
 1

TECHNOLOGY GUIDE
Intel Corporation

Facilitating Consumption of Kubernetes Extenders with
Telemetry Aware Scheduler

Authors
Denisio Togashi

Tejas Shah

Marlow Weston

1 Introduction
In today’s Cloud technology, Kubernetes (K8s) is the leading edge solution for containers
orchestration in all kinds of environments and areas that need workload management
and deployment. K8s includes network function virtualization (NFV), Internet of Things
(IoT), 5G, and artificial intelligence (AI). These diverse areas all have different
optimizations, and K8s is tasked with directing those elements. One of the more
challenging areas of optimization is resource management, especially with the increase in
the number of machines due to the fast growth of new technologies. Valuable solutions
optimize the efficiency and functionality of the current workloads while also enabling a
reduction in both cost and environmental impact. At Intel, we have developed Telemetry
Aware Scheduling (TAS) to address these needs.

TAS helps Kubernetes and the community to improve resource utilization based on the
telemetry data generated from workload resources and allows data-driven workload
scheduling for supported resources. It is based on defined policies that provide full
automation of workloads deployment and management in a closed loop via predictive
and reactive actions fed by the metrics from the resources. To address the difficulty of
consumer consumption, TAS has been restructured to facilitate the use of its core
libraries and functionalities by other technologies. With this concept, Platform Aware
Scheduling (PAS) was created to enhance TAS utilization across other scheduler
extenders, including GPU Aware Scheduling (GAS). GAS is the part of Platform Aware
Scheduling that handles fractional GPU workload requests in multi-card GPU nodes.

This guide expands the previous article on Telemetry Aware Scheduling. It revisits how
TAS paved the way to enhance K8s scheduling capacity, and it shows an example of TAS
implementation using data metrics to assist the K8s scheduler to schedule the best
workload placement in the cluster. This paper also appeals to K8s cluster operators,
developers, and architects in introducing the changes made in TAS to allow other
extenders to join Platform Aware Scheduling, the ultimate scheduler extender host
platform.

This document is part of the Network Transformation Experience Kit, which is available at
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-
kits.

https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Facilitating Consumption of Kubernetes Extenders with Telemetry Aware Scheduler

 2

Table of Contents
1 Introduction ... 1

1.1 Terminology .. 3
1.2 Reference Documentation ... 3

2 Overview ... 4
2.1 Challenges Addressed ... 4
2.2 Technology Description .. 5

2.2.1 scheduler-extender-policy Example ... 5
2.2.2 demo-policy Example ... 6

2.3 Architecture ... 7
3 Deployment .. 8

3.1 Installation of TAS and Dependencies ... 8
3.2 TAS in Operation ... 8

4 Summary ... 10

Figures
Figure 1. Platform Aware Scheduling: Scheduler Extender Relationship.. 4
Figure 2. Architecture Diagram .. 7
Figure 3. Deployment Diagram .. 9

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents ... 3

Document Revision History

REVISION DATE DESCRIPTION

001 September 2021 Initial release.

Technology Guide | Facilitating Consumption of Kubernetes Extenders with Telemetry Aware Scheduler

 3

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

FPGA Field-Programmable Gate Array

GAS GPU Aware Scheduling

GB Gigabits

GPU Graphics Processing Unit

Intel® RDT Intel® Resource Director Technology

IoT Internet of Things

JSON JavaScript Object Notation

K8s Kubernetes

LLC Last Level Cache

NFV Network Function Virtualization

OPNFV Open Platform for NFV

PAS Platform Aware Scheduling

PMU Performance Monitoring Unit

RAM Random Access Memory

RAS Reliability, Availability, and Serviceability

TAS Telemetry Aware Scheduling

TLS Transport Layer Security

VPU Vision Processing Units

1.2 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

Barometer Home https://wiki.opnfv.org/display/fastpath/Barometer+Home

collectd https://github.com/collectd/collectd

Closed Loop Automation - Telemetry Aware Scheduler for
Service Healing and Platform Resilience Demo

https://networkbuilders.intel.com/closed-loop-automation-telemetry-aware-
scheduler-for-service-healing-and-platform-resilience-demo

Closed Loop Automation - Telemetry Aware Scheduler for
Service Healing and Platform Resilience White Paper

https://builders.intel.com/docs/networkbuilders/closed-loop-platform-
automation-service-healing-and-platform-resilience.pdf

