Physics 1A

Lecture 2B
${ }^{\text {² }}$ Your education is ultimately the flavor left over after the facts, formulas, and diagrams have been
forgotten."
--Paull G. Hewitt

Kinematics

With the basic definitions now in place we can turn to kinematics.

Kinematics is the study of motion.
A set of equations to describe a body in motion has been derived known as the kinematic equations.

These equations assume that the acceleration of the body in motion is constant in time.

Kinematics

An object starts with an initial velocity, v_{0}, at $t=0$ and accelerates with a constant acceleration, a. What is its final velocity, v, at time, \dagger ?
$a=$ constant $=\frac{\Delta v}{\Delta t}$

$\Delta v=a \Delta t$
$\left(v-v_{o}\right)=a(t-0)$
$v=v_{o}+a t$

This is the first kinematics equation!

Kinematics

Now let's look at the definition of $v_{\text {avg }}$ again assuming a is constant and we start at $\dagger=0$:

$$
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{\Delta x}{t-0}=\frac{\Delta x}{t}
$$

Also by looking at the graph, we find:

$$
\begin{aligned}
& v_{\text {avg }}=\frac{v_{o}+v}{2} \\
& \frac{1}{2}\left(v_{o}+v\right)=\frac{\Delta x}{t} \quad \Delta x=\frac{1}{2}\left(v_{o}+v\right) t
\end{aligned}
$$

This is the second kinematics equation!

Kinematics

Recall our first kinematics equation:

$$
v=v_{o}+a t
$$

Re-substitute this velocity, v, back into our second kinematics equation:

$$
\begin{aligned}
& \Delta x=\frac{1}{2}\left(v_{o}+v\right) t \\
& \Delta x=\frac{1}{2}\left(v_{o}+\left(v_{o}+a t\right)\right) t \\
& \Delta x=\frac{1}{2} v_{o} t+\frac{1}{2} v_{o} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

$$
\Delta x=v_{o} t+1 / 2 a t^{2}
$$

Kinematics

Recall our first kinematics equation:

$$
v=v_{o}+a t \quad v-v_{o}=a t
$$

$$
t=\frac{v-v_{o}}{a}
$$

Re-substitute this time, t, back into our second kinematics equation:
$\Delta x=\frac{1}{2}\left(v_{o}+v\right) t \quad \Delta x=\frac{1}{2}\left(v_{o}+v\right)\left(v-v_{o}\right) \frac{1}{a}$
$\Delta x=\frac{1}{2 a}\left(v_{o} v+v^{2}-v_{o}^{2}-v v_{o}\right) \quad \Delta x=\frac{1}{2 a}\left(v^{2}-v_{o}^{2}\right)$
$2 a \Delta x=\left(v^{2}-v_{o}^{2}\right)$
$v^{2}=v_{o}^{2}+2 a \Delta x$

Kinematics

Recall that all 4 equations are based on the fact that acceleration is constant.

Each kinematic equation has a missing quantity:

Equation

$$
\begin{aligned}
& v=v_{o}+a t \\
& \Delta x=1 / 2\left(v+v_{o}\right) t \\
& \Delta x=v_{o} t+1 / 2 a t^{2} \\
& v^{2}=v_{o}^{2}+2 a \Delta x
\end{aligned}
$$

Missing Quantity
Δx
a
v
t

Know how to use all of the equations.
Also, a warning for the third equation, if you are solving for t you may have to use the quadratic formula.

Kinematics

Example
A sprinter accelerates at $2.5 \mathrm{~m} / \mathrm{s}^{2}$ until
reaching his top speed of $15 \mathrm{~m} / \mathrm{s}$, he then continues to run at top speed. How long does it take him to run the 100 m dash?

Answer

First, you must define a coordinate system.
Let's choose the direction of motion as positive, and $x=0$ where the sprinter starts at $t=0$.

Kinematics

Answer

Here we have two different time periods with two different accelerations.
In the first part, the sprinter accelerates, then in the second part he has a constant velocity.
You must use the kinematics equations separately for both parts.
Let's list the quantities we know for the first part:
$v=+15 \mathrm{~m} / \mathrm{s}$
$a=+2.5 \mathrm{~m} / \mathrm{s}^{2}$
$v_{0}=0$ <-- it starts from rest
\dagger <-- finding
$\Delta x \quad<--$ finding

Kinematics

Answer
Looks like it is the first equation for us:

$$
v=v_{o}+a t
$$

But we know that $v_{0}=0$, so it becomes:

$$
v=a t \quad t=\frac{v}{a}=\frac{15 \mathrm{~m} / \mathrm{s}}{2.5 \mathrm{~m} / \mathrm{s}^{2}}=6.0 \mathrm{~s}
$$

How far did he run in that time period?
Use the second equation, again with $v_{0}=0$:

$$
\Delta x=\frac{1}{2}\left(v_{o}+v\right) t
$$

$$
\Delta x=\frac{1}{2}(v) t
$$

$$
\Delta x=\frac{1}{2}(15 \mathrm{~m} / \mathrm{s}) 6.0 \mathrm{~s}=45 \mathrm{~m}
$$

