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Introduction
Titanium matrix composites (TMCs) offer a combination 

of good mechanical properties and high temperature durability 
that render them attractive materials for commercial automotive, 
aerospace and advanced military applications. The incorporation of 
high strength and high stiffness ceramic reinforcements can improve 
their mechanical performances [1,2]. Titanium carbide (TiC) has 
been used for reinforcement of titanium alloy matrices due to its 
compatibility. Such TMC are commonly called “ex-situ” composites. 
However, large ex-situ TiC particles act as stress concentrators in the 
matrix during tensile loading. This leads to the premature fracture of 
brittle TiC particles followed by coalescence of micro-cracks initiated 
from the particulates [3]. Nevertheless, the particulate reinforcement 
phase can be formed in-situ in the Ti matrix. The in-situ formation 
technique offers the advantages of better control of size and level of 
reinforcement and enhancement of the ceramic-matrix bonding 
[4-8]. Some studies showed that mixing graphite powder and pure 
titanium successfully produced TiC nano-particles dispersed in the 
Ti matrix [4]. Other studies synthesized in-situ Ti/TiC composites 
by consolidation via spark plasma sintering (SPS) of Ti powders with 
either carbon nanotubes or carbon black [3,5,6]. Other succeeded to 
disperse nanoscale lamellar TiC particles in a Ti matrix by selective 
laser melting [9] or combined nano-sphere resol coating Ti powder 
with conventional powder metallurgy to self-assemble TiC platelets in 
a Ti matrix [10].

Recently, a novel way to synthesize in-situ TiC/Ti composites 
material, was developed by field assisted hot pressing of a mixture 
of hexagonal close packed (α) (hcp(α)) and face-centered cubic (fcc) 
powders produced by mechanical milling. During consolidation, the 
fcc phase decomposes into α-Ti and dispersed TiC particles [11]. 

Previous studies show BM of Ti does not only reduce the grain 
size but also induces phase transformation originates. A metastable fcc 
solid-state transformation in Ti governed by lattice expansion (negative 
hydrostatic pressure) as a result of grain refinement during milling, and 
to contamination with interstitials of C, O and N. It was mentioned 
that phase transformation was not observed during processing 

under an ultrahigh purity environment [12-14]. Large amount of 
lattice defects and interfaces introduced during milling can increase 
the free energy of the system and can appropriate an energetically 
uphill process in the following reactions. In terms of crystallographic 
relations, the transition from hcp to fcc is possible when a number of 
stacking faults are introduced on the closed packed planes. This fcc was 
earlier obtained by BM of Ti and n-Heptane mixture whereby C and 
H decomposition influences the stabilization of the metastable phase. 
When many stacking faults are produced in deformed hcp-Ti to realize 
a fcc structure locally, a metastable compound similar to TiC can he 
formed by the introduction of C and H atoms accompanying lattice 
expansion [15].

It was reported that stearic acid (SA) is an 18-carbon chain saturated 
fatty acid used as process control agent during BM and considered 
as C source to Ti. Ball milling of titanium mixed stearic acid yields 
the formation of the metastable fcc phase upon sintering. TiC phase 
segregating along the grain boundaries due to the reactions between Ti 
and SA decompose elements was observed [16]. The formation of grain 
boundary TiC in biomedical titanium alloy due to plastic deformation 
upon milling that induce the change in crystal structure of Ti was 
studied [17].