Energy Savings & Resiliency with Closed Loop Platform
Automation

https://tma.roc.cnam.fr/Proceedings/TMA_Demo_5.pdf

GPU Aware Scheduling https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-
scheduling

Intel RDT https://wiki.opnfv.org/display/fastpath/Intel_RDT

Kubernetes Descheduler User Guide https://github.com/kubernetes-sigs/descheduler/blob/master/docs/user-
guide.md

Kubernetes Prometheus Adapter https://github.com/DirectXMan12/k8s-prometheus-adapter

Node Exporter https://github.com/prometheus/node_exporter

One Click Install of Barometer Containers https://wiki.opnfv.org/display/fastpath/One+Click+Install+of+Barometer+Co
ntainers

Prometheus https://github.com/prometheus/prometheus

Platform Aware Scheduling https://github.com/intel/platform-aware-scheduling

https://wiki.opnfv.org/display/fastpath/Barometer+Home
https://github.com/collectd/collectd
https://networkbuilders.intel.com/closed-loop-automation-telemetry-aware-scheduler-for-service-healing-and-platform-resilience-demo
https://networkbuilders.intel.com/closed-loop-automation-telemetry-aware-scheduler-for-service-healing-and-platform-resilience-demo
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf
https://tma.roc.cnam.fr/Proceedings/TMA_Demo_5.pdf
https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-scheduling
https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-scheduling
https://wiki.opnfv.org/display/fastpath/Intel_RDT
https://github.com/kubernetes-sigs/descheduler/blob/master/docs/user-guide.md
https://github.com/kubernetes-sigs/descheduler/blob/master/docs/user-guide.md
https://github.com/DirectXMan12/k8s-prometheus-adapter
https://github.com/prometheus/node_exporter
https://wiki.opnfv.org/display/fastpath/One+Click+Install+of+Barometer+Containers
https://wiki.opnfv.org/display/fastpath/One+Click+Install+of+Barometer+Containers
https://github.com/prometheus/prometheus
https://github.com/intel/platform-aware-scheduling

Technology Guide | Facilitating Consumption of Kubernetes Extenders with Telemetry Aware Scheduler

 4

REFERENCE SOURCE

Telemetry Aware Scheduling https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-
aware-scheduling

Telemetry Aware Scheduling – Automated Workload
Optimization with Kubernetes (K8s) Training Video

https://networkbuilders.intel.com/telemetry-aware-scheduling

Telemetry Aware Scheduling (TAS) - Automated Workload
Optimization with Kubernetes (K8s) Technology Guide

https://builders.intel.com/docs/networkbuilders/telemetry-aware-
scheduling-automated-workload-optimization-with-kubernetes-k8s-
technology-guide.pdf

2 Overview
The Platform Aware Scheduling (PAS) repository hosts Telemetry Aware Scheduling, which is the main engine that drives the
scheduler decisions for a workload deployment. TAS is thus an add-on component that extends the work of the Kubernetes
Scheduler. Any other scheduler extender hosted by PAS, such as GAS, follows the same pattern, i.e., to be an extension for
Kubernetes Scheduler by using the TAS share library, using platform metrics, and through the TAS policies gets the best decision
for the workload deployment. Figure 1 shows the relationship between PAS, TAS, GAS, and other scheduler extenders.

Figure 1. Platform Aware Scheduling: Scheduler Extender Relationship

Based on this concept, TAS, via Platform Aware Scheduling, can deliver solutions that the default Kubernetes Scheduler cannot.
Solutions include noisy neighbor protection where co-located workloads can compete for specialized resources (e.g., last level
cache) and visual processing at the edge, such as the Intel® Movidius™ Myriad™ X1 Vision Processing Unit (VPU) applied in edge AI
image processing workloads. TAS can ensure that any new VPU workload is scheduled on a node where there is more VPU capacity
available, enabling high performance in use cases like traffic monitoring, video security systems, and facial recognition.

TAS complements the platform resilience use case, where health indicators from the platform enable TAS to deliver the best
placement decision based on most-updated information regarding the health of the nodes to the K8s Scheduler. At the same time
TAS indicates a possible faulty host node to the K8s Scheduler to avoid scheduling critical workloads on them. For more
information on using TAS with platform resilience, refer to the Closed Loop Automation white paper.

