Face recognition with deep learning for mobile applications

Johannes Brindle *!, Christian Eppler ! and Stefan Mobius *!

'University of Applied Sciences, Ravensburg-Weingarten, Germany

October 29, 2015

Abstract

There is a lack of mobile open source applications to search
and find selected persons in image libraries. Especially if you
do not want to give away your data to cloud based services
this paper shows a novel approach to use deep learning to
train a feature detector in a desktop environment and integrate
the results in an Android application. With our approach all
privacy critical processing steps are running only locally and
stored only on the mobile device. Also the performance of

different neural network models are discussed.

Keywords: deep learning, supervised learning, Caffe, face
recognition, CNN, Android, mobile applications

1 Introduction

State of the Art There already exist very good ap-
proaches for face recognition on desktop systems. For
example Facebook recently developed DeepFace, a nine-
layer deep neural network with more than 120 million
parameters and an accuracy of 97.35 on the Labeled Faces
in the Wild (LFW) dataset [27]. Another work of scien-
tists at the Chinese University of Hong Kong estimate
the positions of facial keypoints with three-level convo-
lutional networks [26]. These methods have in common
that they use deep learning. This is state of the art in the
field of face recognition.

There are a number of frameworks available that can be
used to create deep learning networks. Older frameworks
like FANN (Fast Artificial Neural Network) and the mul-
tilayer perceptron implementation of OpenCV are based
on CPU only calculations and lack of new approaches
like drop out and rectified linear units [19][7]. In contrast
to Google, which can afford using 16000 cores, we have
very limited CPU computation power and deep learning
requires a lot of it [12]. So these CPU-only based frame-
works were no option for us. Therefore we had a closer
look on the GPU supported frameworks cuda-convnet2
and Caffe. The framework Caffe, developed by the Berke-
ley Vision and Learning Center (BVLC) proved as best
option for our needs [9]. There are some reasons for this.

*mail @joh-braendle.de
Thome @silentchris.de
fmail4stefm @ gmail.com

It supports the NVIDIA cuDNN (GPU Accelerated Deep
Learning) library, which emphasizes performance, ease-
of-use, and low memory overhead [4]. So the abilities of
modern parallel computing hardware can be used with-
out a lot of extra performance tuning effort. Models are
defined without coding and can be easily changed. It also
has the ability to switch between CPU and GPU, whereas
cuda-convnet2 seems to require a NVIDIA GPU [11]. As
we want to use the classifier on mobile devices, we need
this CPU support. There already exists an Android port
with the name caffe-android-lib, which itself is based on a
compact version of Caffe named caffe-compact. Models
can be trained on GPU and later be deployed to mobile
devices. Currently also a lot of researchers in the field of
deep neural networks use this framework.

2 Theory and Method

We use a deep convolutional neural network architecture
which is explained in detail in 2.1. For training we use
a computer with a high performance GPU. The classi-
fication can be done on mobile devices with the CPU,
because it needs less calculation power. Therefore a spe-
cial approach is needed though, which does not require
training on the mobile device.

To run and test different models on desktop and mobile
devices, we created a classifier module. This was done
in C++, because Caffe itself is written in C++ as well.
On the desktop system we use this classifier in a console
application to test different models. The same classifier is
used in the Android application to do the image classifi-
cation. As it is written in C++, the Android NDK toolset
is required for compilation. For training and testing our
neural network we created a dataset from the FaceScrub
[16] database as described in 3.2. We selected this dataset
as it contains a huge number of images and faces with
different poses.

2.1 Design of the neural network

We designed the neural network to have 6 layers with
learnable weights. Figure 1 shows the structure of the
network. It has an input, 2 convolutional, 3 hidden and
an output layer. After each convolution local response

mailto:mail@joh-braendle.de
mailto:home@silentchris.de
mailto:mail4stefm@gmail.com

Input Crop

16

9x9

Convolution

5x5 |~

72x72 64x64 54x54

28x28

I:1
&
i

Fully connected

8

k%

1500 750 32 480

* Pooling
** LRN

Figure 1: Neural network trained with Caffe (medium size)

normalization and max-pooling[1] are performed. Max-
pooling is done in a 2x2 neighborhood. This results in
better translation invariance. The first convolutional layer
use a 9x9 filter, the second a 5x5 filter. The remaining
layers are fully connected. Convolutional layers are uti-
lized because they are successfully used in many image
recognition tasks.

