

Face Sheet/Core Disbonding in Sandwich Composite Components: A Road Map to Standardization: *Test Method Development*

James Ratcliffe

NASA Langley Research Center, Hampton, Virginia

Ronald Krueger

National Institute of Aerospace, Hampton, Virginia

11th International Conference on Sandwich Structures March 21-23, 2016

Collaborations

<u>NASA</u>

Ronald Krueger (NIA) James Ratcliffe

University Partners

Daniel Adams – University of Utah Waruna Seneviratne – NIAR/Wichita State

US Government Agencies

Larry Ilcewicz – FAA Curt Davies – FAA Zhi-Ming Chen – FAA Supporting Projects
NASA Advanced Composites Project

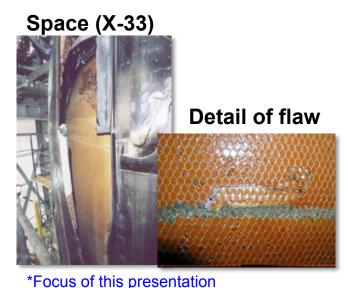
Professional Societies

ASTM Committee D30 on Composite Materials Composite Materials Handbook - CMH-17

Other Partners

Ley Richardson – DuPont, Richmond, VA Yannick Albertone – DuPont, Switzerland Ralf Hilgers – Airbus Hamburg, Germany Christian Berggreen – DTU, Denmark Martin Rinker - Fraunhofer Institute (FhG), Germany

Overview



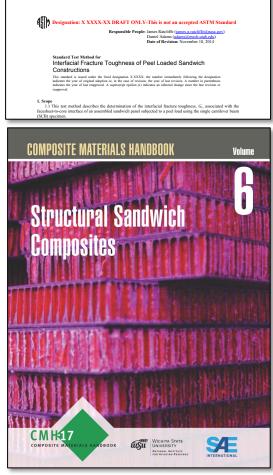
- Background
- Road Map
- Development of a test method for fracture toughness testing
- Draft ASTM test method
- Round Robin Exercise
- Closing Remarks

Background

- Problem
 - In-service component failures associated with face sheet/core disbonding in unvented honeycomb core sandwich
 - Degradation due to disbonding affects operational safety
 - Failures may discourage use of composites in 'future' vehicles
 - Methods for assessing propensity of sandwich structures to disbonding not fully matured, accepted and documented
 - Methods development is currently being discussed within the Disbond/ Delamination Task Group in CMH-17

Face sheet/core disbonding*

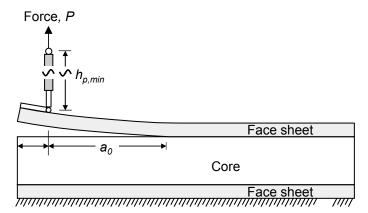
ICCS 11, March 21-23 2016


Road Map

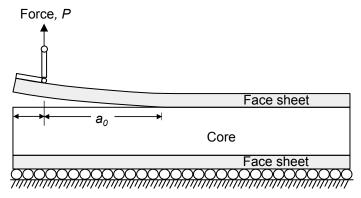
- Ongoing CMH-17/ASTM D30 activity initiated 2012
- Current FAA initiative on Continuous Operational Safety (COS)
- Objective
 - Develop a fracture mechanics based methodology for damage tolerance assessment of sandwich structure
 - Assessment of face sheet/core disbonding in sandwich components similar to delamination in composite laminates
 - Approach
 - Coupon test standard development
 - <u>Test method for peel-dominated (mode I) interfacial</u> <u>fracture toughness*</u>
 - Test method for mode II and mixed-mode interfacial fracture toughness
 - Analysis development
 - Panel testing for analysis validation
 - Publication
 - ASTM D30 fracture toughness standards[¶]
 - CMH-17 Vol. 6 best practices, guidelines and case studies

*Focus of this presentation

Society Member, Used with permission of ASTM ICCS 11, March 21-23 2016



Coupon Test Standard Development - 1 of 2

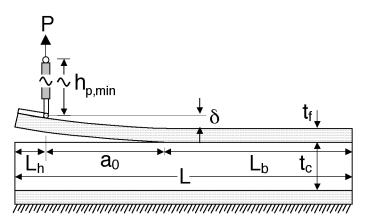

- Test standard development in ASTM committee D30 (WK 47682)
 - Characterize properties of face sheet/core interface
 - Mode-I disbond driving force assumed most critical for fracture control
 - Measure fracture toughness G_c
 - Single cantilever beam (SCB) type configuration was identified as the most appropriate test
 - Starter crack
 - o **Teflon**
 - o Saw cut
 - Simple loading fixture
 - Loading offset fixture
 - Translatable carriage fixture
 - Loading at disbond front independent of disbond length
 - Disbonding along or near the face sheet/core interface (no kinking into the core)
 - Disbond toughness can be calculated by using a compliance calibration procedure for data reduction

