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Figure 1: We present FaceScape, a large-scale detailed 3D face dataset consisting of 18,760 textured 3D face models with

pore-level geometry. By learning dynamic details from FaceScape, we present a novel algorithm to predict from a single

image a detailed rigged 3D face model that can generate various expressions with high geometric details.

Abstract

In this paper, we present a large-scale detailed 3D face

dataset, FaceScape, and propose a novel algorithm that is

able to predict elaborate riggable 3D face models from a

single image input. FaceScape dataset provides 18,760 tex-

tured 3D faces, captured from 938 subjects and each with 20

specific expressions. The 3D models contain the pore-level

facial geometry that is also processed to be topologically

uniformed. These fine 3D facial models can be represented

as a 3D morphable model for rough shapes and displace-

ment maps for detailed geometry. Taking advantage of the

large-scale and high-accuracy dataset, a novel algorithm is

further proposed to learn the expression-specific dynamic

details using a deep neural network. The learned relation-

ship serves as the foundation of our 3D face prediction sys-

tem from a single image input. Different than the previ-

ous methods, our predicted 3D models are riggable with

highly detailed geometry under different expressions. The

unprecedented dataset and code will be released to public

for research purpose†.

∗ These authors contributed equally to this work.
† https://github.com/zhuhao-nju/facescape.git

1. Introduction

Parsing and recovering 3D face models from images

have been a hot research topic in both computer vision and

computer graphics due to its many applications. As learn-

ing based methods have become the mainstream in face

tracking, recognition, reconstruction and synthesis, 3D face

datasets becomes increasingly important. While there are

numerous 2D face datasets, the few 3D datasets lack in 3D

details and scale. As such, learning-based methods that rely

on the 3D information suffer.

Existing 3D face datasets capture the face geometry us-

ing sparse camera array[8, 19, 34] or active depth sensor

such as Kinect[12] and coded light[33]. These setups limit

the quality of the recovered faces. We captured the 3D face

model using a dense 68-camera array under controlled illu-

mination, which recovers the 3D face model with wrinkle

and pore level detailed shapes, as shown in Figure 1. In

addition to shape quality, our dataset provides considerable

amount of scans for study. We invited 938 people between

the ages of 16 and 70 as subjects, and each subject is guided

to perform 20 specified expressions, generating 18,760 high

quality 3D face models. The corresponding color images

and subjects’ basic information (such as age and gender)
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are also recorded.

Based on the high fidelity raw data, we build a power-

ful parametric model to represent the detailed face shape.

All the raw scans are firstly transformed to a topologically

uniformed base model representing the rough shape and a

displacement map representing detailed shape. The trans-

formed models are further used to build bilinear models in

identity and expression dimension. Experiments show that

our generated bilinear model exceeds previous methods in

representative ability.

Using FaceScape dataset, we study how to predict a de-

tailed riggable face model from a single image. Prior meth-

ods are able to estimate rough blendshapes where no wrin-

kle and subtle features are recovered. The main problem is

how to predict the variation of small-scale geometry caused

by expression changing, such as wrinkles. We propose the

dynamic details which can be predicted from a single image

by training a deep neural network on FaceScape dataset.

Cooperated with bilinear model fitting method, a full sys-

tem to predict detailed riggable model is presented. Our

system consists of three stages: base model fitting, displace-

ment map prediction and dynamic details synthesis. As

shown in Figure 1, our method predicts detailed 3D face

model which contains subtle geometry, and achieves high

accuracy due to the powerful bilinear model generated from

FaceScape dataset. The predicted model can be rigged to

various expressions with plausible detailed geometry.

Our contributions are summarized as following:

• We present a large-scale 3D face dataset, FaceScape,

consisting of 18,760 extremely detailed 3D face mod-

els. All the models are processed to topologically uni-

formed base models for rough shape and displacement

maps for detailed shape. The data are released free for

non-commercial research.

• We model the variation of detailed geometry acrossing

expressions as dynamic details, and propose to learn

the dynamic detail from FaceScape using a deep neural

network.