For all layers we use dropout to reduce overfitting. We
use dropout instead of prelearning (e.g. with denoising
auto encoders). This results in a simpler procedure. How-
ever more samples are needed for training. All layers
use the rectified linear unit as activation function [6]. In
contrast to the sigmoid function this helps preventing
that the gradient gets near to zero for the upper layers
in deep neural networks [13]. The last hidden layer re-
duces the information to a small amount like 32 float
point values. The is done to get more general features
which helps to distinguish faces of different untrained
persons. We use 72x72 pixel sized colored images which
are extracted from the original image by a function pro-
vided in the OpenCV library. As input for the neural
network we use several cropped parts of this 72x72 sized
image with a size of 64x64 pixels in BGR format. For
the training phase Caffe uses randomly selected parts of
the size 64x64 from the 72x72 image [2]. The advan-
tage of this is that Caffe can produce multiple training
patterns out of one image which is an efficient form of
data augmentation to pseudo increase the dataset. For
the classification we use five different versions of this
image by cropping to 64x64 pixels each. These five parts
are upper-left, upper-right, lower-left, lower-right and the
middle of the image. The results of the neural network
are averaged by weighting the middle twice, because this
should contain only parts of the face without background
and therefore is more important for our task.

2.1.1 Why not compare two faces directly

A much simpler approach than ours would be to use two
different faces as input of the network. Then we would
require only one output neuron which determines if the

two faces show the same person or not. However this
was not an option for us because of the performance
issues this would cause. With this approach we would
need to compare the face which is used as search input
with all other images on the mobile device. For each
comparison it would be necessary to calculate the result
of the neural network. As the neural network can be
fairly large this would require much processing power.
With our approach the output of the neural network can be
precalculated once for each face while the indexing phase.
The indexing phase is not as time critical as a search
request of the user. After the indexing phase is finished,
the mobile device only has to calculate the difference
in the already stored output neurons. The number of 32
output neurons in our case is very small, therefore less
calculation is needed to compute the difference.

2.2 Proposed Face distance optimization

In this paper we propose a way to make it easier to distin-
guish between data showing the same and data showing
different persons. Therefore we train an additional layer
with a different loss function (see formula figure 2). The
activations of the last hidden layer are used as input fea-
tures of the new layer. Normally neural networks use the
difference (commonly the L2-norm) between the target
and the calculated output values of one sample as loss
function. We instead use the distance between two sam-
ples as loss function. The idea is the following: If the
samples are from the same person, they show the same
face and the distance should be zero. Therefore we can
follow the negative gradient to reduce the distance. How-
ever in the case the samples are not from the same person
the distance should be maximized (to make distinction
easier). In this case we can follow the positive gradient
to increase the distance. We use the sigmoid function as
activation function. This limits the length of the output
vector. If the rectified linear unit would be used it could
become very large. The used partial derivative of the
loss function above is shown in formula figure 3.

2
=] Ho(’l)=o(12) Hz: %)l: |:Sig (%Wi,_j'xs-tl >> —Sig (?vv,-yj~x_(/-’2)>:|

Figure 2: Loss function

733}?1 = [Sig (gjwk, § ~x.<ft‘)> -Sig (?wk, j ,xﬁ_fz))} .
{Sig’ (ZWk.,_/ 'Xyl)> 'xf g)—Sig' <Zwk.j 'x_<,-’2)> .xl(rz)}
J J

Figure 3: Derivate of the loss function for weight with
index k,1

2.3 Optimizations in the Android applica-
tion

On the mobile device we have less calculation power. For
this reason we have to do some performance tweaks in
the application. We split the work on the mobile device
into an indexing and a search phase. The user initiates the
indexing process after the installation of the application
is finished. This should be done while the mobile phone
has power supply because this task needs time and has
huge CPU usage. After this step all results are stored
in a SQLite database. Images where no face is found
are marked in the database and will not be considered
during the search. All images that have not changed
do not have to be processed a second time. Only new
images and changed images will be processed. When
the user initiates a search request only the selected image
are processed. All other images are precalculated and
do not need to be processed. Finally the distances of the
searched image to all indexed images is calculated. One
disadvantage of this method is that the indexing process
should be started every time new images are placed on
the mobile phone.