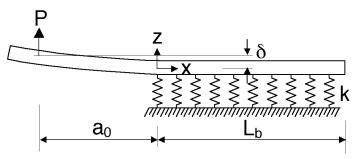
Loading offset fixture

Translatable carriage fixture

Coupon Test Standard Development – 2 of 2* ASTM committee D30 (WK 47682)

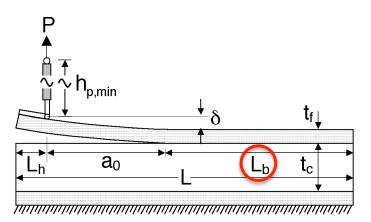
- Standardized test method for peel-dominated interfacial fracture toughness of sandwich constructions (draft)*
 - Main partners University of Utah and NASA Langley
 - ASTM draft[¶] includes procedure to determine the SCB specimen dimensions (specimen length, face sheet thickness, initial disbond length)
 - Current round robin activity involves seven research laboratories in the US and Europe

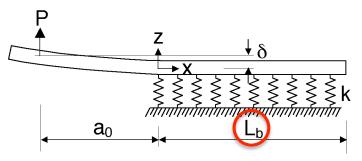




*D. Adams and B. Kuramoto, "Development and Evaluation of Fracture Mechanics Test Methods for Sandwich Composites," *JAMS 2012 Technical Review*, 2012. *M. Rinker, J. Ratcliffe, D. Adams, and R. Krueger, "Characterizing Facesheet/Core Disbonding in Honeycomb," NASA/CR-2013-217959, 2013. *Society Member, Used with permission of ASTM

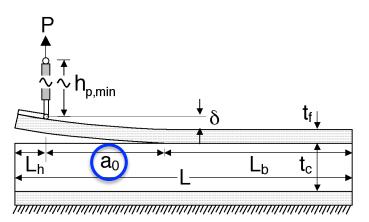
- Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)
- Specimen dimensions sized to match known compliance solution and ensure proper specimen behavior
- Test configured to yield mode-I dominated disbond driving force

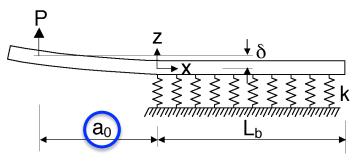




SCB Specimen Parameter	Limitation
Intact portion of specimen	$L_b \ge L_{b,min} = 2.7 \left[\frac{t_c t_f^3 E_f}{3E_c} \right]^{\frac{1}{4}}$
Initial disbond length (bending dominant deformation)	$a_{0} \ge a_{\min}^{bending} \approx \sqrt{\frac{30E_{f}t_{f}^{2}}{G_{xz,f}}} - 0.59L_{b,\min}$ $a_{0} \ge a_{\min}^{compliance} = L_{b,\min}$
Final disbond length	$a_{max} \ge a_0 + a_{prop}$
Face sheet thickness for small deformations	$t_{f} \ge t_{f}^{smalldisp} = \left[\frac{a_{max}}{\left(\frac{3a_{max}^{2}E_{f}}{200G_{c}}\right)^{\frac{1}{4}} - \left(\frac{t_{c}E_{f}}{3E_{c}}\right)^{\frac{1}{4}}}\right]^{\frac{4}{3}}$
Face sheet thickness to prevent flexural failure of face sheet	$t_{f} \ge t_{f}^{\text{strength}} \approx \frac{6E_{f}G_{c}a_{\max}^{2}}{\sigma_{c}^{2}} \left[a_{\max} + \left(\frac{t_{c}(t_{f}^{\text{small disp}})^{3}E_{f}}{3E_{c}}\right)^{\frac{1}{4}}\right]^{\frac{1}{4}}$
Specimen length	$L \ge L_{min} = L_{hinge} + a_{max} + L_{b,min}$
Load application offset to ensure vertical load application	$h_p \ge h_{p,min} \approx 1.06 a_{max}$

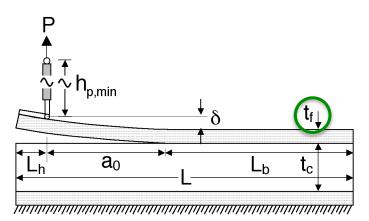
- Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)
- Specimen dimensions sized to match known compliance solution and ensure proper specimen behavior
- Test configured to yield mode-I dominated disbond driving force

