Precomposing Equations

Let's "precompose" the function $f(x)=x^{3}-2 x+9$ with the function $g(x)=4-x$. (Precompose f with g means that we'll look at $f \circ g$. We would call $g \circ f$ "postcomposing" f with g.)

$$
\begin{aligned}
f \circ g(x) & =f(g(x)) \\
& =g(x)^{3}-2 g(x)+9 \\
& =(4-x)^{3}-2(4-x)+9
\end{aligned}
$$

To get the same answer in perhaps a slightly different way, first we write the formula for $f(x)$.

$$
x^{3}-2 x+9
$$

Second, we think of g as the function that replaces x with $4-x$.

$$
x \longmapsto 4-x
$$

Third, the formula for $f \circ g(x)$ can be obtained be rewriting the formula for $f(x)$, except that we'll replace every x with $4-x$.

$$
(4-x)^{3}-2(4-x)+9
$$

Suppose $p(x, y)=3 x^{2}-x y+2$. Let's precompose p with the addition function $A_{(-3,4)}$. That is, we'll find $p \circ A_{(-3,4)}(x, y)$.

First, write down the formula for p

$$
3 x^{2}-x y+2
$$

Second, write down what $A_{(-3,4)}$ replaces each of the coordinates of the vector (x, y) with.

$$
\begin{aligned}
A_{(-3,4)}(x, y)=(x-3, y+4) & \\
x & \longmapsto x-3 \\
y & \longmapsto y+4
\end{aligned}
$$

Third, the formula for $p \circ A_{(-3,4)}(x, y)$ is found by rewriting the formula for p, except that we'll replace each x with $x-3$, and replace each y with $y+4$.

$$
3(x-3)^{2}-(x-3)(y+4)+2
$$

This can be simplified.

$$
\begin{aligned}
p \circ A_{(-3,4)}(x, y) & =3(x-3)^{2}-(x-3)(y+4)+2 \\
& =3 x^{2}-18 x+27-x y-4 x+3 y+12+2 \\
& =3 x^{2}-x y-22 x+3 y+41
\end{aligned}
$$

Let's precompose $q(x, y)=x+y-1$ with the matrix

$$
M=\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)
$$

First, write the formula for q.

$$
x+y-1
$$

Second, write what M replaces each of the coordinates of the vector (x, y) with.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)\binom{x}{y}=\binom{x+2 y}{3 x+y}
$$

Third, the formula for $q \circ M(x, y)$ is found by rewriting the formula for q, except that we'll replace each x with $x+2 y$ and each y with $3 x+y$.

$$
(x+2 y)+(3 x+y)-1
$$

It can be simplified as

$$
q \circ M(x, y)=4 x+3 y-1
$$

As we saw in the previous chapter, if $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a planar transformation, and if S is the set of solutions of $p(x, y)=q(x, y)$, then $T(S)$ is the set of solutions of $p(x, y) \circ T^{-1}=q(x, y) \circ T^{-1}$. We can say this more economically as follows:

> The equation for S precomposed with T^{-1} is an equation for $T(S)$.

To precompose an equation with T^{-1}, there are three steps to be followed.
Step 1: Write the original equation.
Step 2: Write what T^{-1} replaces each of the coordinates of the vector (x, y) with.

Step 3: Rewrite the equation from Step 1, except replace every x and every y with the formulas identified in Step 2.

We'll practice these three steps-practice precomposing equations-with the next problem.

Problem: Suppose that S is the subset of the plane that is the set of solutions of the equation $x y+3=4 y^{2}-x+10$.

Let N be the invertible matrix $N=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Give an equation that
$N(S)$ is the set of solutions of.

Solution: To find an equation for $N(S)$, we have to precompose the aquatimon for S with N^{-1}.

First, write down the equation for S.

$$
x y+3=4 y^{2}-x+10
$$

Second, write what N^{-1} replaces each of the coordinates of the vector (x, y) with.

$$
\begin{aligned}
& N^{-1}=\frac{1}{2(1)-1(1)}\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \\
&\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)\binom{x}{y}=\binom{x-y}{-x+2 y} \\
& x \longmapsto x-y \\
& y \longmapsto-x+2 y
\end{aligned}
$$

Third, rewrite the equation for S, except replace each x with $x-y$ and each y with $-x+2 y$.

$$
(x-y)(-x+2 y)+3=4(-x+2 y)^{2}-(x-y)+10
$$

Now simplify the equation so that the answer-an equation that has $N(S)$ as its set of solutions-is

$$
-x^{2}+3 x y-2 y^{2}+3=4 x^{2}-16 x y+16 y^{2}-x+y+10
$$

Exercises

For \#1-8, write all polynomials in the form

$$
A x^{2}+B x y+C y^{2}+D x+E y+F
$$

1.) Precompose the equation $x-y+3=y-4$ with $A_{(1,2)}$.
2.) Precompose the equation $2 x^{2}-3 x y+y-1=2 x y+y^{2}$ with $A_{(-2,3)}$.
3.) Precompose the equation $x+2=x y-y-1$ with $\left(\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right)$.
4.) Precompose the equation $x^{2}+x-3 y=2 y^{2}-5 y+2$ with $\left(\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right)$.

For \#5-8, suppose that S is the set of solutions of the equation

$$
3 x^{2}+x y+y^{2}=x-y+5
$$

For \#5-8, use that the equation for S precomposed with T^{-1} is an equation for $T(S)$.
5.) What is $A_{(3,2)}^{-1}$? What is the equation for $A_{(3,2)}(S)$?

6.) What is $A_{(2,-4)}^{-1}$? What is the equation for $A_{(2,-4)}(S)$?

7.) Suppose $M=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$. What is M^{-1} ? What is the equation for $M(S)$?

8.) Suppose $N=\left(\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right)$. What is N^{-1} ? What is the equation for $N(S)$?

$$
f(x)= \begin{cases}x-1 & \text { if } x \in(-\infty, 0) \\ x^{2} & \text { if } x \in[0,4] ; \text { and } \\ 57 & \text { if } x \in(4, \infty)\end{cases}
$$

Find the following values.
9.) $f(-2)$
12.) $f(1)$
15.) $f(4)$
10.) $f(-1)$
13.) $f(2)$
16.) $f(5)$
11.) $f(0)$
14.) $f(3)$
17.) $f(6)$

Multiply the following matrices.

$$
\text { 18.) }\left(\begin{array}{cc}
3 & 4 \\
0 & -2
\end{array}\right)\left(\begin{array}{cc}
-2 & 4 \\
1 & 1
\end{array}\right) \quad \text { 19.) }\left(\begin{array}{cc}
2 & -2 \\
1 & -3
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
2 & -3
\end{array}\right)
$$

Solve the following equations.
20.) $\log _{e}(x)^{2}-5 \log _{e}(x)+6=0$
21.) $\left(x^{3}-3 x^{2}+2 x-3\right)^{2}=-1$