In other side, natural biological materials, such as teeth, bones 
and mollusk shells are characterized by a layered architecture that 
exhibits excellent mechanical properties. Inspired from the lamellar 
architecture of nacre, the efforts were increased for the fabrication 
of lamellar composite material called biomimetic materials which 
showed desirable mechanical properties [1-6]. Different techniques are 
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Abstract
Inspiring from the microstructure of natural biological materials and using ball milling (BM) of Ti powder with 

stearic acid (SA) and the Spark Plasma Sintering (SPS) technique, an in-situ TiC/Ti laminated composites material 
was successfully elaborated. The use of SA during BM induced i) the fabrication of the flakes powder morphology 
and ii) the formation of TiC amorphous phase. During SPS sintering the flakes powder were assembled into fully 
dense laminated materials and the TiC phase recrystallized and precipitated in the form of an interlaminar nanometric 
reinforcement in the dense material. The results show a contribution of 20% and 5% of the TiC in the increase of 
the hardness and Young’s modulus of the material respectively. The control of the BM conditions (BM time and SA 
amount) allows the control of the TiC content formed in situ in the dense Ti/TiC composite material and so of the 
mechanical properties.
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used for the fabrication of this multilayered architecture materials, a 
new process called “flakes powder metallurgy” has been used for the 
fabrication of lamellar MMC materials. The aim of this process is to 
sinter metallic powder or metallic flakes, prepared by ball milling, with 
controlled microstructure in order to obtain lamellar architectures [18-
20]. Studies have reported that during the early stage of ball milling of 
ductile metals, and using process control agents such as stearic acid 
(SA) or ethylen bis-stearamid (EBS) or others, the formation of flakes 
is observed before the fracture of the powders and can be attributed to 
plastic deformation of the metallic powder [21].

In the present work, we study the use of ball-milled flakes powder 
for the fabrication of lamellar in-situ TiC/Ti composites material. We 
discuss the effect of the SA and BM times on (i) the milled powder 
morphology, (ii) the precipitation of TiC phase after sintering and (iii) 
the mechanical properties of the sintered materials. In this process, Ti 
spherical powders were ball-milled for different times with different SA 
amounts. The powders are then sintered using Spark Plasma Sintering 
(SPS) technique that allows the fast densification of the Ti. The 
microstructure and the mechanical properties (elastic and hardness) of 
the final material are studied. 

Experimental Procedures
Ti powder elaboration

Titanium flakes powder is obtained by ball milling (BM) using 
a planetary mill (Fritsch Planetary Mill) using stainless steel balls 
(diameter 5 and 10 mm) and metallic vials (volume 150 mL). In our 
work, almost spherical titanium powder (Ti, purity=99.5%, CERAC 
Inc)d50=(48 μm) is used as the initial material. BM is performed under 
argon atmosphere at 200 rpm, 20:1 balls to powder ratio. Different 
amounts of stearic acid (1, 2 and 4 wt.%) were added as process control 
agent, with 3 mL of isopropanol (IPA). The ball milling was carried out 
for various times (30, 45, 60 and 75 min). 

Ti powder consolidation

SPS process was chosen as sintering technique DR SINTER LAB 
Spark plasma sintering system (model SPS 515-S) apparatus was used. 
A graphite die, covered by carbon felt is used to prepare samples of 10 
mm of diameter. The temperature is measured by a k-type thermocouple 
inserted in the die wall. The sintering process was performed under 
vacuum using the following conditions: The temperature was raised up 
to 600°C at 100°C/min and maintained during 10 min with a pressure 
of 100 MPa applied at room temperature and kept constant during the 
whole experiment.

Characterization

The morphology and the microstructure of the materials before 
and after sintering were studied using a scanning electron microscope 
(SEM) (TESCAN VEGA) on mechanically polished (surface and cross 
sections) samples). X-ray spectroscopy (EDX), coupled with SEM, 
allows the analysis of the chemical composition of the sintered material. 