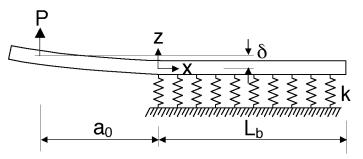




SCB Specimen Parameter	Limitation
Intact portion of specimen	$L_b \ge L_{b,min} = 2.7 \left[\frac{t_c t_f^3 E_f}{3E_c} \right]^{\frac{1}{4}}$
Initial disbond length (bending dominant deformation)	$a_{0} \ge a_{\min}^{bending} \approx \sqrt{\frac{30E_{f}t_{f}^{2}}{G_{xz,f}}} - 0.59L_{b,\min}$ $a_{0} \ge a_{\min}^{compliance} = L_{b,\min}$
Final disbond length	$a_{max} \ge a_0 + a_{prop}$
Face sheet thickness for small deformations	$t_{f} \ge t_{f}^{smalldisp} = \left[\frac{a_{max}}{\left(\frac{3a_{max}^{2}E_{f}}{200G_{c}}\right)^{\frac{1}{4}} - \left(\frac{t_{c}E_{f}}{3E_{c}}\right)^{\frac{1}{4}}}\right]^{\frac{4}{3}}$
Face sheet thickness to prevent flexural failure of face sheet	$t_{f} \ge t_{f}^{strength} \approx \frac{6E_{f}G_{c}a_{max}^{2}}{\sigma_{c}^{2}} \left[a_{max} + \left(\frac{t_{c}(t_{f}^{small\ disp\ })^{3}E_{f}}{3E_{c}}\right)^{\frac{1}{4}} \right]^{\frac{1}{2}}$
Specimen length	$L \ge L_{min} = L_{hinge} + a_{max} + L_{b,min}$
Load application offset to ensure vertical load application	$h_p \ge h_{p,min} \approx 1.06 a_{max}$

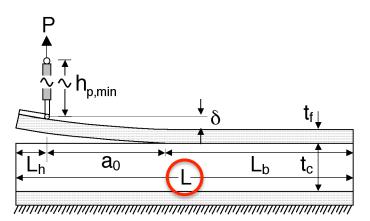
- Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)
- Specimen dimensions sized to match known compliance solution and ensure proper specimen behavior
- Test configured to yield mode-I dominated disbond driving force

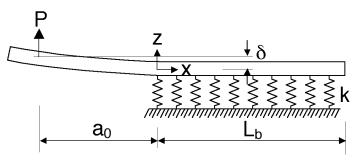




SCB Specimen Parameter	Limitation
Intact portion of specimen	$L_b \ge L_{b,min} = 2.7 \left[\frac{t_c t_f^3 E_f}{3E_c} \right]^{\frac{1}{4}}$
Initial disbond length (bending dominant deformation)	$a_{0} \ge a_{\min}^{bending} \approx \sqrt{\frac{30E_{f}t_{f}^{2}}{G_{xz,f}}} - 0.59L_{b,\min}$ $a_{0} \ge a_{\min}^{compliance} = L_{b,\min}$
Final disbond length	$a_{max} \ge a_0 + a_{prop}$
Face sheet thickness for small deformations	$t_{f} \ge t_{f}^{smalldisp} = \left[\frac{a_{max}}{\left(\frac{3a_{max}^{2}E_{f}}{200G_{c}}\right)^{\frac{1}{4}} - \left(\frac{t_{c}E_{f}}{3E_{c}}\right)^{\frac{1}{4}}}\right]^{\frac{4}{3}}$
Face sheet thickness to prevent flexural failure of face sheet	$t_f \ge t_f^{\text{strength}} \approx \frac{6E_f G_c a_{max}^2}{\sigma_c^2} \left[a_{max} + \left(\frac{t_c (t_f^{\text{small disp}})^3 E_f}{3E_c}\right)^{\frac{1}{4}} \right]^{-2}$
Specimen length	$L \ge L_{min} = L_{hinge} + a_{max} + L_{b,min}$
Load application offset to ensure vertical load application	$h_p \ge h_{p,min} \approx 1.06 a_{max}$

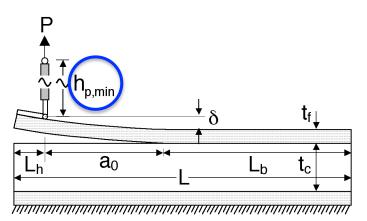
- Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)
- Specimen dimensions sized to match known compliance solution and ensure proper specimen behavior
- Test configured to yield mode-I dominated disbond driving force