3 Experiments

We tried neural network models with different sizes for
training. Table 1 shows the three different network sizes
that we used. It shows the number of neurons for each
layer. These network sizes showed to be a good compro-
mise between size and accuracy. The large model has
a size of 65 MB, the medium 29 MB and the small 9
MB. The large network is at the border to be feasible for
mobile devices (RAM, processing power, disk usage and
size of the Android App).

The ROC curve in figure 4 shows the accuracy over the
number of iterations. We started with a learning rate of
0.02 and gradually reduced it by multiplying it with a
factor of 0.99975 every 200 iterations. After Sm iterations
the learning rate is about 4- 107, As momentum we use
0.1 and 9-10~7 for weight decay. The solver file of Caffe
is shown in figure 10.

1.0

0.8

Accuracy
o
o
-

I
S
T

0.2

P Small sized network
*—% Medium sized network
+—+ Large sized network

0% 1 2 3 4 5
Iterrations (in millions)
Figure 4: Accuracy over time
able 1: Sizes of the layers
Convolutional | Fully connected
1 2 1 21 3
Small 16 8| 500 | 250 | 32
Medium | 16 8 | 1500 | 750 | 32
Large 16 16 | 1800 | 1000 | 64

3.1 Different distance metrics

Our goal is to create a classifier which can decide, if
two images shows the same or a different person. The
approach should work for persons who the neural network
was not trained for. Another very important goal is to
reduce the amount of work for the mobile device as much
as possible. Therefore we decided to do no training at all
on the mobile device.

The challenging part is to fulfill these requirements by
finding an appropriate neural network architecture. The
idea is that the neural network should produce the same
(or a very similar) output pattern for pictures of the same
person. For different persons the output should differ as
much as possible. If this would be the case we could use
the quadratic distance of the two output vectors to decide
if the pictures show the same or a different person. Our
first idea was to train a neural network which classifies
a bunch of different persons. Each person is linked to
a different output neuron which should have either a
activity of 1, if the input data is a picture of this person,
or 0 otherwise.

To determine if two pictures of trained persons are from
the same person, it is therefore only necessary to check
if the index of the neuron with the highest activity is
the same for both pictures. However it is not our goal
to classify only learned persons. The approach should
work with every person. Even for persons who are not
born until now. Therefore we had the idea to check if the
quadratic distance of the output neurons is smaller than a
certain threshold. A person should have more similarities
to certain trained persons and less to others. However we
could not get the approach working very well. All the
activities on the output neurons for a not trained person

seems to be very close to 0. Because of this, the quadratic
distance seems to have not much expressiveness. As a
new try we used the activity of the last hidden layer of
our model trained with Caffe. The last hidden layer was
designed to have a much smaller number of neurons than
the output layer. Therefore the idea was that the neural
network has to learn more general features in this layer. It
should not be possible that the last hidden layer contains
much special features for a certain person because then
other persons could not be classified correctly. Using the
activation of the last hidden layer resulted in much better
expressiveness.

To further improve the results we decided to train an
additional layer which uses the activations of the last
hidden layer as input features. This layer is described in
detail in 2.2.

3.2 Preparation of sample data

To train and test the neural network we use the FaceScrub
dataset [16], which has over 100.000 images of faces.
The images show faces with different orientations, not
only specific, as biometrical. However we had to do some
pre and post-processing of the data. First the dataset
consists only of URLs to image files. Some of the images
have changed or do have a different resolution now. So
we only use images which still have the correct SHA256
checksum.

