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1 Abstract

Is it possible to change a person’s facial expression?
In this paper, we apply Neural Style Transfer, Image
Segmentation, and Generative Adversarial Networks
(GANs) to a new application; namely, changing the
expression on a human face. Because the human eye is
particularly sensitive to distortions of human facial fea-
tures, accomplishing this goal will require precise and
detailed results. We present qualitative results from
various architectures, and present the ones that show
the most promise with respect to this supervised task.
In our experiments, we found that Cycle-GANs show
the most promise in this application area. Overall, we
present an end-to-end neural framework for realistic
expression modification on human faces.

2 Introduction

Neural style transfer can be used to transfer the
texture of one image onto the content of another, often
yielding psychedelic, otherworldly results [4]. More-
over, the concept of Deepfakes [17], or the genera-
tion of synthetic images using neural networks, has
also recently grown in popularity. In 2018, a group of
NVIDIA researchers used an architecture they called a
StyleGAN [10] to produce a high resolution human face
that is visually indistinguishable from a photograph.

We seek to experiment with applying neural tech-
niques to a new domain of expression transfer. Our
first experimental approach leverages Neural Style
Transfer (NST) [4] in concert with image segmenta-
tion in the form of Mask R-CNN [6]. The input to
this model are two images. The first, (a) contains the
subject, and (b) contains the target expression. We
use segmentation to localize the faces in both images,
and then use NST to superimpose facial ’style’ from
(b) onto image (a).

Following the sub-optimal results of our first ex-
periment, we improve our methodology using two dif-

ferent types of Generative Adversarial Networks [5] to
manipulate facial expression. With several varieties of
the GAN architecture [20] [7], we attempt to learn a
transformation between different facial expression do-
mains.

3 Related Work

Our approach is related to many deep learning
pipelines previously published by computer vision re-
searchers.

Over the past several years, Generative Adversarial
Networks (GANs), originally suggested by Goodfellow
et al, have become the state of the art method for im-
age manipulation tasks [5]. Under this framework, a
mini-max game between a discriminator D and a gen-
erator G models a data distribution by minimizing the
Jensen-Shannon distance between real and fake data.
In practice, however, the difficulty of training a vanilla
GAN has led to improvements in optimization and ar-
chitectural design which, in turn, improve the stability
and performance of this type of model. Thus, as a
first attempt, we incorporate these improvements by
implementing the Wasserstein distance metric [1] for a
Self-Attention GAN [20]. In essence, these two archi-
tectural choices address common GAN issues such as
mode collapse and receptive field size in convolutional
Generators.

Another promising GAN-based approach to our
chosen task is the Cycle-GAN [21] [7], an architecture
that leverages cycle-consistency to learn cyclical trans-
formations between data domains. In this paper, au-
thors Zhu et al. showed that GANs can yield high qual-
ity results on image-to-image translation. Specifically,
given an image dataset broken into discrete categories,
it is possible to use GANs to translate an image from
Domain X to Domain Y by transforming the distribu-
tion of G(X) to approximate the distribution of Y. One
large benefit of the Cycle-GAN is that it avoids mode
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collapse by introducing additional constraints on the
objective function of the network. The vanilla GAN
objective yields a distribution ŷ that models the em-
pirical distribution pdata(y). But there are infinitely
many mappings G that produce such a ŷ. The cycle-
GAN objective exploits the property that translation
should be “cycle consistent”; If we have two mappings
G : X → Y , and F : Y → X to be a This prob-
lem formulation is highly relevant to the application
we explore in this paper because it is natural to view
emotions as representing different categories of images.
Thus, a large advantage of this approach is that it can
be applied to our subject area without any major mod-
ifications.

Lastly, a recent publication titled A Style-Based
Generator Architecture for Generative Adversarial
Networks [10] introduces the idea of a style-based gen-
erator. The main idea is that by borrowing from Style
Transfer literature, this Generator frameowrk is able to
separate of high-level attributes like pose and identity
from stochastic variation in the generated images (e.g.,
freckles, hair). Thus, it enables intuitive, scale-specific
control of the synthesis which in turn yields incredibly
detailed and realistic results. While this methodology
falls outside the scope of our work, it is important to
note that the StyleGAN architecture shows the natu-
ral relationship between style transfer and deepfakes,
and is responsible for the state-of-the-art results for
synthetically generated faces [10].

4 Methods

Dataset

We used a variety of datasets for different com-
ponents of our project. For Neural Style Transfer, we
used a pretrained VGG19 CNN [16] trained on the Im-
ageNet Dataset [2]. For the Mask R-CNN segmenta-
tion model, we trained a model on the WIDER-Face
dataset [19]. Finally, for inference with the segmen-
tation and NST pipeline, as well as for training the
SA-GAN model, we used the JAFFE (Japanese Fe-
male Facial Expressions) dataset [12]. The JAFFE
dataset consists of 213 images of 10 distinct Japanese
women[12]. Each subject in the JAFFE dataset makes
six facial expressions (anger, disgust, fear, happiness,
sadness, and surprise), which in the early 20th cen-
tury, were determined to be recognized the same way
across cultures [11]. Examples of images that are part
of JAFFE can be seen in the Figure 1.