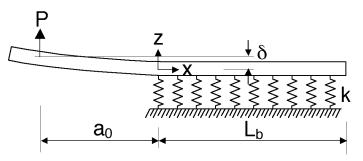




SCB Specimen Parameter	Limitation
Intact portion of specimen	$L_b \ge L_{b,min} = 2.7 \left[\frac{t_c t_f^3 E_f}{3E_c} \right]^{\frac{1}{4}}$
Initial disbond length (bending dominant deformation)	$a_{0} \ge a_{\min}^{bending} \approx \sqrt{\frac{30E_{f}t_{f}^{2}}{G_{xz,f}}} - 0.59L_{b,\min}$ $a_{0} \ge a_{\min}^{compliance} = L_{b,\min}$
Final disbond length	
	$a_{max} \ge a_0 + a_{prop}$
Face sheet thickness for small deformations	$t_{f} \ge t_{f}^{smalldisp} = \left[\frac{a_{max}}{\left(\frac{3a_{max}^{2}E_{f}}{200G_{c}}\right)^{\frac{1}{4}} - \left(\frac{t_{c}E_{f}}{3E_{c}}\right)^{\frac{1}{4}}}\right]^{\frac{1}{3}}$
Face sheet thickness to prevent flexural failure of face sheet	$t_f \ge t_f^{\text{strength}} \approx \frac{6E_f G_c a_{max}^2}{\sigma_c^2} \left[a_{max} + \left(\frac{t_c (t_f^{\text{small disp}})^3 E_f}{3E_c}\right)^{\frac{1}{4}} \right]^{-2}$
Specimen length	$L \ge L_{min} = L_{hinge} + a_{max} + L_{b,min}$
Load application offset to ensure vertical load application	$h_p \ge h_{p,min} \approx 1.06 a_{max}$

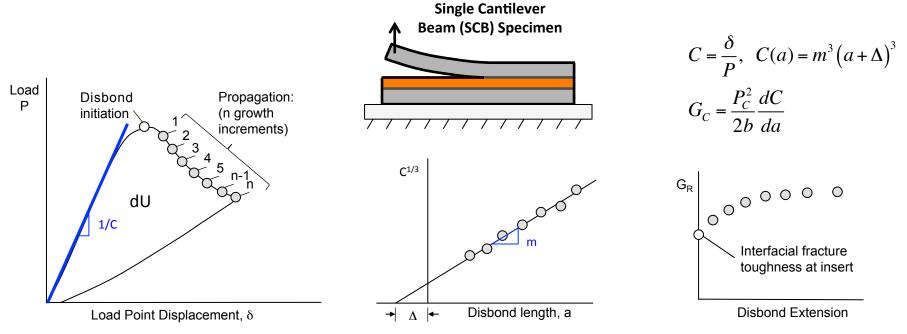
- Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)
- Specimen dimensions sized to match known compliance solution and ensure proper specimen behavior
- Test configured to yield mode-I dominated disbond driving force



