6-5. Draw the influence jine for (a) the vertical reaction
at A, (b) the shear at C, and (c) the moment at C. Solve
this problem using the basic method of See. 6-1.
6-6. Solve Prob. 6-5 using Muller-Brestan's principle.

(1)

b)

i)

6-7. Draw the influence lines for (a) the shear at the fixed support A, and (b) the moment at B.
*6-8. Solve Prob. 6-7 using Müller-Breslau's principle.

a)

b)

02009 by R.C. Hibbeler. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher:

6-17. Draw the inffuence lines for (a) the shear at C, (b) the moment at C, and (c) the vertical reaction at D. Indicate numerical values for the peaks. There is a short vertical link at B, and A is a pin support. Solve this problem using the basic method of Sec, 6-1.

6-18. Solve Prob. 6-17 using Muller-Breslau's principle.

a)

b)

c)

6-19. The beamsupports a uniformdead load of $500 \mathrm{~N} / \mathrm{m}$ and single live concentrated force of 3000 N . Determine (a) the maximum positive moment that can be developed at point C, and (b) the maximum positive shear that can be developed at poinl C. Assume the support at Λ is a pin and B is a roller.

a)

b)

$\left(\operatorname{Hac}_{\mathrm{C}}\right)_{\text {nuil }}=500\left(\frac{1}{2}\right)(5)(20)+3000(5)$
$=40000 \mathrm{~N} \cdot \mathrm{~m}=40.0 \mathrm{kN}$. in Ans
$\left.(k)_{\text {max }}=500\left(\frac{1}{2}\right) k 0.5\right)(10)+3000(0.5)-500\left(\frac{1}{2}\right)(0.5)(10)$
$=1500 \mathrm{~N}=1.50 \mathrm{kN}$ dus
© 2009 by R.C. Hibbeler. Published by Pearsen Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the put

6-51. Draw the influence line for the force in member $H G$, then determine the maximum live force (tension or compression) that can be developed in this member due to a uniform live load of $800 \mathrm{lb} / \mathrm{ft}$ that acts on the bridge deck along the bottom cord of the truss.

$\left(F_{H G}\right)_{\operatorname{man}(C)}=(0.8)\left(\frac{1}{2}\right)(-1.0)(80)=-32.0 \mathrm{k}=32.0 \mathrm{k}(\mathrm{C})$
Ans
$\left(F_{H C}\right)_{\text {axa }}(\eta)=0$
Ans
*6-52. Draw the influence line for the lorce in member $H C$, then determine the maximum live force (tension or compression) that can be developed in this member due to a uniform live load of $800 \mathrm{lb} / \mathrm{ft}$ that acts on the bridge deck along the bottom cord of the truss.

$$
\begin{aligned}
& \left(F_{H C}\right)_{\max (\mathrm{m}}=0.8\left(\frac{1}{2}\right)(0.7071)(53.333)=15.1 \mathrm{k}(\mathrm{~T}) \\
& \left(F_{H C}\right)_{\max (\mathrm{C})}=0.8\left(\frac{1}{2}\right)(-0.3536)(26.67)=-3.77 \mathrm{k}=3.77 \mathrm{k}(\mathrm{C})
\end{aligned}
$$

Ans

6-53. Draw the influence line for the force in member $A H$, then determine the maximum live force (tension or compression) that can be developed in this member due to a uniform live load of $800 \mathrm{lb} / \mathrm{ft}$ that acts on the bridge deck along the bottom cord of the truss.

$\left(F_{A B}\right)_{\max (C)}=(0.8)\left(\frac{1}{2}\right)(-1.061)(80)=-33.9 t=33.9 \mathrm{k}(\mathrm{C})$

6-67. Draw the influence line for the force in member $I H$ of the bridge truss. Compute the maximum live force (tension or compression) that can be developed in the nember due to a $5-\mathrm{k}$ truck having the wheel loads shown. Assume the truck can travel in either direction along the center of the deck, so that half the load shown is transferred to each of the two side trusses. Also assume the members are pin connected at the gusset plates.

$\left\{F_{(H)_{\text {ras }}}=\frac{3(1.33)+2(1.00)}{2}=3.00 \mathrm{k}(C)\right.$
Ans
*6-68. Determine the maximum live moment at C caused by the moving loads.