Neural Style Transfer and Image Seg-
mentation

The goal of NST is to combine the content and style
of two arbitrary images using neural models. The key
finding of Gatys et. al is that style and content rep-
resentations in a given image are somewhat distinct.
Given a content image, we can capture a content rep-
resentation of objects and their placement within the
image [4] using the higher level layers of a CNN trained
for object detection, such as a pre-trained VGG19.
Next, given a style image, we can obtain a style repre-
sentation using the gram matrix, which computes the
correlation over different response filters. The intuition
behind the gram matrix is that it captures texture in-
formation, but not the global arrangement of objects
within the style image.

The NST architecture is trained by minimizing
both the style loss and the content loss, which are given
by:

Lcontent(p, x, l) =
1

2

∑
i,j

(F l
ij − P l

ij)
2

Where p is the original image, x is the output im-
age, and P l and F l denote their feature representation
in layer l.

The style loss for one layer is given by:
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1
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Where a and x are the style image and the output
image, and Al and Gl their respective style represen-
tations in layer l.

So the total style loss is given by:

Lstyle(a, x) =

L∑
l=0

wlEl

where wl are the weighting factors of the contribution
of each layer to the total loss.

Ltotal(p, a, x) = αLcontent(p, x) + βLstyle(a, x)

By minimizing Ltotal, an NST architecture alters
the output image to transfer the style of a onto the
content of p.

For the task of image segmentation, we use a Mask
R-CNN [6], which performs pixel-level segmentation
to localize objects within an image. The Mask R-CNN
architecture extends faster R-CNN architecture to si-
multaneously perform object detection and generates
a high-quality segmentation mask. We used this Mask
R-CNN, trained on WIDER-Face, to localize human
faces as potential inputs for our NST pipeline.
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Generative Adversarial Networks

As mentioned previously, GANs (Generative Ad-
versarial Networks) are considered to be among state
of the art methodology for image generation. We tried
two different varieties of GAN: (1) a Wasserstein Self-
Attention GAN and (2) A Cycle-GAN.

For the first experiment, we will use a custom
class-conditional GAN architecture that relies on the
Wasserstein distance objective and a self-attention
mechanism [20] [1]. The self-attention mechanism uses
1x1 convolutions over each mid-network activation to
widen the effective receptive field of the Generator and
to allow the Generator to pay attention to spatially-
dependent activations.

At several points within both D and G, an atten-
tion map oj is computed over the activations. We used
a new, modified supervised softmax cross entropy (CE)
loss based on one of our previous projects [18]:

LD = −E(x,y)∼pdata
[CE(X)]−E(x,y)∼pdata

[CE(D(G(X)))]

LG = −E(x,y)∼pdata
[CE(y,D(G(X)))]

In essence, we use the discriminator to predict a
multinomial distribution of class labels, and penalize
the discriminator for incorrect guesses, and the gener-
ator for causing incorrect guesses by the discriminator.

The advantage of a Wasserstein Self-Attention
GAN is that, unlike vanilla GANs, it does not re-
quire maintaining a careful balance in training of the
discriminator and the generator. It also reduces the
mode-collapse phenomenon that is typical in GANs
producing several classes of images, which applies to
our problem formulation as emotion is a multi-class
distribution. The architecture of our final model is
shown in Figure 2.

The next variety of GAN we tried was a Cycle-GAN
[7] [21]. For the mapping function G : X → Y and its
discriminator DY , the objective we used was

LGAN (G,DY , X, Y ) = Ey pdata(y)[logDY (y)]+

Ex∼pdata(x)[log(1−DY (G(x)))]

Where cycle consistency loss is given by:

Lcyc(G,F ) = Ex∼pdata(x)[||F (G(x))− x||1]

+Ey∼pdata(y)[||G(F (y))− y||1]

5 Experiments and Results

Neural Style Transfer + Segmentation

For the project milestone, we implemented neural
style transfer based on Gatys et. al. using the Py-
Torch [15] library. We drew inspiration from [8], and
used a pretrained VGG19 model for initial weights,
then performed transfer learning with a custom loss
function composed of Content and Style Loss [8]. To
perform style transfer, we initialized the input image as
a tensor, so that instead of updating the model weights
using gradient descent (as is standard in object detec-
tion), we would instead alter the image to minimize
content and style loss. The results are shown in Figure
3.

Since the two face images originate from the same
dataset, they are quite similar with respect to texture
or ”style.” As a result, the output image differs very
little from the original content image. The result from
Figure 3 shows that NST will not pick up facial ex-
pression as ”style” with no alterations. As such, we re-
quire a different method for transferring facial expres-
sion across images that does not solely rely on NST.

As a proof of concept, we trained a Mask R-CNN
on WIDER-Face [19] to localize human faces in source
images. These masked images could eventually be used
as inputs to our final pipeline, but for the scope of this
project this aspect of the pipeline was abandoned in
favor of modifying faces in a structurally sound way
using GANs.