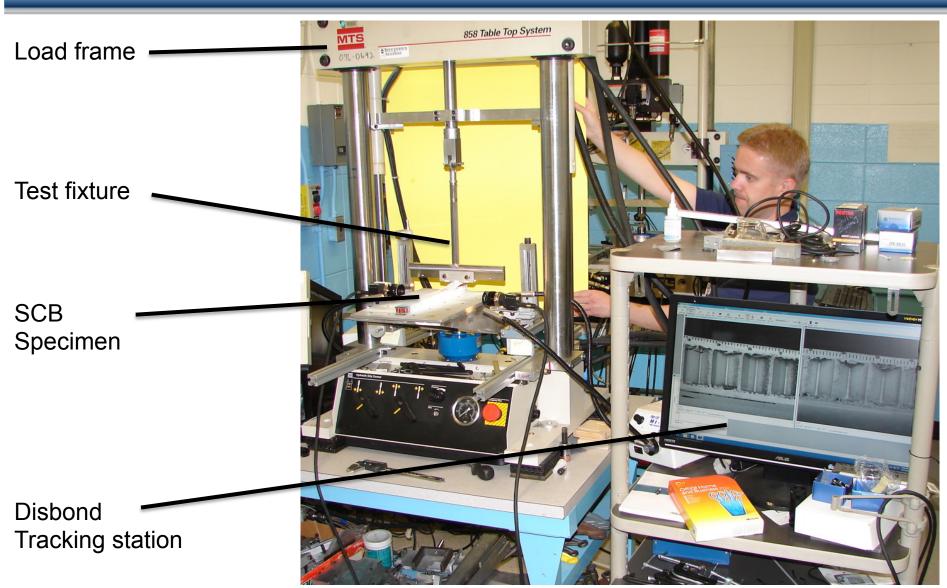


SCB Specimen Parameter	Limitation
Intact portion of specimen	$L_b \ge L_{b,min} = 2.7 \left[\frac{t_c t_f^3 E_f}{3E_c} \right]^{\frac{1}{4}}$
Initial disbond length (bending dominant deformation)	$a_{0} \ge a_{\min}^{bending} \approx \sqrt{\frac{30E_{f}t_{f}^{2}}{G_{xz,f}}} - 0.59L_{b,\min}$ $a_{0} \ge a_{\min}^{compliance} = L_{b,\min}$
Final disbond length	$a_{max} \ge a_0 + a_{prop}$
Face sheet thickness for small deformations	$t_{f} \ge t_{f}^{smalldisp} = \left[\frac{a_{max}}{\left(\frac{3a_{max}^{2}E_{f}}{200G_{c}}\right)^{\frac{1}{4}} - \left(\frac{t_{c}E_{f}}{3E_{c}}\right)^{\frac{1}{4}}}\right]^{\frac{1}{3}}$
Face sheet thickness to prevent flexural failure of face sheet	$t_f \ge t_f^{\text{strength}} \approx \frac{6E_f G_c a_{max}^2}{\sigma_c^2} \left[a_{max} + \left(\frac{t_c (t_f^{\text{small disp}})^3 E_f}{3E_c}\right)^{\frac{1}{4}} \right]^{\frac{1}{2}}$
Specimen length	$L \ge L_{min} = L_{hinge} + a_{max} + L_{b,min}$
Load application offset to ensure vertical load application	$h_p \ge h_{p,min} \approx 1.06 a_{max}$

- Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)
- Specimen dimensions sized to match known compliance solution and ensure proper specimen behavior
- Test configured to yield mode-I dominated disbond driving force

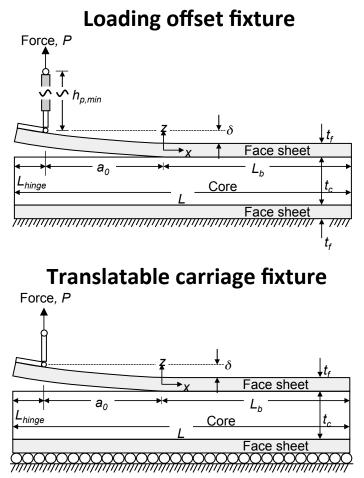


SCB Specimen Parameter	Limitation
Intact portion of specimen	$L_b \ge L_{b,min} = 2.7 \left[\frac{t_c t_f^3 E_f}{3E_c} \right]^{\frac{1}{4}}$
Initial disbond length (bending dominant deformation)	$a_{0} \ge a_{min}^{bending} \approx \sqrt{\frac{30E_{f}t_{f}^{2}}{G_{xz,f}}} - 0.59L_{b,min}$ $a_{0} \ge a_{min}^{compliance} = L_{b,min}$
Final disbond length	$a_{max} \ge a_0 + a_{prop}$
Face sheet thickness for small deformations	$t_{f} \ge t_{f}^{smalldisp} = \left[\frac{a_{max}}{\left(\frac{3a_{max}^{2}E_{f}}{200G_{c}}\right)^{\frac{1}{4}} - \left(\frac{t_{c}E_{f}}{3E_{c}}\right)^{\frac{1}{4}}}\right]^{\frac{2}{3}}$
Face sheet thickness to prevent flexural failure of face sheet	$t_f \ge t_f^{strength} \approx \frac{6E_f G_c a_{max}^2}{\sigma_c^2} \left[a_{max} + \left(\frac{t_c (t_f^{small disp})^3 E_f}{3E_c}\right)^{\frac{1}{4}} \right]^{-2}$
Specimen length	$L \ge L_{min} = L_{hinge} + a_{max} + L_{b,min}$
Load application offset to ensure vertical load application	$h_p \ge h_{p,min} \approx 1.06 a_{max}$


Interfacial Fracture Toughness Test Procedure

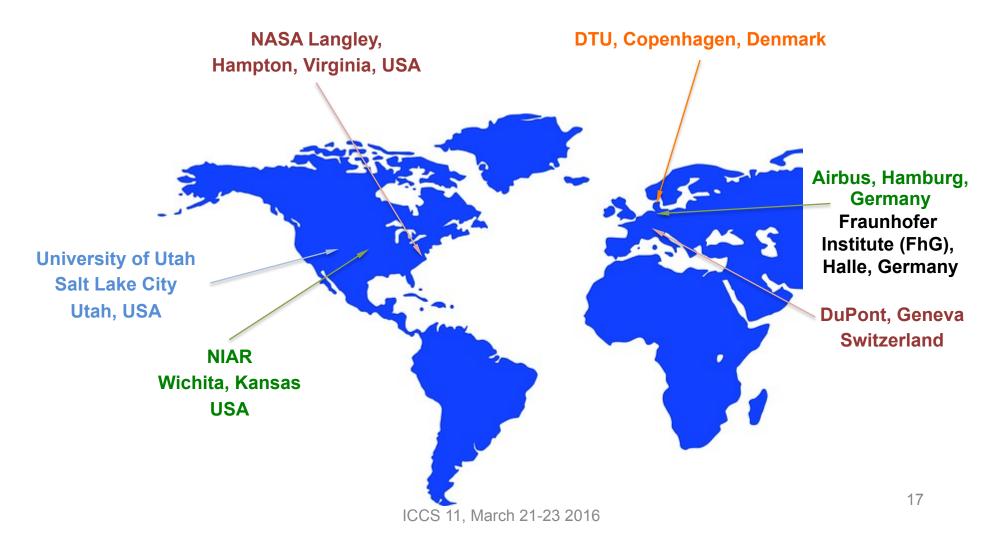
- 1. Load specimen (stroke control) and unload after required amount of disbonding
- 2. Record load/displacement response
- 3. Document changes in specimen compliance with disbond growth
- 4. Compute interfacial fracture toughness, G_c (initiation and propagation values)