The density of the sintered materials is determined using the 
Archimedes principle. Samples before and after sintering were 
characterized by X-ray diffraction (XRD). Powder X-ray diffraction 
(XRD) patterns were collected on a PA Nalitycal X’pert PRO MPD 
diffractometer in Bragg-Brentano θ-θ geometry equipped with a 
secondary monochromator and X’Celerator multi-strip detector. Each 
measurement was made within an angular range of 2θ =8-80° and lasted 
for 34 minutes. Some measurements were made with slow acquisition 
time (300 s/steps) for more analyze precision. The Cu-Kα radiation 

was generated at 45 KV and 40 mA (λ=1.5405A°). The hardness of the 
polished materials was measured using Vickers hardness tester model 
452 SVD, at a 50 Kg load and 10 s dwell time. Elastic constants (Young’s 
modulus, shear modulus) were determined at room temperature by 
ultrasonic pulse, using 10 MHz transducers working in reflection mode 
on 3 mm thick sample. An elemental micro-analysis CHNS (Thermo 
Fischer Scientific) was used to determine the C amount in Ti ball-
milled powder before and after sintering. 

Results
SA and BM time effects before sintering

Figure 1 shows the change of titanium powders morphology from 
irregular to flakes after 30 min of BM. The use of SA and IPA as process 
control agent during BM prevents the powders cold welding and limits 
the ball milling effect at micro-forging stage that permits the rather fast 
elaboration of flakes shape powder. 

The Figure 2 shows the XRD patterns of the Ti powders, before 
and after ball milling. By comparing the XRD patterns obtained for 
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Figure 1: SEM micrographs of Ti powders before BM and after BM 30 min 
with 2 wt.% of SA.
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Figure 2: XRD diffraction patterns of Ti “unmilled” and “flakes’’ powders.
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initial powder (“unmilled” powder) and after 30 min of BM (“flakes” 
powder), we can notice a broadening of the peak and a decrease of 
their intensities. These two effects can be attributed to the increase 
of the amounts of crystal defects (dislocations, vacancies), the lattice 
strains, and to the decrease of the crystallite sizes. Furthermore, after 
BM process, the relative intensities of the (00l) plane become larger 
than the (hk0) one.

The flakes powder texture represented in the Figure 2 follows the 
basal plan (002), where the intensity of the (002) plane becomes higher 
than that of the (101) plane.

Figure 3 shows the effect of SA on the powder morphology after 
30 min and 60 min of BM. Without SA, inhomogeneous powder 
morphology is obtained; some particles are fractured and others still 
un-fractured with flattened surface. After 60 min the amounts of 
fractured powder increase. With SA (1, 2 or 4 wt.%) after 30 min of 
BM, the powder have almost a homogeneous flakes morphology. The 
flakes aspect ratio (diameter/thickness ratio) doesn’t change with the 
increase of SA amount (Figure 3a). After 60 min of BM (Figure 3b), 
the morphology of the powder varies according to the amount of SA 
added. With the increase of SA quantity, the flakes shape is destroyed 
and fractured powders are formed (Figure 4). 

Figure 5 shows the effect of BM times on the morphology of the 
powder with 2% of SA and 3 ml of IPA. After 30 min, the particles 
morphology still homogenous; flakes shape powder is obtained. With 
the increase of ball milling time, the flakes became thinner. After 75 
min of BM, the flakes powders are totally fractured in small flakes 
particle inducing a decrease of the aspect ratio.

SA amount and BM time effects after sintering

The SPS sintering of Ti ball-milled powder at 600°C, during 10 min 
under 100MPa of pressure permits to obtain a fully dense material. The 
cross section view, of the sintered flakes powder, highlights the lamellar 
architecture obtained. Under a uniaxial pressure, applied during SPS, 
the Ti flakes orientate and tend to lie flat one on each other leading to 
an oriented lamellar architecture (Figures 4 and 5b). It’s important to 
noticed that the porosity that appear in the sintered sample is due to 
the chemical attack that used as metallographic treatment before SEM 
characterization.