Generative Adversarial Networks

SA-GAN

In our first experiment, we used a Conditional GAN
with Self-Attention to learn a transformation between
arbitrary expressions. We experimented both with the
Wasserstein distance and our custom loss metric de-
fined above for optimization, and found that the cus-
tom softmax loss allowed for some initial convergence
and expression modification learning. The SA-GAN
with the Wasserstein distance did not fully converge
and the results were not meaningful. In order to con-
duct the SA-GAN experiment with the modified cross-
entropy loss, we concatenated images with randomly
selected class labels before inputting them into the gen-
erator. These randomly selected class labels served as
the target class for the generated image. We attempted
to train the generator to produce the randomly chosen
expression, conditioned on the input image. The dis-
criminator was then trained to identify correct classes
from both real data and data that was generated. Re-
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sults, showing frequent mode collapse but some initial
progress, from this experiment are shown in Figure 4.

One limitation of the SA-GAN experiment was that
we used a training dataset consisting of only 213 im-
ages, which is pretty small for a model with such a large
number of parameters. We expect we would achieve
better results repeating this experiment on a larger
dataset. In addition, the Softmax Cross Entropy Loss
does not have properties that ensure it avoids mode
collapse. Therefore, we chose to continue experiments
with the Cycle-GAN, a more constrained framework.

CycleGAN

The second GAN architecture we implemented was
a Cycle-GAN, originally proposed by Berkeley re-
searchers Zhu et. al. in 2017 [21]. Cycle-GANs are for-
mulated so as to use two generative networks to convert
images between two classes while enforcing ”cycle con-
sistency,” meaning that these two generator functions
be inverses of one another. As input to this model, we
formulated a custom dataset with two classes: Happy
(A) and Neutral (B). Thus, the goal of this algorithm is
to convert a happy face to a neutral expression and vice
versa. For our implementation, we drew inspiration
from the GitHub repository published by [21]. This
dataset consisted of 446 training images split amongst
the two classes fro a mixture of the JAFFE dataset
and the FEI dataset. We trained the model for 350 it-
erations with an Adam Optimizer, and a learning rate
of 0.0005 that decreased linearly to zero over the iter-
ations.

The results from this model are qualitatively
strong. At about 200 iterations, the model began to lo-
calize its changes to the area around the mouth. This
is a logical result, since this is the area of maximal
variance between the two classes present in the train-
ing set. Notably, the reconstruction loss (difference

between original image X and F(G(X))) decreases and
becomes more stable over training, as shown in Figure
7. Our most successful training experiment yielded
an L1 distance of 134.59 between images in a hold-
out test set images and their reconstructions passed
through the two generators (F(G(X))). Qualitatively,
the reconstructed images are visually indistinguishable
from the originals, as one can see in Figure 5.

One drawback of these experiments is the lack of
quantitative metrics for evaluating the quality of gen-
erated images. We hoped to use the inception score
as an additional quantitative metric, but because of
the limited size of our dataset (446 training images to-
tal) the score would have too high of a variance to be
meaningful.

6 Conclusion + Future Work

Overall, we performed a variety of experiments
with a host of different architectures and techniques
to achieve our goal of expression transfer on human
faces. Ultimately, the Cycle-GAN architecture showed
the most promise, by generating well-defined macro
and micro-level features when transforming facial ex-
pression between domains. We are quite satisfied with
this initial result, and believe it can be easily extended
with more functionality to accomplish a variety of tasks
revolving around neural facial transformation.

As for future work, we would like to combine our
results into a final pipeline that combines image seg-
mentation with expression transfer, for valid transfor-
mations of facial expression within a larger scene. In
addition, we could revisit the SA-GAN’s loss ojective
and data set to attempt to get more refined results. We
would also like to work with color images of faces, and
we would like to make a more general Cycle-GAN for
transformation between multiple classes of expression.

7 Contributions

Both partners contributed equally to this project. For the milestone, Sasha ran and implemented the Neural Style
Transfer, while Frits implemented segmentation using Mask R-CNN. Frits took the lead on implementing the SA-
GAN with custom loss function and ran the associated experiments, which played to his strengths given his previous
experience with generative models. Sasha implemented the Cycle-GAN and ran the associated experiments, which
included formulating a custom dataset mixing images from JAFFE and FEI datasets. The two partners collaborated
on the poster and final report, as well as troubleshooting Google Cloud Platform, which proved to be a frequent
pain point.
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Figure 1: Example from JAFFE Dataset

Figure 2: SA-GAN Architecture

Figure 3: Example NST Output (two images)

Figure 4: SA-GAN Output after training with CE Loss

(a) Orig. Image (b) Generated Image (c) Reconstructed Image (d) Orig. Image (e) Generated Image

Figure 5: Example output of Cycle-GAN
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(a) |Ga(Gb(A))− A| (b) |Ga(A)− A|

Figure 6: Training Metrics for Cycle-GAN
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