$\left(M_{C}\right)_{\text {max }}=(40)(-5)+20(-4.5)+80(-3.5)=-570 \mathrm{kN} \cdot \mathrm{m}$

6-69. Determine the maximum live shear at C caused by the moving loads.

$\left(K_{C}\right)_{\text {an }}=(40)(1)+20(0.9)+80(0.7)=114 \mathrm{kN}$

9-11. Determine the vertical displacement of the truss at joint B. Assume all members are pin connected at their end points. Take $A=0.5 \mathrm{in}^{2}$ and $E=29\left(10^{3}\right) \mathrm{ksi}$ for each member. Use the method of virtual work.

$$
\begin{aligned}
& \Delta_{B_{v}}=\Sigma^{n N L} \\
& A E \frac{1}{A E}[1.414(1555.6)(4.243)+(-1.00)(-1700)(3)+(-1.00)(-1400)(3) \\
&+(-1.00)(-1100)(3)+(-1.00)(-1700)(3)](12)=\frac{27034(12)}{0.5(29)\left(10^{5}\right)} \\
&=0.0224 \mathrm{in} . \quad \text { Ans }
\end{aligned}
$$

*9-12. Solve Prob. 9-11 using Casligiano's theorem.

$$
\begin{aligned}
\Delta_{\mathbf{a}_{v}}=\Sigma N\left(\frac{\partial N}{\partial P}\right) \frac{L}{A E}= & \frac{1}{A E}[(-600)(0)(3)+(848.5)(0)(4.243) \\
& +(-1100)(0)(3)+(1.414 P+1555.6)(1.414)(4.243) \\
& +(-(P+1700))(-1)(3)+(-(P+1400))(-1)(3) \\
& +(-(P+1100))(-1)(3)+(-(P+1700))(-1)(3)
\end{aligned}
$$

Set $P=0$ and craluate

$$
\Delta_{s}=\frac{27034(12)}{0.5(29)\left(10^{6}\right)}=0.0224 \mathrm{in} \text {. Ans }
$$

9-27. Solve Prob. 9-26 using Castigliane's theorem.

$$
\begin{aligned}
\Delta_{A_{0}}=\Sigma N\left(\frac{\partial N}{\partial P}\right) \frac{L}{A E}= & \frac{1}{A E}[-2 P(-2)(8)+(2.236 P)(2.236)(8.964)+(-2 P)(-2)(8) \\
& +(2.236 P+0.5590)(2.236)(8.944)](12)
\end{aligned}
$$

Ser $P=1$ and evaluate
$\Delta_{A_{V}}=\frac{164.62(12)}{(2)(29)\left(10^{3}\right)}=0.0341 \mathrm{in}$.
*9-28. Remove the loads on the truss in Prob. 9-26 and determine the vertical displacement of joint A if members $A B$ and $B C$ experience a temperature increase of $\Delta T=200^{\circ} \mathrm{F}$. Take $A=2 \mathrm{in}^{2}$ and $E=29\left(10^{3}\right) \mathrm{ksi}$. Also, $\alpha=6.60\left(10^{-6}\right) /{ }^{\circ} \mathrm{F}$.

From Prob. 9.26
$\Delta_{A_{*}}=\Sigma_{n \alpha \Delta T L}=(-2)(6.60)\left(10^{-6}\right)(200)(8)(12)+(-2)(6.60)\left(10^{-6}\right)(200)(8)(12)$
$=-0.507 \mathrm{in} .=0.507 \mathrm{in} . \uparrow$

02009 by R.C. Hibbeler. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

9-29. Remove the loads on the truss in Prob. 9-26 and determine the vertical displacement of joint A if member $A E$ is fabricated 0.5 in . too short.

From Prob. 9-26
$\Delta_{A}=\Sigma_{n} \Delta L=(2.236)(-0.5)$
$=-1.12$ in. $=1.12$ in \uparrow

Ans

9-30. Use the method of virtual work and determine the vertical displacement of joint C. Take $E=29\left(10^{3}\right) \mathrm{ksi}$. Each steel member has a cross-sectional area of $4.5 \mathrm{in}^{2}$.

$$
\begin{aligned}
1 \cdot \Delta_{C_{r}} & =\frac{\Gamma N L}{A E} \\
\Delta_{C_{\nu}} & =\frac{21232}{4.5\left(29\left(10^{2}\right)\right)}=0.163 \mathrm{ir} \quad \text { Ans }
\end{aligned}
$$