SCB Test Apparatus



SCB specimen configuration

Baseline Spe	cimen parameters
<i>a</i> ₀	12.7 mm (0.5")
width, b	50.8 mm (2.0")
h _{p,min}	500 mm (20")
L	305 mm (12")
L _{hinge}	25.4 mm (1.0")
t _c	25.4 mm (1.0")
t _f	0.772 mm (0.0304")
Face sheet	T650/5320 PW Layup (4 plies): [45/0] _s 0-dir along specimen length
Core	HRH-10: Cell size = 3.2 mm (0.125") Density = 3lb/ft ³ (48kg/m ³)


Two loading fixture types considered to force a peel dominated behavior

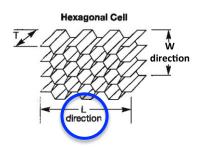
International Partners

NASA

 Inter-laboratory study being conducted to evaluate procedures in draft ASTM test standard

Test matrix

	Test	Number of	Specimens				A	dditional Studie	es	
Lab #	protocol	Baseline	Additional	L/W	Starter Crack	Doubler	Fixture	Unloading	Test Speed loading (mm/min)	unloading
Lab 1 (Univ. Utah)		5A	10					0 mm	30	30
Lab 2 (NIAR)		5A	10		S		Т			
Lab 3 (DuPont)	х	5A	10	W				0 mm	20?	30
Lab 4 (NASA)	Х	5A	10			Y		0 mm	5	5
Lab 5 (Airbus)	х	5A	10	W				0 mm	20	30
Lab 6 (Fraunhofer)	Х	5A	10		S	Y		0 mm		
Lab 7 (DTU)	х	5A	10			Y	Т			

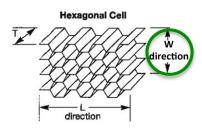

Specimen Category	Baseline	Additional
Dimensions	2 x 12	2-inch
Crack Direction	L	W
Starter Crack	Teflon (T)	Saw Cut (S)
Insert Length	1.5-inch	
Doublers	No (N)	Yes (Y)
Fixture	Fixed (F)	Translate (T)
Test Speed loading	5 mm/min	20,30 mm/min
unloading	30 mm/min	30, 5 mm/min
∆a for loop	10 mm (>3 cells)	
# of loops/cycles	>5	
Unloading	0 N	0 mm

Dimensional Nomenclature

T = Thickness, or cell depth

L = Ribbon direction

W = Long direction, or direction perpendicular to the ribbon

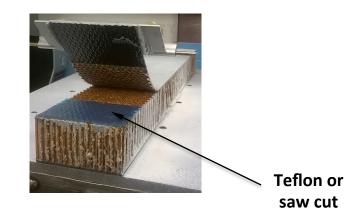

Test matrix

	Test	Number of	Additional Studies							
Lab #	protocol	Baseline	Additional	L/W	Starter Crack	Doubler	Fixture	Unloading	Test Speed loading (mm/min)	unloading
Lab 1 (Univ. Utah)		5A	10					0 mm	30	30
Lab 2 (NIAR)		5A	10		S		Т			
Lab 3 (DuPont)	Х	5A	10	W				0 mm	20?	30
Lab 4 (NASA)	Х	5A	10			Y		0 mm	5	5
Lab 5 (Airbus)	Х	5A	10	W				0 mm	20	30
Lab 6 (Fraunhofer)	Х	5A	10		S	Y		0 mm		
Lab 7 (DTU)	Х	5A	10			Y	Т			

Chasiman Catagony	Deceline	Additional
Specimen Category	Baseline	Additional
Dimensions	2 x 1	2-inch
Crack Direction	L	W
Starter Crack	Teflon (T)	Saw Cut (S)
Insert Length	1.5-inch	
Doublers	No (N)	Yes (Y)
Fixture	Fixed (F)	Translate (T)
Test Speed		
loading	5 mm/min	20,30 mm/min
unloading	30 mm/min	30, 5 mm/min
∆a for loop	10 mm	
	(>3 cells)	
# of loops/cycles	>5	
Unloading	0 N	0 mm