• A full pipeline is presented to predict detailed riggable

face model from a single image. Our result model can

be rigged to various expressions with plausible geo-

metric details.

2. Related Work

3D Face Dataset. 3D face datasets are of great value

in face-related research areas. Existing 3D face datasets

could be categorized according to the acquisition of 3D

face model. Model fitting datasets[33, 60, 23, 5, 7] fit the

3D morphable model to the collected images, which makes

it convenient to build a large-scale dataset on the base of

wild faces. The major problem of the fitted 3D model is

the uncertainty of accuracy and the lack of detailed shape.

To obtain the accurate 3D face shape, a number of works

reconstructed the 3D face using active method including

depth sensor or scanner[53, 52, 3, 38, 37, 12, 17], while the

other works built sparse multi-view camera system[54, 18].

Traditional depth sensors and 3D scanners suffer from the

limited spatial resolution, so they can’t recover detailed fa-

cial geometry. The sparse multi-view camera system suffers

from the unstable and inaccurate reconstruction[39, 56, 55].

The drawbacks of these methods limit the quality of 3D

face model in previous datasets. Different from the datasets

above, FaceScape obtained the 3D face model from a dense

multi-view system with 68 DSLR cameras, which provides

extremely high quality face models. The parameters mea-

suring 3D model quality are listed in Table 1. Our dataset

outperforms previous works on both model quality and

data amount. Note that Table 1 doesn’t list the datasets

which provide only parametric model but no source 3D

models[8, 6, 33, 30].

3D Morphable Model. 3DMM is a statistical model which

transforms the shape and texture of the faces into a vec-

tor space representation[4]. As 3DMM inherently contains

the explicit correspondences from model to model, it is

widely used in model fitting, face synthesis, image manip-

ulations, etc. The recent research on 3DMM can be gen-

erally divided into two directions. The first direction is to

separate the parametric space to multiple dimensions like

identity, expression and visemes, so that the model could

be controlled by these attributes separately[49, 12, 29, 26].

The models in expression dimension could be further trans-

formed to a set of blendshapes[27], which can be rigged

to generate individual-specific animation. Another direc-

tion is to enhance the representation power of 3DMM

by using deep neural network to present 3DMM bases

[2, 42, 45, 47, 46, 16].

Single-view shape Prediction. Predicting 3D shape from

a single image is a key problem to many applications

like view synthesis[22, 57, 58] and stereoscopic video

generation[13, 24]. The emergence of 3DMM has sim-

plified the single-view reconstruction of face to a model

fitting problem, which could be well solved by fitting fa-

cial landmarks and other features[36, 43] or regressing the

parameter of 3DMM with a deep neural network[20, 60].

However, fitting 3DMM is difficult in recovering small de-

tails from the input image due to the limited representation

power. To solve this problem, several recent works adopt

the multi-layer refinement structures. Richardson et al. [35]

and Sela et al. [40] both proposed to firstly predict a rough

facial shape and render it to the depth map, then refine the

depth map to enhance the details from the registered source

image. Sengupta et al. [41] proposed to train the SfSNet

on combination of labeled synthetic data and unlabeled in-

the-wild data to estimate plausible detailed shape in un-
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Table 1: Comparison of 3D Face Datasets

Dataset Sub. Num Exp. Num Vert. Num Image/Texture Resolution Source

BU-3DFE[53] 100 25 10k-20k 1300× 900 / - structure light

BU-4DFE[52] 101 6(video) 10k-20k 1040× 1329 / - structure light

BJUT-3D[3] 500 1-3 ≈200k 478× 489 / - laser scanner

Bosphorus[38] 105 35 ≈35k 1600× 1200 / - structure light

FaceWarehouse[12] 150 20 ≈11k 640× 480 / - kinect

4DFAB[17] 180 6(video) ≈100k 1200× 1600 / - kinect+cameras(7)