Normally the dataset is split into two parts. One usually
larger part for training and the other for validation. How-
ever for our case three parts are needed. Before splitting
the dataset in training and validation data, we separated
another part from the dataset. This part will later be used
to test the capability of the neural net to generalize on
completely untrained persons. For this data we also made
as less modifications as possible. This is needed to have
comparable results. Especially we did not copy or re-
move images that showed the wrong person or no person
at all.

The remaining part of the dataset is used for training
and validation on trained data. This validation data is
used to test the accuracy for images of trained persons.
Note that we do not really need this kind of validation
data. However it is used while training the Caffe model.
There we use it to check the progress of the training and
if the training is working at all. Otherwise it would be
necessary to alter the Caffe-Framework for our special
case.

For the training data and validation data we did some
modification to increase the number of samples. First
we cut the images by hand in the way that only the de-
sired face was visible or deleted the image, if it showed
another person or no person at all. We increased the num-
ber of training samples to about 275.000. Therefore we
used the same source image multiple times rotated by a
small degree. Also we added small amount of noise, blur,

motion-blur and some other image effects. The source
code is available in a small toolbox [5].

The faces are automatically cropped out of the images
with the Cascade Classification API from OpenCV [21].
The android application later uses the same cropping
function so the cut faces will contain the same part of
the face as in the training phase. However for the train-
ing data the resulting images were checked manually,
because sometimes OpenCV detects unwanted parts on
the image as faces. Again we did not remove any images
from the validation data with untrained persons as this
would change the accuracy results.

We also added a new class of images to the training data
which do not contain a face. Later this class is used to
check if the detected part of an image is really a face.

4 Results
4.1 Application

As result we created a ready to use Android application'?
which can be used to search for faces in images with
an other image. It is possible to search a person based
on a photo in contacts, a photo from the filesystem or a
photo taken with the camera from the mobile device. On
figure 5 you can see a screenshot of the created Android
application.

The application uses OpenCV to detect faces and the
Caffe model to recognize faces. All result vectors are
saved locally in a SQLite database. The application is
designed for an easy adaption of the Caffe model without
putting hands on the code. Only a small amount of files
(see README of toolbox [5] for details) have to be
adapted. The files can be replaced directly on the sdcard
for testing purposes. So it is possible to train an own
Caffe model [21]. An other possible adaptation is to
exchange the xml file of the OpenCV detector [23]. By
this change and by using another Caffe model the app can
be modified easily to detect completely different objects.
This can be done without changing a single line of code.
For example detecting flowers, cars etc.

4.2 Analysis of learned features in first
convolutional layer

The images figure 7 and figure 8 show the weights (bias
unit is omitted here) and the resulting maps for a sam-
ple image. The weights can have positive or negative
values. Here a gray pixel means a weight of zero. Pos-
itive weights are brighter, negative weights are darker.
The images of the weights are nearly grayscale. This
means that the color seems to have a marginal influence.
Some training images are grayscale. This could result in
more grayscale like weights. The weights are mostly bars
with different orientations. However horizontal structures

1
https://play.google.com/store/apps/details?id=de.informatikprojekt.
searchmyfriends

https://wwa.youtube.com/watch?v=wpLRmk19AmI

https://play.google.com/store/apps/details?id=de.informatikprojekt.searchmyfriends
https://play.google.com/store/apps/details?id=de.informatikprojekt.searchmyfriends
https://www.youtube.com/watch?v=wpLRmk19AmI

@ search my friends i =@ sSearchmyfriends mwozerune @ search my friends woizieRuNG

mit Namen Christian Eppler X Christian Eppler
Christian Eppler T Christian Eppler r

50 Treffer

Figure 5: Application

1.0 T T
7
-
L
.
-
.
0.8 e i
.
.
.
-
-
L
0.6 7]
> .
£ -
> .
= -
= .
5 .
S -
” 0.4 L7 ,
.
-
L
.
-
.
0.2¢ e -
B +—+ Hidden Layer L1
e @-@® Additional Layer L2
e %% Hidden Layer L2
g <<« additonal Layer L1
0.0 L L L T
0.0 0.2 0.4 0.6 0.8 1.0
1-specificity

Figure 6: Performance

seem to be preferred. On figure 8 a black pixel means
zero activation. The brighter the pixel in the figure the
more the neuron is active (negative activations are not
possible). One particular interesting result is that the 11th
filter does have weights close to zero. This resulting map
has also zero activation over the whole image. As the bias
unit is also zero this neuron seems to fire never. However
we have no explanation for this behavior.