The micrographs MEB BSE, in the Figures 4 and 5b show in some 
cases two contrasts (light gray and dark gray) in addition to the black 
contrast related to the grain boundaries. This reveals the formation 
of a new phase other than Ti after sintering. This phase is essentially 
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Figure 3: SEM micrographs of Ti ball-milled during a) 30 min and b) 60 min with (0, 1, 2 and 4 wt.% of SA).
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Figure 4: SEM micrographs of Ti ball-milled during a) 30 min and b) 60 min with (0, 1, 2 and 4 wt.%) of SA after sintering at 600°C.
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localized around each particle (mainly at the edges of each flake) and 
acts as inter-lamellar in-situ reinforcement (Figure 6). In order to 
identify the nature of this phase, EDX micrographic analysis with the 
distribution of Ti and C was performed and shown in Figure 7. It is 
noted that carbon is located essentially in this new phase as titanium 
is present everywhere. So it can be concluded that this new phase 
is composed of Ti and C. On the other hand, the X-rays diffraction 
pattern, collected by slow acquisition time, indicates the presence of 
new peaks with low intensities. These peaks can be attributed to the TiC 
phase. So the new phase represented by the dark gray contrast in the 
SEM BSE micrographics is the TiC phase.

As shown in the previous paragraph, the presence and the amounts 
of TiC phase formed after the sintering of ball-milled powder depend 
on the ball milling conditions (SA amount and BM times). The 
decomposition of the SA during ball milling is the origin of the C 
contamination and so of the TiC phase formation. 

In order to highlight the ball milling time and SA amount effects, 
on the elaboration of inter-lamellar TiC reinforcement, the Figures 8 
and 9 show the XRD patterns of sintered materials fabricated using 
flakes powders for different BM conditions. The intensities of XRD 
peaks characteristic of the hexagonal compact crystal structure of the 
Ti phase decrease with the increase of BM time at fixed SA amount. 
This is due to the increase of crystals defaults created by BM. However 
at fixed BM times (30 or 60 min), with the increase of SA amount, 
these intensities increase. This is related to the lubricant effect of SA 
that softened the collisions effect and so the crystals defaults induced 
by BM.

After 30 min, with 0 and 1% of SA added during BM, no TiC is 
detected by XRD in the sintered material Figure 8a. However with 2 
and 4% of SA small peaks of TiC are observed. In parallel, the SEM BSE 
of the sintered material confirm the absence of the TiC in the case of 
the powders ball-milled with 0 and 1% of SA, as with 2 and 4% of SA 
the dark gray contrast related to the TiC phase is observed (Figure 3b) 
and it’s more pronounced with 2% than 4% of SA.

Likewise, after 60 min of BM, the XRD results of the sintered 
material (Figure 8b) show the absence of TiC peaks when 0 and 1% of 
SA are added during BM and their presence with 2 and 4% of SA. In 
parallel, the SEM BSE micrographic (Figure 4b) show the presence of 
TiC phase after sintering of the flakes powder prepared with 2 and 4% 
of SA.
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Figure 5: SEM micrographs of Ti ball-milled with 2 wt.% of SA after different BM times (30, 45, 60 and 75 min) before (a) and after (b) sintering at 600°C.
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Figure 7: (a) EDX micrographs and (b) XRD diffractions pattern of Ti sintered 
material, prepared from ball-milled powder with 2 wt.% of SA during 30 min.
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The Figure 9b presents the XRD pattern of the sintered flakes 
powder, prepared with 2% of SA for different ball milling times. The 
intensity of the XRD peaks characteristic of the hexagonal compact 
crystal structure of the Ti phase, decrease with the increase of BM time. 
This is due to the increase of crystals defaults created by BM. The TiC 
peaks appear already after 30 min of BM and even clearly when the 
BM time increases. This mean, that the increase of BM times, permits 
additional decomposition of the SA and so the formation of TiC. This 
result is confirmed by the SEM BSE micrographics, that show the 
increase of TiC phase contrast with the increase of BM times (Figure 5b).

Figure 10 present the hardness of the sintered material prepared 
from ball-milled powder obtained from different conditions (different 
BM time and SA amount). In the case of the material with 60 min ball-
milled powder, the hardness varies as a function of SA added amount. 
This variation is linked with the formation of TiC (Figures 3 and 7). 
The hardness is maximal with 2wt.% of SA and it slightly decreases 
with 4wt.% of SA. It increases from 354 Hv to 560 Hv when the BM 
time increases from 30 to 75 (Figure 10b). This increase is also linked to 
the increase of the TiC inter-lamellar amount observed in the Figures 
5b and 8.