D3DFACS[18] 10 38AU(video) ≈30k - / 1024× 1280 multi-view system(6)

BP4D-Spontanous[54] 41 27AU(video) ≈37k 1040× 1392 / - multi-view system(3)

FaceScape (Ours) 938 20 ≈2m 4k-8k / 4096×4096 multi-view system(68)

constrained images. Tran et al. [44] proposed to predict

a bump map to represent the wrinkle-level geometry base

on a rough base model. Huynh et al. [25] utilized image-

to-image network and super-resolution network to recover

the mesoscopic facial geometry in the form of displacement

map. Chen et al. [15] also tried to predict the displacement

map with a conditional GAN based on the 3DMM model,

which enables to recover detailed shape from an in-the-wild

image.

Our work advances the state of the art in multiple as-

pects. In dataset, our FaceScape is by far the largest with

the highest quality. A detailed quantitative comparison with

previous datasets are made in Table 1. In 3D face predic-

tion, previous works focus on enhancing the static detailed

facial shape, while we study the problem of recovering an

animable model from a single image. We demonstrate for

the first time that a detailed and rigged 3D face model can be

recovered from a single image. The rigged model exhibits

expression-depended geometric details such as wrinkles.

3. Dataset

3.1. 3D Face Capture

We use a multi-view 3D reconstruction system to capture

the raw mesh model for the datasets. The multi-view system

consists of 68 DSLR cameras, 30 of which capture 8K im-

ages focusing on front side, and the other cameras capture

4K level images for the side part. The camera shutters are

synced to be triggered within 5ms. We spend six months to

invite 938 people to be our capturing subjects. The subjects

are between 16 and 70 years old, and are mostly from Asia.

We follow FaceWarehouse[12] which asks each subject to

perform 20 specific expressions including neutral expres-

sion for capturing. The total reconstructed number reach

to roughly 18,760, which is the largest amount comparing

to previous expression controlled 3D face datasets. The re-

constructed model is triangle mesh with roughly 2 million

vertices and 4 million triangle faces. The meta information

for each subject is recorded, including age, gender, and job
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Figure 2: Description of FaceScape dataset. In the upper

side we show the histogram of subjects’ age and gender.

In the lower side we show the pipeline from the captured

multi-view images to topologically uniformed models (T.U.

models).

(by voluntary). We show the statistical information about

the subjects in our dataset in Figure 2, and a comparison

with prior 3D face datasets in Table 1.

3.2. Topologically Uniformed Model

We down-sample the raw recovered mesh into rough

mesh with less triangle faces, namely base shape, and

then build 3DMM for these simplified meshes. Firstly, we

roughly register all the meshes to the template face model
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by aligning 3D facial landmarks, then the NICP[1] is used

to deform the templates to fit the scanned meshes. The de-

formed meshes can be used to represent the original scanned

face with minor accuracy loss, and more importantly, all of

the deformed models share the uniform topology. The de-

tailed steps to register all the raw meshes are described in

the supplementary material.

After obtaining the topology-uniformed base shape, we

use displacement maps in UV space to represent middle and

fine scale details that are not captured by the base model

due to the small number of vertices and faces. We find the

surface points of base mesh corresponding to the pixels in

the displacement map, then inverse-project the points to the

raw mesh along normal direction to find its corresponding

points. The pixel values of the displacement map is set to

the signed distance from the point on base mesh to its cor-

responding point.

We use base shapes to represent rough geometry and dis-

placement maps to represent detailed geometry, which is

a two-layer representation for our extremely detailed face

shape. The new representation takes roughly 2% of the orig-

inal mesh data size, while maintaining the mean absolute

error to be less than 0.3mm.