Dimensional Nomenclature

- T = Thickness, or cell depth
- L = Ribbon direction
- W = Long direction, or direction perpendicular to the ribbon



Test matrix

	Test	Number of	Additional Studies							
Lab #	protocol	Baseline	Additional	L/W	Starter Crack	Doubler	Fixture	Unloading	Test Speed loading (mm/min)	unloading
Lab 1 (Univ. Utah)		5A	10					0 mm	30	30
Lab 2 (NIAR)		5A	10		S		Т			
Lab 3 (DuPont)	Х	5A	10	W				0 mm	20?	30
Lab 4 (NASA)	Х	5A	10			Y		0 mm	5	5
Lab 5 (Airbus)	х	5A	10	W				0 mm	20	30
Lab 6 (Fraunhofer)	Х	5A	10		S	Y		0 mm		
Lab 7 (DTU)	х	5A	10			Y	Т			

Specimen Category	Baseline	Additional
Dimensions	2 x 1	2-inch
Crack Direction	L	W
Starter Crack	Teflon (T)	Saw Cut (S)
Insert Length	1.5-inch	
Doublers	No (N)	Yes (Y)
Fixture	Fixed (F)	Translate (T)
Test Speed loading	5 mm/min	20,30 mm/min
unloading	30 mm/min	30, 5 mm/min
∆a for loop	10 mm (>3 cells)	
# of loops/cycles	>5	
Unloading	0 N	0 mm

Test matrix

	Test	Number of Specimens		Additional Studies						
Lab #	protocol	Baseline	Additional	L/W	Starter Crack	Doubler	Fixture	Unloading	Test Speed loading (mm/min)	unloading
Lab 1 (Univ. Utah)		5A	10					0 mm	30	30
Lab 2 (NIAR)		5A	10		S		Т			
Lab 3 (DuPont)	х	5A	10	W				0 mm	20?	30
Lab 4 (NASA)	х	5A	10			Y		0 mm	5	5
Lab 5 (Airbus)	х	5A	10	W				0 mm	20	30
Lab 6 (Fraunhofer)	Х	5A	10		S	Y		0 mm		
Lab 7 (DTU)	х	5A	10			Y	Т			

Specimen Category	Baseline	Additional			
Dimensions	2 x 12-inch				
Crack Direction	L	W			
Starter Crack	Teflon (T)	Saw Cut (S)			
Insert Length	1.5-inch				
Doublers	No (N)	Yes (Y)			
Fixture	Fixed (F)	Translate (T)			
Test Speed loading	5 mm/min	20,30 mm/min			
unloading	30 mm/min	30, 5 mm/min			
∆a for loop	10 mm (>3 cells)				
# of loops/cycles	>5				
Unloading	0 N	0 mm			

Thin face sheet tested without doubler

ICCS 11, March 21-23 2016

Thin face sheet tested with doubler

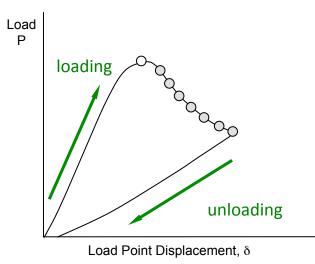
- Reduces face sheet damage
- Creates unwanted core facture due to shear component

21

Test matrix

	Test	Number of	Specimens	Decimens Additional Studies						
Lab #	protocol	Baseline	Additional	L/W	Starter Crack	Doubler	Fixture	Unloading	Test Speed loading (mm/min)	unloading
Lab 1 (Univ. Utah)		5A	10					0 mm	30	30
Lab 2 (NIAR)		5A	10		S		Т			
Lab 3 (DuPont)	Х	5A	10	W				0 mm	20?	30
Lab 4 (NASA)	Х	5A	10			Y		0 mm	5	5
Lab 5 (Airbus)	х	5A	10	W				0 mm	20	30
Lab 6 (Fraunhofer)	Х	5A	10		S	Y		0 mm		
Lab 7 (DTU)	х	5A	10			Y	Т			

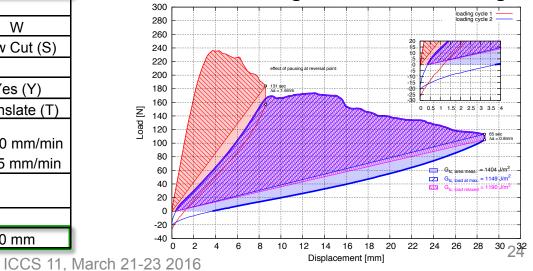
Specimen Category	Baseline	Additional			
Dimensions	2 x 12-inch				
Crack Direction	L	W			
Starter Crack	Teflon (T)	Saw Cut (S)			
Insert Length	1.5-inch				
Doublers	No (N)	Yes (Y)			
Fixture	Fixed (F)	Translate (T)			
Test Speed loading	5 mm/min	20,30 mm/min			
unloading	30 mm/min	30, 5 mm/min			
∆a for loop	10 mm (>3 cells)				
# of loops/cycles	>5				
Unloading	0 N	0 mm			