The Young’s modulus of the sintered materials prepared from 
the un-milled Ti powder is consistent with that of pure Ti found in 
previous studies. However, this modulus increases in the case of 
materials prepared from ball-milled powder. It even increases from 
120GPa to 129GPa when BM times increases from 30 to 60 min. This 
increase, correlated with the increase in the TiC content, underlines 
the composite effect of the material. Indeed, the Young’s modulus is 
an intrinsic property independent of the microstructure modifications. 
The Young’s modulus of composite materials obeys the law of mixture. 
Thus, by measuring the Young’s modulus of the Ti/TiC in-situ 
composite material, it is possible to estimate the volume fractions of the 
reinforcement (V%) TiC precipitated in-situ in the Ti matrix knowing 
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Figure 8: XRD diffraction patterns of Ti sintered material, prepared from ball-milled powder (a) during 30 min with (0, 1, 2 and 4 wt.%) of SA and (b) during 
60 min with (0, 1, 2 and 4 wt.%) of SA.
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the Young’s modulus of Ti (117 GPa) and TiC=(440 GPa). After 30 min 
of BM the volume fraction of TiC is close to 1.5% and increases to 4.3% 
after 60 min (Table 1).

As it has already been mentioned, the carbon responsible of the 
formation of the TiC after sintering is due to the decomposition of 
the SA carbon chains during BM. Then, insertion of the C into the Ti 
takes place during BM. Table 2, resumes the residual C content in the 
milled powder after heat treatment at 400°C. Such annealing eliminates 
the entire C on the surface of the material and also the residual SA. 
Then, the C content measured is the one inserted into the material and 
which is responsible for the formation of the TiC phase after sintering. 
The increase of BM time, from 30 to 60 min with 2 and 4% SA, allows 
additional insertion of C into the material; C content increases from 
0.08 to 0.15 wt% and from 0.05 to 0.19 wt% respectively.

Discussion
BM time and SA amount effects on flakes morphology

During the BM of ductile material, the powder enters into 
competition between cold welding and fracture. The mechanical 
milling process was divided into 5 sequences that started initially by 
micro-forging flattens ductile powder. Processes control agent (PCA) 
like IPA and SA are used during the mechanical alloying to avoid the 
excessive cold welding. This PCA prevents the metal-to-metal contact 
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Figure 10: Hardness of sintered Ti powder prepared from ball-milled (a) with 
(0, 1, 2 and 4 wt.%) of SA and (b) during different BM times.

surface coating, leading to the limitation of cold welding and increasing 
fracturing rate. The friction phenomenon decreases considerably when 
a large amount of PCA is used [1,2]. This explains the fracture of the Ti 
powder and the inhomogeneous morphology when IPA is added during 
BM without SA (0% SA). However, when SA is added (1, 2 and 4%) in 
addition to IPA, the shocks are softened than BM can be seen as micro-
rolling of Ti particles without fracture, which allows the formation of 
flakes morphology observed in Figures 2a and 3a. However, as the BM 
time increases the flakes become thinner and the fracture can started, 
and the formation of broken flakes can occur (Figure 5a).

BM time and SA amount effects on TIC formation

SA is a long carbon chain (CH3(CH2)16COOH), that decompose 
into short chains of molecules or radicals, which have a lower boiling 
point, under thermo-mechanical conditions created by BM. Under 
these several conditions, the local temperature can be much higher 
than their boiling temperature, so the SA decomposes and reacts with 
the Ti milled powder to form carbides (TiC) as showed in Figure 4.