3.3. Bilinear Model

Bilinear model is firstly proposed by Vlasic et al. [49],

which is a special form of 3D morphable model to pa-

rameterize face models in both identity and expression di-

mensions. The bilinear model can be linked to a face-

fitting algorithm to extract identity, and the fitted individual-

specific model can be further transformed to riggable blend-

shapes. Here we describe how to generate bilinear model

from our topologically uniformed models. Given 20 reg-

istered meshes in different expressions, we use the exam-

ple based facial rigging algorithm[27] to generate 52 blend-

shapes based on FACS[21] for each person. Then we follow

the previous methods[49, 12] to build the bilinear model

from generated blendshapes in the space of 26317 vertices

× 52 expressions × 938 identities. Specifically, we use

Tucker decomposition to decompose the large rank-3 tensor

to a small core tensor Cr and two low dimensional compo-

nents for identity and expression. New face shape can be

generated given the the identity parameter wid and expres-

sion parameter wexp as:

V = Cr × wexp × wid (1)

where V is the vertex position of the generated mesh.

The superiority in quality and quantity of FaceScape

makes the generated bilinear model own higher repre-

sentation power. We evaluate the representation power

of our model by fitting it to scanned 3D meshes not

part of the training data. We compare our model to

FaceWarehouse(FW)[12] and FLAME[29] by fitting them

Scan FW FLAME Ours 50 47 Ours 300 52

Quantitative Comparison of Fitting Accuracy

Visually Comparison of Fitting Accuracy

p
er
ce
n
ta
g
e

error/mm

Figure 3: Comparison of Reconstruction Error for paramet-

ric model generated by FaceScape and previous datasets.

to our self-captured test set, which consists of 1000 high

quality meshes from 50 subjects performing 20 different

expressions each. FW has 50 identity parameters and 47

expression parameters, so we use the same number of pa-

rameters for fair comparison. To compare with FLAME

which has 300 identity parameters and 100 expression pa-

rameters, we use 300 identity parameters and all 52 expres-

sion paremeters. Figure 3 shows the cumulative reconstruc-

tion error. Our bilinear face model achieves much lower

fitting error than FW using the same number of parameters

and also outperform FLAME using even less expression pa-

rameters. The visually comparison in Figure 3 shows ours

model could produce more mid-scale details than FW and

FLAME, leading to more realistic fitting results.

4. Detailed Riggable Model Prediction

As reviewed in the related works in Section 2, existing

methods have succeed in recovering extremely detailed 3D

facial model from a single image. However, these recov-

ered models are not riggable in expression space, since the

recovered detail is static to the specific expression. Another
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Figure 4: Riggable details can be decoupled as static de-

tails and dynamic details. The static details can be esti-

mated from the facial textures, while the dynamic details

are strongly related to the facial deforming map.

group of works try to fit a parametric model to the source

image, which will obtain an expression-riggable model, but

the recovered geometry stays in the rough stage.

The emerge of FaceScape dataset makes it possible to

estimate detailed and riggable 3D face model from a single

image, as we can learn the dynamic details from the large

amount of detailed facial models. We show our pipeline in

Figure 5 to predict a detailed and riggable 3D face model

from a single image. The pipeline consists of three stages:

base model fitting, displacement map prediction and dy-

namic details synthesis. We will explain each stage in detail

in the following sections.

4.1. Base Model Fitting

The bilinear model for base shape is inherently riggable

as the parametric space is separated into identity dimension

and expression dimension, so the rough riggable model can

be generated by regressing the parameters of identity for

the bilinear model. Following [43], we estimate parame-

ters corresponding to a given image by optimizing an ob-

jective function consisting of three parts. The first part is

landmark alignment term. Assuming the camera is weak

perspective, the landmark alignment term Elan is defined

as the distance between the detected 2D landmark and its

corresponding vertex projected on the image space. The

second part is pixel-level consistency term Epixel measur-

ing how well the input image is explained by a synthesized

image. The last part is regularization term which formulates

identity, expression, and albedo parameters as multivariate

Gaussians. The final objective function is given by:

E = Elan + λ1Epixel + λ2Eid + λ3Eexp + λ4Ealb (2)

where Eid, Eexp and Ealb are the regularization terms of

expression, identity and albedo, respectively. λ1, λ2, λ3

and λ4 are the weights of different terms.