Test matrix

	Number of Specimens		Additional Studies							
Lab #	protocol	Baseline	Additional	L/W	Starter Crack	Doubler	Fixture	Unloading	Test Speed loading (mm/min)	unloading
Lab 1 (Univ. Utah)		5A	10					0 mm	30	30
Lab 2 (NIAR)		5A	10		S		Т			
Lab 3 (DuPont)	Х	5A	10	W				0 mm	20?	30
Lab 4 (NASA)	Х	5A	10			Y		0 mm	5	5
Lab 5 (Airbus)	Х	5A	10	W				0 mm	20	30
Lab 6 (Fraunhofer)	Х	5A	10		S	Y		0 mm		
Lab 7 (DTU)	х	5A	10			Y	Т			

Specimen Category	Baseline	Additional			
Dimensions	2 x 12-inch				
Crack Direction	L	W			
Starter Crack	Teflon (T)	Saw Cut (S)			
Insert Length	1.5-inch				
Doublers	No (N)	Yes (Y)			
Fixture	Fixed (F)	Translate (T)			
Test Speed loading unloading	5 mm/min 30 mm/min	20,30 mm/min 30, 5 mm/min			
Δa for loop	10 mm (>3 cells)				
# of loops/cycles	>5				
Unloading	0 N	0 mm			

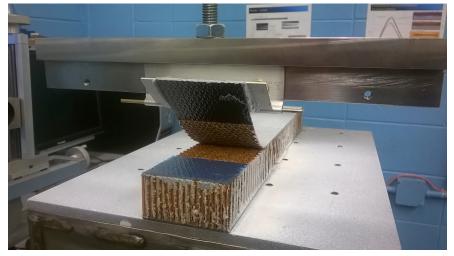


Test matrix

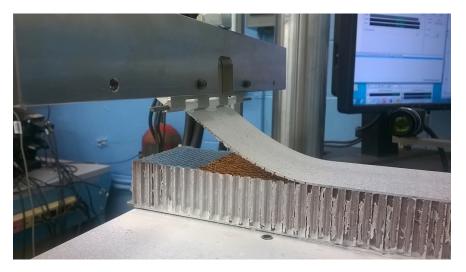
	Test	Number of	Specimens	Additional Studies						
Lab #	protocol	Baseline	Additional	L/W	Starter Crack	Doubler	Fixture	Unloading	Test Speed loading (mm/min)	unloading
Lab 1 (Univ. Utah)		5A	10					0 mm	30	30
Lab 2 (NIAR)		5A	10		S		Т			
Lab 3 (DuPont)	Х	5A	10	W				0 mm	20?	30
Lab 4 (NASA)	Х	5A	10			Y		0 mm	5	5
Lab 5 (Airbus)	х	5A	10	W				0 mm	20	30
Lab 6 (Fraunhofer)	Х	5A	10		S	Y		0 mm		
Lab 7 (DTU)	Х	5A	10			Y	Т			

Specimen Category	Baseline	Additional			
Dimensions	2 x 12-inch				
Crack Direction	L	W			
Starter Crack	Teflon (T)	Saw Cut (S)			
Insert Length	1.5-inch				
Doublers	No (N)	Yes (Y)			
Fixture	Fixed (F)	Translate (T)			
Test Speed loading	5 mm/min	20,30 mm/min			
unloading	30 mm/min	30, 5 mm/min			
∆a for loop	10 mm (>3 cells)				
# of loops/cycles	>5				
Unloading	0 N	0 mm			

Will unloading to 0 mm create damage?



Testing at NASA Langley Research Center


- Specimens manufactured at National Institute for Aviation Research (NIAR)
- NASA LaRC received 15 specimens
 - 5 tests with 3 different conditions
 - Testing in progress
 - Testing performed in collaboration with FAA Tech Center in Atlantic City

Test specimen preparation

*pictures Ronald Krueger and Zhi Chen

- Face sheet/core disbonding significant damage mode of sandwich composites
- Mode-I disbond driving force assumed most critical for fracture control
- Test method for measuring mode-I interfacial fracture toughness developed into a draft ASTM test standard
- Round robin exercise composed of 7 international laboratories being conducted to evaluate draft standard
- Work ties in with activities in the broader community concerned with sandwich disbonding