During the BM of Ti the formation of crystalline and stacking 
defects, the increase of the number of interfaces, the presence of 
impurities such as C and the refinement of the microstructure 
(decrease in the size of the crystallites), can lead to an increase in the 
free energy of the system. This lead to a phase transition from the 
solid-centered hexagonal crystalline phase (hcp) to a cubic centered 
face (fcc) metastable phase [11,12]. This transition is governed by the 
expansion of the crystalline lattice of the compact planes where the C 
is preferentially localized. The presence of C would stabilize this phase 
fcc, with a crystallographic correspondence (or equivalence) between 
the (002) plane of the hcp phase (d=0.2342 nm) and the (111) plane of 
the fcc phase (d=0.2499 nm). Also the texturing of the “flakes” powder 
according to the basal plane and its great surface energy would also 
promote this phase transition [22-24]. To corroborate this hypothesis, 
we rely on the fact that the solubility limit of C in this phase fcc is 
lower than in the hcp phase. The formation of TiC particles reflects 
that the amount of C in solid solution in fcc phase exceed the solubility 
limit to the hcp phase [11]. This will favor the precipitation of carbon 
in the form of TiC having a fcc structure [15,16]. This TiC phase is 
not detected by XRD analysis of the “flakes” powder after BM, which 
indicates that this phase is amorphous. Heating during SPS sintering, 
allows the crystallization of this phase (and thus its detection is possible 
by DRX of the sintered material).

In the case of 1 wt% SA, no TiC XRD peak phase are revealed in 
the Figure 8a and 8b. Where, the quantity of C isn’t enough for the 
precipitation of TiC phase, but it’s still located as solid solution in 
Ti hexagonal compact crystal structure. However the increase of SA 

BM times (min) Young's modulus (GPa) V.% TiC
0 117 ± 2 0

30 122 ± 2 1.5
60 131 ± 2 4.3

Table 1: Young's modulus and TiC volume fraction, of sintered Ti powder prepared 
from ball-milled powder during different BM times.

Powder ball milling conditions wt%. of C after 4 h of annealing
30 min of ball milling+2% S A 0.08
60 min of ball milling+2% S A 0.18
30 min of ball milling+4% S A 0.05
60 min of ball milling+4% S A 0.11

Table 2: Wt.% of C in Ti ball-milled powder after annealing under vacuum during 
4 h.



Citation: Mereib D, Chung UC, Zakhour M, Nakhl M, Doyen NT, et al. (2018) Fabrication of In Situ Ti/TiC Laminated Composite Material Using Flakes 
Powder Metallurgy. J Powder Metall Min 7: 192. doi:10.4172/2168-9806.1000192

Page 7 of 8

Volume 7 • Issue 2 • 1000192J Powder Metall Min, an open access journal
ISSN: 2168-9806 

amount until 2% permits the precipitation of TiC phase as showed from 
the XRD results in Figure 8a and 8b. The inter-lamellar locations of the 
carbide phase is due to the Ti flakes surface-Carbon reaction, since that 
the SA cover the flakes surface. It was reported that maximum carbon 
solubility is lower than 0.08 wt.% in unalloyed Ti [25]. The Table 
2 showed that with 2% SA, the incorporated C amount in Ti milled 
powder is close (30 min) and higher (60 min) than 0.08 wt.%, hence the 
precipitation of the carbide.

At 4 wt%SA during 30 min BM, the PCA ensures good lubrication 
and hence less heat evolution due to the ball collisions. This decrease 
of local temperatures result in a slower decomposition rate of the SA 
and so a lower C incorporation, as show in the Table 2. Consequently, 
no TiC phase is observed (Figures 4a and 8a). The increase of BM time 
until 60 min, with 4 wt% SA permits the decomposition of higher 
amount of SA and so the precipitation of TiC phase as showed the 
Figures 4a and 8b. However the, elaborated TiC phase still lower than 
that with 2% SA added during 60 BM as showed the intensity of TiC 
XRD peaks in the Figure 8b and Table 2. 