Answer

Kinematics

This means that for the second part of the motion ($a=0$), the sprinter only needs to travel:

$$
100 m-45 m=55 m
$$

Let's list the quantities we know for the second part:
$v=+15 \mathrm{~m} / \mathrm{s}=\mathrm{v}_{\mathrm{o}}$
$a=0$
$\Delta x=55 m$
$\dagger \quad<-$ finding
Use the second equation: $\quad \Delta x=\frac{1}{2}\left(v_{o}+v\right) t \quad \Delta x=\frac{1}{2}(2 v) t=(v) t$

$$
t=\frac{\Delta x}{v}=\frac{55 \mathrm{~m}}{15 \mathrm{~m} / \mathrm{s}}=3.7 \mathrm{~s}
$$

The total time will be: $6.0 \mathrm{~s}+3.7 \mathrm{~s}=9.7 \mathrm{~s}$

Graphical Kinematics

Another way to examine constant acceleration problems is do it graphically.

This relies on the fact that:

1) The slope of position is velocity.
2) The slope of velocity is acceleration.

Essentially, you can get one graph
(say v vs t) by knowing another graph (say x vs t).

Graphical Kinematics

For example, if you are given the following a vs \dagger graph and the fact that $v_{0}=1 \mathrm{~m} / \mathrm{s}$. Plot the corresponding v vs \dagger graph and find the velocity at $t=3 \mathrm{~s}$.

Since a is the slope for v, then the v vs \dagger graph is:

We can then read off of the graph that $v=16 \mathrm{~m} / \mathrm{s}$ at $t=3 \mathrm{~s}$.

Graphical Kinematics

Or, you could be given the following v vs \dagger graph and asked to plot the corresponding a vs \dagger graph.

Since a is the slope for v, then the a vs \dagger graph is:

Note: Even though the velocity was zero on the original graph as $\dagger=2 \mathrm{~s}$, acceleration was not zero at that time.

Conceptual Question

In the following position vs. time graph, when will object A and object B have the same speed?
A) $\mathrm{At} \dagger=1 \mathrm{~s}$.
B) $A t \dagger=2 s$.
C) $A t+=3 s$.
D) They have the same speed during the graph's entire time period.
E) They never have the
 same speed during the graph's entire time period.

Falling Bodies

Objects moving under the influence of only gravity are said to be in free fall.

Before 1600, it was widely believed that heavier bodies fell faster than lighter bodies.

People at the time believed that the speed of the fall of an object is proportional to how heavy it is.

Galileo was the first to predict that falling bodies on Earth would fall with a distance proportional to time squared ($\mathrm{D}_{\alpha} \dagger^{2}$).

Falling Bodies

Galileo surmised through repeated experiment that:
"at a given location on the Earth and in the absence of air resistance, all objects fall with the same uniform acceleration."

Galileo felt that earlier work neglected the effect that air friction (i.e. resistance) had on different objects.

The uniform acceleration Galileo talked about was the acceleration due to gravity, g.

Seen here in this Ball Drop Demo.

Falling Bodies

In SI units, g is generally regarded as being $9.80 \mathrm{~m} / \mathrm{s}^{2}$.

In English units, g=32ft/s ${ }^{2}$.
g varies slightly depending on where you are on Earth, but it always points downward towards the Earth.
\(\left.\begin{array}{|l|l|l|l|}\hline City \& \begin{array}{l}value of g

(in m/s\end{array} \mathbf{s}^{2}\end{array}\right) \left.\)| Altitude
 (in m) |
| :--- | | Latitude |
| :--- |
| (in degrees) | \right\rvert\,

Falling Bodies

Example

In the original Superman comics, Superman was unable to fly but could simply "leap tall buildings in a single bound." Superman's range was about one eighth of a mile (201m). What initial velocity would Superman need to reach his maximum height?

Answer

First, you must define a coordinate system.
Let's choose the upward direction as positive, and $x=0$ where Superman starts at $t=0$.

Falling Bodies

Answer

Let's list the quantities we know:
$\Delta x=+201 m$
$a=-9.80 \mathrm{~m} / \mathrm{s}^{2}=$ constant
$v=0 \quad$ <-- velocity at max height
$v_{0} \quad<-$ finding
\dagger <-- don't know

Looks like it is the fourth equation for us:

$$
v^{2}=v_{o}^{2}+2 a \Delta x
$$

Answer Falling Bodies

$$
v^{2}=v_{o}^{2}+2 a \Delta x
$$

But we know that $v=0$ at max height, so it becomes:

$$
\begin{aligned}
& v_{o}^{2}=-2 a \Delta x \\
& v_{o}=\sqrt{-2 a \Delta x}
\end{aligned}
$$

$$
v_{o}=\sqrt{-2\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(201 \mathrm{~m})}=62.8 \mathrm{~m} / \mathrm{s}
$$

This is the initial velocity that Superman needs to attain maximum height.

Conceptual Question

A tennis player on serve tosses a ball straight up. When the ball is at its maximum height, the ball's:
A) velocity is non-zero and acceleration is zero.
B) velocity is zero and acceleration is non-zero.
C) velocity is zero and acceleration is zero.
D) velocity is non-zero and acceleration is non-zero.

For Next Time (FNT)

Finish up the homework for Chapter 2.

Start Reading Chapter 3.