After obtaining the identity parameter wid, individual-

specific blendshapes Bi can be generated as:

Bi = Cr × ˆwexp
(i) × wid, 0 ≤ i ≤ 51 (3)

where ˆwexp
(i) is the expression parameter corresponding to

blendshape Bi from Tucker decomposition.

4.2. Displacement Map Prediction

Detailed geometry is expressed by displacement maps

for our predicted model. In contrast to the static detail

which is only related to the specific expression in a cer-

tain moment, dynamic detail expresses the geometry de-

tails in varying expressions. Since the single displacement

map cannot represent the dynamic details, we try to pre-

dict multiple displacement maps for 20 basic expressions in

FaceScape using a deep neural network.

We observed that the displacement map in a certain ex-

pression could be decoupled into static part and dynamic

part. The static part tends to keep static in different ex-

pressions, and is mostly related to the intrinsic feature like

pores, nevus, and organs. The dynamic part varies in differ-

ent expressions, and is related to the surface shrinking and

stretching. We use a deforming map to model the surface

motion, which is defined as the difference of vertices’ 3D

position from source expression to target expression in the

UV space. As shown in Figure 4, we can see the variance

between displacement maps is strongly related to the de-

forming map, and the static features in displacement maps

are related to the texture. So we feed motion maps and tex-

tures to a CNN to predict the displacement map for multiple

expressions.

We use pix2pixHD[50] as the backbone of our neural

network to synthesize high resolution displacement maps.

The input of the network is the stack of deforming map and

texture in UV space, which can be computed from the re-

covered base model. Similar to [50], the combination of ad-

versarial loss Ladv and feature matching loss LFM is used

to train our net with the loss function formulated as:

min
G

(( max
D1,D2,D3

∑

k=1,2,3

Ladv(G,Dk))

+ λ
∑

k=1,2,3

LFM (G,Dk))
(4)
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Figure 5: The pipeline to predict a detailed riggable 3D face from a single image consists of three stages: base model fitting,

displacement map prediction, and dynamic details synthesis.

where G is the generator, D1, D2 and D3 are discriminators

that have the same LSGAN[31] architecture but operate at

different scales, λ is the weight of feature matching loss.

4.3. Dynamic Detail Synthesis

Inspired by[32], we synthesize displacement map F for

an arbitrary expression corresponding to specific blend-

shape weight α, using a weighted linear combination of

generated displacement maps F̂0 in neutral expression and

F̂i in other 19 key expressions:

F = M0 ⊙ F̂0 +

19∑

i=1

Mi ⊙ F̂i (5)

where M is the weight mask with the pixel value between 0
and 1 , ⊙ is element-wise multiplication operation. To cal-

culate the weight mask, considering the blendshape expres-

sions change locally, we first compute an activation mask

Aj in UV space for each blendshape mesh ej as:

Aj(p) = ||ej(p)− e0(p)||2 (6)

where Aj(p) is the pixel value at position p of the jth activa-

tion mask, ej(p) and e0(p) is the corresponding vertices po-

sition on blendshape mesh ej and neutral blendshape mesh

e0, respectively. The activation masks are further normal-

ized between 0 and 1. Given the activation mask Aj for

each of the 51 blendshape meshes, the ith weight mask

Mi is formulated as a linear combination of the activation

masks weighted by the current blendshape weight α and

fixed blendshape weight α̂i corresponding to the ith key

expression:

Mi =

51∑

j=1

α
j
α̂

j
iAj (7)

where α
j is the jth element of α. M0 is given by M0 =

max(0, 1−
∑19

i=1Mi).

There are many existing performance driven facial ani-

mation methods generating blendshape weights with depth

camera[51, 28, 9] or single RGB camera[11, 10, 14]. As

blendshape weights have semantic meaning, it’s easy for

artists to manually adjust the rigging parameters.