Figure 8: Resulting maps for an example image

Figure 7: Weights of the first convolutional layer

4.3 Comparison classification of different
layers

In the following we show a projection of the activations
of different layers in the neural network. We use Sam-
mon’s mapping to project the high dimensional data to 2
dimensions, so that the results are human readable. As
with PCA the distances between different samples are
approximately the same. However, in contrast to PCA
Sammon’s mapping [24] is a nonlinear mapping.

Figure 9a shows the Sammon’s mapping of the raw input
images. As expected the plot shows no visible clusters
for images of the same person. The reason for this is that
the raw pixel values can be quite different although the
same person is showed (e.g. different brightness level or
orientation of the face).

Figure 9b shows the Sammon’s mapping of the activa-
tions of the output layer learned with the Caffe frame-
work. It shows visible clusters. However some clusters
are overlapping.

Figure 9c shows Sammon’s mapping of the activations of
the last hidden layer learned with the Caffe framework.
It also shows visible, but also some overlapping clusters.
Further the clusters are close to each other. This means
that the learned neural network cannot distinguish very
well between them in these cases.

Figure 9d shows Sammon’s mapping of the activations
of our additional layer. In contrast to the Sammon’s
mapping of the output- or hidden layer the distances
between the clusters are bigger in some cases. This helps
to distinguish between the clusters more easily. However
especially in the case where the clusters are overlapping
this results in no improvement. As the additional layer
is using the sigmoid function as activation function (in
contrast to rectified linear unit for the hidden layer) the
results seem to have less outlier. A particular interesting
result in this graph is that all male persons are in the
lower half and all females are in the upper half. This is
shown in figure 9e. Therefore we can conclude that our
model is able to separate female and male persons very
well.

Table 2: Accuracy after Sm iterations
Hidden Extra

L1 L2 | LI L2
Small 0.73 | 0.70 | 0.75 | 0.76
Medium | 0.72 | 0.55 | 0.79 | 0.72
Large 0.56 | 0.53 | 0.74 | 0.78

We could show that our method is working fairly well as
shown in table 2. With the best model we got an accuracy
of 0.79 for checking if two images show the same person.
The calculation of the accuracy is done with faces which
do not occur in the training dataset. The task to learn
suitable features is not easy, because the neural network
has to learn to generalize. Compared to other publicized
approaches our method does not have the best accuracy.

However our goal was not to reach the best accuracy.
Instead we were looking for a method which works well
on mobile devices. Therefore we had to accept some
compromises as described in 2.1.

We tried to normalize the output values. However this
did not give much better results.

4.4 Related work

Table 3 shows a comparison of the accuracy with another
convolutional neural network from [8]. The results are
not calculated with the same dataset. Therefore the signif-
icance of this comparison should be treated with caution.
However the images are very similar to the images in the
dataset[16] that we used. Therefore we can conclude that
the results should not differ too much. The other paper
uses the LFW faces DB [25]. It could be possible future
work to calculate the accuracy on the LFW dataset with
our approach.

Table 3: Accuracy comparison with results from [8]
Own | Other

Small 0.75 | 0.7828 +0.0046
Medium | 0.79 | 0.7882+0.0037
Large 0.74 | 0.7807 £0.0035

5 Conclusions

We have seen that the medium size neural network gives
the best results for unlearned persons. It is surprising that
it shows to have a better performance than the largest
network. The results for unlearned persons are shown in
table 2. On the other hand the results for learned person
in figure 6 show other results.

