10 0
Ni o 100 0 0 50 50 50 35 35 10 0
Pb 100 0 0 0 1“ 1 1 1 1 10 0
Pd o 0 100 0 0 0.25 0.25 34 30 10 0
Pta o 0 0 0 0 0 0.25 0 4 0 0 .
Se o 100 0 0 1 1 1 1 1 10 0

Mgb 4 4 4 4 4 4 4 4 4. 4 4

1

a. Unmodeled element
b. Internal Standard
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Table II. Optima 3000 ICP-AES instrument operating parameters used

RF Powec 1140W Sample pump rate: 1.0 mUmin.
Plasma aas: 15 Umin. Rinse time: 2 minutes
Nebulizer aas: ‘ 0.84 Umin. Read delav 1 minute
Auxiliarv aas: 0.50 Umin.

Resolution: “ normal ( 62pm slitwidth )
Radial view
Scannina: on

. Integration: auto (1-1Oseconds)

32
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Table III. Optima 3000 ICP-AES instrument SCD subarrays used

Element
Wavelength Subarray Element

Wavelength Subarray
(rim) number ( ) number

243.8 64
Cu

3;~8 153

Ag 328.1 147 327.4 145
338.3 164 234.3 68
167.0 6 238.2 - 93
237.3 73 Fe 239.6 70

Al
308.2 141 259.9 87
309.3 131 274.0 110
394.4 232 279.1 101
396.2 236 Mg

279.6 103
189.0 12 280.3 105

As 193.7 8 285.2 115
197.2 10 221.6 45

“ 208.2 26
Ni

231.6 52
Au 242.8 85 232.0 71

267.6 111 341,5 173
214.4 40 217.0 42

Cd
226.5 36

Pb
220.4 54

228.8 63 261.4 81
361.1 195 283.3 120
205.6 20 248.9 92

Cr
206.1 24

Pd
324.3 152

267.7 98 340.5 171
357.9 205 363.5 203

.“ Cu
221.5 43

Se
196.0 15

224.7 53 204.0 23
,
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Table IV. Pre&ction results fiomselected samples using fourdifferent calibration methods

Element Reference ~in~ow PE-Optima PE-Optima MWCLS MWCLS

(Sample ID) Cone. , Univariate MSF
(12 elements (Single element
in calibration) in calibration)

Std. Std. Std.
Average Error of Average Error of Average Error of

Std. Error of

(P9f9)
Average

(lJ9/9) Mean (P9/9) Mean (P9J9) Mean (P9f9)
Mean

(Y9 g)I (V99)I (U9 !0I
(pglg)

Ag
Ag243 88.99 0.71 -11.426 0.29

Sample 1 0.098 Ag328 0.090 0.001 0.104 0.000 , 0.100 0.0005 0.091 0.001
Ag338 0.487 0.004 0.127 0.001

As
Asl 88 1.023 0.001 1.018 0,019

Sample 1 0.998 Asl 93 0$959 0.014 1.031 0.007 1.017 0.009 1.017 0.006
Asl 97 0.984 0.008 1.060 0.009

As
AS188 1.913 0.008 1.621 0.011

Sample 4 0.999 Asl 93 1.007 0.010 i .024 0.005 1.022 0.005 1.121 0.007
Asl 97 1.012 0.007 1.003 0.006

Pb216 1.406 0.009 0.658 0,015 ~
Pb 1.001 Pb220 0.994 0.002 1.021 0.008

Sample 2 Pb261 -2.38 0.70 -3,20 1.3 1.002 0.004 1.038 0.004

Pb283 1.323 0.016 1.080 0.022 .

Pd248 2.82 0.038 0.013 0.038
Pd 0.247 Pd324 0.192 0.006 0.275 0.004

Sample 2 Pd340 0.159 0.002 0.219 0.008 0.222 0.004 0.260 “ 0.012

Pd363 0.272 0.30 0.473 0.008

.
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Table V. Average prediction of element concentration in samples with no element present

ETWindow
Samples

4-
AI 1670
Al 2373
Al 3082 all
Al 3092 with
Al 3944 zero Al
Al 3961
As 1889 all
As 1937 with

PE-Optima Univariate PE-Optima MSF*
MWCLS- 12 MWCLS-I

Reference (12 Element Calibration) (1 Element Calibration)

, Value
Average

Std. Error of Average
Std. Error Average

Std. Error of Average
Std. Error of

(nglg) Mean of Mean Mean Mean
(nglg) (nglg) (rig/g) (rig/g)

(rig/g) (nglg) (rig/g) (rig/g)

12 12 28 15
65I 4 I 3 I -126

7 2 4

0.000 20 8 2
156 63 -31
9 5 -3

I o I 0.4 I -7
0.000 -1 0.4 -8

1 1 0
1 0.4 NA
8 4 NA

0.000 379 222 NA
-4 0.9 NA
57 33 -12
20 5 1

0.000 -309 187 -244
25 14 39
376 155 -33

1 2 9
0.000 7 2 -5

322 97 43

*APE-Optima MSl? model was not available for Ni

0.9
3 0.09 0.3 3 0.3
5

0,9
95
2 0.03 0.8 5 2
17
0.7
4
4 0.3 0.2 1 0.2

0.2
NA
NA
NA -0,003 0.2 . 2 0.4

NA
10
2

173 1.7 0.8 7 1

12
12
5
1 0.8 0.4 0.8 1

13
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FIGURE CAPTIONS

1.

2.

3,

40

ICP-AES spectra of all calibration and validation samples plotted vs. pixel

number.

Peak intensity of the Cu emission at 324 nm as a function of time during and

after multiple introductions of a sample containing 100 ~g/g of Cu for operating.

conditions where the ICP auxiliary Ar flow rates are 0.5 (crosses, dashed line) and

1.0 (squares, solid line) L&in. Emission intensities are offset corrected.

Spectra for all 12 of the pure-element standards at -100 pg/g in the three

spectral windows specific for As at 189.0 nm, 193.7 nm, and 197.2 nm. A) All spectra

and windows are at the same intensity scale so that the As bands are observed near full

intensity. B) Same spectra in 3A but all spectra are scale expanded by the same factor.

Dashed vertical lines separate the three As windows.

A) The spectra of Sample 5 (see Table I) with As at 1.00 pg/g and containing a Pt

impurity at 4 pg/g that was not included in the calibration model. B) The CLS

least-squares spectral residuals in each window when 12 elements (excluding Pt)

are included in the model for each window. C) Alternate presentation of the

spectral residuals for Sample 5 using 12 elements in the calibration model but

not including the Pt impurity. Here the spectral residuals are calculated by

subtracting fkom the sample spectrum the product of the final MWCLS

concentration estimates for the 12 calibration elements and their respective

CLS-estimated pure-eIement spectra. Dashed vertical lines separate the three As

windows.
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5. MWCLS-predicted Al concentrations vs. reference Al concentrations for all validation

samples with Al at concentrations ranging from Oto 300 pg/g. These samples contain as

many as 11 other elements at a variety of levels from Oto 150 pg/g.

1

!
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