The increase of BM time permits an additional decomposition 
of SA, and higher crystal defaults (vacancies and dislocations). That 
induces more C incorporation in the Ti milled powder, and permit a 
large precipitation of TiC phase in Ti matrix as showed the Figures 5b 
and 9. The intensity of TiC XRD peaks increases with the increase of 
BM time, showing the precipitation of high amount of carbide (Figure 9). 

Mechanical properties of sintered ball-milled Ti powder

It was reported in a previous study that the hardness of the sintered 
Ti material prepared from milled powder is higher than those prepared 
from un-milled powder. This is related to the work hardening, 
crystallite size refinement, solid solution strengthening induced by BM 
[26]. In our study these effects, explain the increase of the hardness 
of the Ti sintered material made from powder milled without SA and 
with 1 wt.% SA (Figure 10a), where no TiC precipitation is detected 
compared to this made from un-milled powder (0 min).

Additional to these effects, the increase of the hardness is linked 
to the precipitation of inter-lamellar TiC phase in Ti matrix. With the 
increase of BM time, the kinetic rate of SA decomposition increase and 
so the incorporation C in the Ti lattice becomes higher. That permits 
the increase of TiC precipitation in the milled powders, which appear 
as in-situ reinforcements after sintering (Figure 10b). Also, with 2wt% 
of SA (30 min and 60 min) the TiC precipitation in ball-milled powder 
is higher than this with 4 wt% as shown from the XRD results of the 
sintered material, and the C content measured of annealed powder. 
That fit with hardness variation of the sintered material prepared with 
2 and 4 wt% added during BM, where the hardness is higher in the case 
of 2 wt%. 

The TiC reinforcement effect in Ti matrix appears also in the elastic 
properties of the sintered material. The Young’s modulus increase until 
131 GPa, for the material made from milled powder during 60 min 
with 2 wt.% compared to 117 GPa for these prepared from un-milled 
powder parallel to the increase of TiC inter-lamellar precipitation. 
That proves the TiC reinforcement effect on the improvement of the 
titanium matrix stiffness.

Conclusion
The BM of Ti powder with IPA and SA, allows the fabrication of 

“flakes” powder with a 2 D morphology, having a texture following the 
basal plane (002). The SPS sintering of Ti “flakes” powder, at 600°C 

under 100 MPa for 10 min, allow the fabrication of a totally dense 
lamellar material.

As a result of the powder-ball collisions and the increase of 
the local temperature, the SA breaks up into small carbon chains 
with a boiling point lower than that of the SA. Part of this carbon, 
which is located on the surface of the “flakes” powder, evaporates 
during heating (densification or annealing). The rest of the carbon is 
inserted as amorphous TiC on the platelet surface. The formation of 
this TiC phase during BM is induced by: 1) The increase of the local 
temperature during the BM, 2) The phase transition that the Ti of the 
hcp phase undergoes in a metastable phase fcc in which the solubility 
of C is even lower. This TiC phase recrystallizes during sintering and 
precipitates in the form of an interlaminar nanometric reinforcement 
in the dense material. The presence of TiC contributes on 20% and 
5% to the increase of hardness and Young’s modulus of the material 
respectively. This increase highlights the composite effect of the Ti/TiC 
in-situ material. 

The control of the BM conditions (BM time and SA amount) 
allows the control of the TiC content formed in-situ in the dense Ti/
TiC composite material. The increase in BM time results in an increase 
in the TiC content and thus in the hardness and rigidity of the material. 
The measurement of Young’s modulus and the use of the law of the 
mixtures permit to estimate the rate of TiC formed. Thus, with 2 wt% 
SA, the increase in BM time from 30 to 60 min induces an increase in 
TiC from 1.5 to 4.3 V% respectively. Increasing the SA amount by 1 
to 2 wt% results in an increase in the TiC amount. On the other hand 
beyond 2 wt%, the fragmentation of the SA and the phase transition are 
disadvantaged because of the attenuation of the collision energy and 
the decrease of the local temperature. Thus a decrease in the TiC level 
was demonstrated with 4 wt% SA.
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