We have shown that small neural networks can work
fairly well even with a very small number of weights.
On our experiments we have shown that the medium size
network with a size of approximately 29MB gives the best
results. This are good news for mobile use because less
calculation time is needed. However it is still required to
spend a lot of time on the PC to train the network for a
long time to get good results.

We have split the work on the mobile device in an in-
dexing and an search phase. The indexing phase can be
run on the phone for example in the night when it is con-
nected to a power supply. While the indexing phase all
in advance calculable data is stored in a SQLite database.
Out of this reason the user search request can be execute
very quick without waiting too long, which is very crucial
for the acceptance of the app.

Another alternative promising approach for a better ac-
curacy for the classification of different faces would be
to use clustering to get only one label for each person
instead of 32 float values. But with this approach the
clustering should be calculated every time we search for
a new person to get the best results. But this can also
result in far more calculation time.

100

’ @ Per0 ° : Eer‘g : ::er‘g
Il er. er.
P | T ST ¥y e 0 o g e .-
: ';Z:i o % o, @ y v 60l @ Per.4 @ Perd | J—. e
prel mg 8 ®% Pe®v o Pers| m mE ° o o 40 @ Ppers5|© m L} LY
20001 § Y oo, ¢ o Per6 X ¢ Per6 ° - °
$ s 0% e, vV, 4Or o per7 o 5 e °s o ® Per7 o m® o 8 e, o
om®e o 69 Py ° 5 =° =m° . :00. ° 20 ° ° 8, Co, m®
ok 0 0 .0° om® oV 0 201 FEL LTS PO e i oog o0md B ©
© %V Vo Bg v, o l.ol’.oplo.'.‘.‘ ° 0 ® ° ’o&vvg 00
000 @ ¢ 0o ¥V o0 md o ° S 60 ® Y ° g8 vI¥Lod 0
2000 e R e, o 000 Go’vcb s YV 00 4] 0@ Ve d o0
¢ s ae " & % "é‘v‘{ o0 2 o ¥V off %o se
o .o ‘e ° —20r o V & §o, 0¥ X ° W 0700 "0 o
-4000 @ o o~ @ ¢ o 0B .Q..QO o ° 0 0.:
e o ® By o B a0 ° d% 2 o - ° *
@
-6000F e ® ° 6o ~60
* L 4
8005000 ~16000- 14000 ~12000-10000 —8000 —6000 4000 —2000 0 =100 80 —60 40 -20 0 20 0 Yoo s 60 a0 20 o 20
(a) Input (b) Output (c) Hidden
4 . . . 4 : . . .
3 g o 3 ¢ :Q ‘V:N a 3 @ Male Re® °% z
m o3| ¢ 00 v ‘ © e %% o) ©
| @ peral 0 [3 ’Q.gv‘ Voogo , ¥ o o 8Seo o o...
0 Per5|gg ¢ ¢ v o v % oo ° ® e o0 %
¢ pers| v Vv o gV v,d e oo © ,%0,0
O Per7 * ° ® ®
1 v v oy v E ° '.o N
. [-: o v . }0: ° o
mg° ® o ° e 6% o o ° o
-1 B 0 o000, .0 -1 S e .t
E.'soo.o 0°°e o 0’.0 o®% 0o
))
a otgae et o gl AN NI X
° ° ° *
. ° f.o omu . ."0 *®®
7 %6 25 22 33 2 1 0 17 26 25 y 33 =) -1 0 1
(d) Additional (e) Additional Female/Male

Figure 9: Sammon’s mapping

We didn’t use a third convolutional layer because our
first approach had fewer input neurons. For this network
a third convolutional layer was not needed. Later we
did not want to change our design from the ground be-
cause the it was already working fairly well. Adding an
additional convolutional layer would require to balance
the network structure again. It is a possible future task
to train a network with 3 convolutional layers. Another
paper indicates that for our input size it could be useful !

to add a third convolutional layer [8].