5. Experiments

5.1. Implement Detail

We use 888 people in our dataset as training data with

a total of 17760 displacement maps, leaving 50 people for

testing. We use the Adam optimizer to train the network

with learning rate as 2e−4. The input textures and out-

put displacement maps’ resolution of our network is both

1024× 1024. We use 50 identity parameters, 52 expression

parameters and 100 albedo parameters for our parametric

model in all experiments.

5.2. Evaluation of 3D Model Prediction

The predicted riggable 3D faces are shown in Figure 6.

To show riggable feature of the recovered facial model, we

rig the model to 5 specific expressions. We can see the re-

sults of rigged models contain the photo-realistic detailed

wrinkles, which cannot be recovered by previous meth-

ods. The point-to-plane reconstruction error is computed

between our model and the ground-truth shape. The mean

error is reported in Table 2. More results and the generated

animations are shown in the supplementary material.

5.3. Ablation Study

W/O dynamic detail. We try to use only one displace-

ment map from source image for rigged expressions, and

the other parts remain the same. As shown in Figure 9,

we find that the rigged model with dynamic detail shows

the wrinkles caused by various expressions, which are not

found in W/O dynamic method.
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Source Image / Predicted Detail Expression A Expression B Expression C Expression D Expression EPredicted Base

Rigged ModelPredicted Model
Rendered Model

Figure 6: We show our predicted faces in source expression and rigged expressions. It is worth noting that the wrinkles in

rigged expressions are predicted from the source image.

Table 2: 3D face Prediction Error

method mean error variance

our method (all exp.) 1.39 2.33

our method (source exp.) 1.22 1.17

DFDN[15] (source exp.) 2.19 3.20

Extreme3D[44] (source exp.) 2.06 2.55

3DDFA[59] (source exp.) 2.17 3.23

W/O deforming Map. We change the input of our dis-

placement map prediction network by replacing the deform-

ing map with one-hot encoding for each of 20 target expres-

sions. As shown in Figure 9, we find the results without de-

forming map (W/O Def. Map) contain few details caused

by expressions.

5.4. Comparisons to Prior Works

We show the predicted results of our result and other

works in Figure 7. The comparison of detail prediction is

607



Source Image Ours DFDN Extreme3D 3DDFA

0 mm

10 mm

0 mm

10 mm

0 mm

10 mm

MAE: 1.96 MAE: 3.04 MAE: 3.30 MAE: 2.67

MAE: 1.13 MAE: 2.79 MAE: 2.69 MAE: 2.25

MAE: 1.78 MAE: 2.14 MAE: 3.21 MAE: 2.09

Figure 7: Comparison of static 3D face prediction with

previous methods. The images in top two rows are

from FaceScape, the image in third row is from volker

sequence[48], and the image in bottom row is from Inter-

net. The top three images are with ground truth shapes, so

we evaluate the reconstruction error and show the heat map

below each row. Our method predicts the lowest error com-

paring to three previous methods.

shown in Figure 8. As most of the detailed face predicted

by other works cannot be directly rigged to other expres-

sions, we only show the face shape in the source expres-

sion. Our results are visually better than previous methods,

and also quantitatively better in the heat map of error. We

consider the major reason for our method to perform the

best in accuracy is the strong representation power of our

bilinear model, and the predicted details contribute to the

visually plausible detailed geometry.

6. Conclusion

We present a large-scale detailed 3D facial dataset,

FaceScape. Comparing to previous public large-scale 3D

face datasets, FaceScape provides the highest geometry

quality and the largest model amount. We explore to pre-

Source

Image

Ours

DFDN

Figure 8: Comparison of detail prediction. We adopt

NICP[1] to register the base meshes of different methods

to ground truth scans, and visualize the predicted details on

common base meshes.

Figure 9: Ablation study. Our final model are able to

recover wrinkles in rigged expressions, while the method

W/O demforming map and W/O dynamic details cannot.

dict a detailed riggable 3D face model from a single im-

age, and achieve high fidelity in dynamic detail synthesis.

We believe the release of FaceScape will spur the future re-

searches including 3D facial modeling and parsing.
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