In this paper we proposed a new approach to learn a met- 3
ric for face distances. We could show that our approach 4
increases the distances for faces of different persons. Also s
our approach is very good in distinguishing between fe- 6
male and male persons. Another main advantage of our 7
approach is that we running all privacy critical processing 8
only locally on the mobile device. This aspect is more o
important if we have a look on the latest news of hacked 10

cloud services and the patriot act law. Especially in the e

field of face recognition it can be a serious privacy issue 2

if the data falls into the wrong hands.

6 Acknowledgments

We would like to thank Prof. Briimmer for his gracious
support and feedback. We also thank Matthias Bernhard
for providing a Samsung Galaxy S4 for development and

testing.

40

net: "/PATH/train_val.prototxt"
test_iter: 1000
test_interval:
0.02
lr_policy: "step"
gamma: 0.99975

stepsize: 200
20

5000000

0.100
weight _decay: 0.0000009
snapshot: 50000
snapshot_prefix: "/PATH/)

caffenet_train"

GPU

1000
base_1r:

display:
max_iter:
momentum:

solver_mode:

Figure 10: Caffe solver configuration file

References

(1]

2

—_—

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Y-Lan Boureau, Jean Ponce, and Yann LeCun. A
theoretical analysis of feature pooling in visual
recognition. In Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10),
pages 111-118, 2010.

caffe.berkeleyvision.org. Layers. http:
//caffe.berkeleyvision.org/tutorial/
layers.html [31.07.2015].

Yuheng Chen. Caffe compact. https://github.
com/chyh1990/caffe-compact [29.07.2015].

Sharan Chetlur, Cliff Woolley, Philippe Vandermer-
sch, Jonathan Cohen, and John Tran. cudnn: Effi-
cient primitives for deep learning. http://arxiv.
org/pdf/1410.0759v3.pdf [29.07.2015].

Ste-
http:

Johannes Brindle Christian Eppler,
fan Mobius. Toolbox for dataset.
//informatikprojekt.de/uploads/
searchMyFriends_toolbox_v0.1.tar

[19.08.2015].

George E Dahl, Tara N Sainath, and Geoffrey E
Hinton. Improving deep neural networks for Ivcsr
using rectified linear units and dropout. In Acous-
tics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 8609—
8613. IEEE, 2013.

FANN. Fast artificial neural network library. http:
//leenissen.dk/fann/wp/ [29.07.2015].

Guosheng Hu, Yongxin Yang, Dong Yi, Josef Kit-
tler, William Christmas, Stan Z Li, and Timothy
Hospedales. When face recognition meets with
deep learning: an evaluation of convolutional neu-
ral networks for face recognition. arXiv preprint
arXiv:1504.02351, 2015.

Yangqing Jia, Evan Shelhamer, Jeff Donahue,
Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Con-
volutional architecture for fast feature embedding.
In Proceedings of the ACM International Confer-
ence on Multimedia, MM ’ 14, pages 675-678, New
York, NY, USA, 2014. ACM.

Yangqing Jia, Evan Shelhamer, Jeff Donahue,
Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Con-
volutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

Alexander Krizhevsky. cuda-convnet2. https:
//code.google.com/p/cuda-convnet2/
wiki/Compiling [29.07.2015].

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Quoc V Le. Building high-level features using large
scale unsupervised learning. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on, pages 8595-8598. IEEE,
2013.

Andrew L Maas, Awni Y Hannun, and Andrew Y
Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proc. ICML, volume 30, 2013.

Alexis Mignon and Frédéric Jurie. Pcca: A new
approach for distance learning from sparse pairwise
constraints. In Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on, pages
2666-2672. IEEE, 2012.

Jawad Nagi, Frederick Ducatelle, Gianni Di Caro,
Dan Ciresan, Ueli Meier, Alessandro Giusti, Far-
rukh Nagi, Jirgen Schmidhuber, Luca Maria Gam-
bardella, et al. Max-pooling convolutional neural
networks for vision-based hand gesture recogni-
tion. In Signal and Image Processing Applications
(ICSIPA), 2011 IEEE International Conference on,
pages 342-347. IEEE, 2011.

Hong-Wei Ng and Stefan Winkler. A data-driven
approach to cleaning large face datasets. In Im-
age Processing (ICIP), 2014 IEEE International
Conference on, pages 343-347. IEEE, 2014.

Nvidia. cudnn. https://developer.nvidia.
com/cudnn [29.07.2015].

Nvidia. https://github.com/sh1r0/caffe-android-lib.
https://github.com/shlr0/caffe-android
[29.07.2015].

OpenCV. Opencv mlp. https://github.com/
Itseez/opencv/blob/master/modules/ml/
src/ann_mlp.cpp[29.07.2015].

OpenCV. Opencv mlp. http://docs.opencv.
org/modules/ml/doc/neural _networks.

htm1[29.07.2015].

opencv.org. Cascade classifier training.
http://docs.opencv.org/doc/user_guide/
ug_traincascade.html [31.07.2015].

opencv.org. opencv face recognition.
http://docs.opencv.org/2.4/modules/
contrib/doc/facerec/index.html

[29.07.2015].

opencv.org. opencv object recognition.
https://github.com/Itseez/opencv/tree/
master/data/ [31.07.2015].

John W Sammon. A nonlinear mapping for data
structure analysis, 1969.

http://caffe.berkeleyvision.org/tutorial/layers.html
http://caffe.berkeleyvision.org/tutorial/layers.html
http://caffe.berkeleyvision.org/tutorial/layers.html
https://github.com/chyh1990/caffe-compact
https://github.com/chyh1990/caffe-compact
http://arxiv.org/pdf/1410.0759v3.pdf
http://arxiv.org/pdf/1410.0759v3.pdf
 http://informatikprojekt.de/uploads/searchMyFriends_toolbox_v0.1.tar
 http://informatikprojekt.de/uploads/searchMyFriends_toolbox_v0.1.tar
 http://informatikprojekt.de/uploads/searchMyFriends_toolbox_v0.1.tar
http://leenissen.dk/fann/wp/
http://leenissen.dk/fann/wp/
https://code.google.com/p/cuda-convnet2/wiki/Compiling
https://code.google.com/p/cuda-convnet2/wiki/Compiling
https://code.google.com/p/cuda-convnet2/wiki/Compiling
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://github.com/sh1r0/caffe-android
https://github.com/Itseez/opencv/blob/master/modules/ml/src/ann_mlp.cpp
https://github.com/Itseez/opencv/blob/master/modules/ml/src/ann_mlp.cpp
https://github.com/Itseez/opencv/blob/master/modules/ml/src/ann_mlp.cpp
http://docs.opencv.org/modules/ml/doc/neural_networks.html
http://docs.opencv.org/modules/ml/doc/neural_networks.html
http://docs.opencv.org/modules/ml/doc/neural_networks.html
http://docs.opencv.org/doc/user_guide/ug_traincascade.html
http://docs.opencv.org/doc/user_guide/ug_traincascade.html
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/index.html
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/index.html
https://github.com/Itseez/opencv/tree/master/data/
https://github.com/Itseez/opencv/tree/master/data/

[25]

[26]

[27]

Conrad Sanderson and Brian C Lovell. Multi-region
probabilistic histograms for robust and scalable
identity inference. In Advances in Biometrics, pages
199-208. Springer, 2009.

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep
convolutional network cascade for facial point de-
tection. In Computer Vision and Pattern Recog-
nition (CVPR), 2013 IEEE Conference on, pages
3476-3483. IEEE, 2013.

Yaniv Taigman, Ming Yang, Marc’ Aurelio Ranzato,
and Lars Wolf. Deepface: Closing the gap to human-
level performance in face verification. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 1701-1708. IEEE, 2014.

	Introduction
	Theory and Method
	Design of the neural network
	Why not compare two faces directly

	Proposed Face distance optimization
	Optimizations in the Android application

	Experiments
	Different distance metrics
	Preparation of sample data

	Results
	Application
	Analysis of learned features in first convolutional layer
	Comparison classification of different layers
	Related work

	Conclusions
	Acknowledgments