TAS also helps to solve GPU resource fractionalization, which can happen when the K8s Scheduler is not able to distinguish, at a
granular level, the amount of GPU resources available for a workload. GPU Aware Scheduling (GAS), which utilizes TAS in Platform
Aware Scheduling, provides visibility and awareness to the K8s Scheduler. For more information about GAS, refer to the PAS
repository.

2.1 Challenges Addressed
In Kubernetes, the term scheduling means assigning the pod to a node, and the component responsible for this is Kube-Scheduler
(or simply, scheduler). When a pod with the workload is found by the scheduler, it tries to schedule it on the best possible available
nodes that can provide the minimum computer resources types (CPU and memory) that are requested to run the workload. This is
the general approach that is based on the static state of those resources rather than the current state or any previous level of
utilization of those resources.

The lack of knowledge of the current state of the first-class resources (i.e., CPU and memory) can cause the scheduler to make less
than optimal decisions and affect workload performance. A critical example would be the schedule of a workload to a node with a
high CPU usage instead of a node with a low CPU usage.

1 Intel, the Intel logo, Movidius, and Myriad are trademarks of Intel Corporation or its subsidiaries.

https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-aware-scheduling
https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-aware-scheduling
https://networkbuilders.intel.com/telemetry-aware-scheduling
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf
https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-scheduling
https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-scheduling

Technology Guide | Facilitating Consumption of Kubernetes Extenders with Telemetry Aware Scheduler

 5

Other resources like GPUs, FPGAs, and network cards are seen as atomic devices and cannot be looked at as having available
resources at a granular level. For example, workloads that need intensive usage of GPUs are scheduled to nodes that have GPUs.
However, the default scheduler does not prevent the scheduling of workloads in a situation that can only be achieved by fractioning
over several GPUs in the node. For more details, see the GAS repository.

Kubernetes’ lack of insight to the current usage level of the available resources can lead the scheduler to make non-ideal
scheduling decisions and cause an imbalanced distribution and unexpected resource usage by the workload across the cluster. TAS
assists K8s in these cases and uses platform telemetry to support the scheduler so that it knows the current resource level usage
and considers the node history usage. In this way, it can predict the best node for the workload and avoid scheduling on predicted
faulty devices.

2.2 Technology Description
Upon deployment of a workload, i.e., placement of workload’s pod on a feasible node in a cluster, the K8s default scheduler
executes a set of operations such as filtering and scoring. Filtering determines the feasible nodes and scoring assigns scores
between the feasible nodes. The node that is ranked with the highest score is then selected to receive the pod deployment. The
filtering and scoring behavior of the default scheduler can be configured by a scheduling policy configuration file.

Telemetry Aware Scheduling is then enabled as an extender for the K8s default scheduler by providing a scheduling policy to the
default Kubernetes scheduler. The following shows an example of such a policy.

2.2.1 scheduler-extender-policy Example

apiVersion: v1
kind: ConfigMap
metadata:
 name: scheduler-extender-policy
 namespace: kube-system
data:
 policy.cfg: |
 {
 "kind" : "Policy",
 "apiVersion" : "v1",
 "extenders" : [
 {
 "urlPrefix": "https://tas-service.default.svc.cluster.local:9001",
 "apiVersion": "v1",
 "prioritizeVerb": "scheduler/prioritize",
 "filterVerb": "scheduler/filter",
 "weight": 1,
 "enableHttps": true,
 "managedResources": [
 {
 "name": "telemetry/scheduling",
 "ignoredByScheduler": true
 }
],
 "ignorable": true,
 "tlsConfig": {
 "insecure": false,
 "certFile": "/host/certs/client.crt",
 "keyFile" : "/host/certs/client.key"
 }
 }
]
 }

There are a number of options available to customize the "extenders" configuration object. For more detail, see the PAS repository.
Some of these fields, such as setting the urlPrefix, filterVerb, and prioritizeVerb, are necessary to point the Kubernetes
scheduler to the TAS scheduling service running at https://tas-service.default.svc.cluster.local:9001. With a policy
like the above as part of the default scheduler configuration, the identified webhook then becomes part of the scheduling process.
This allows TAS to modify the decisions made by the default scheduler for workloads that call for the use of TAS.

The filtering and prioritization operations in TAS are then aligned with the filtering and scoring of the default scheduler, and
together with the descheduler, which removes a workload from its host causing it to be placed on a more suitable host, these three
compose the main processes configured within TAS policies.

https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-scheduling
https://github.com/intel/platform-aware-scheduling#enabling-a-scheduler-extender

Technology Guide | Facilitating Consumption of Kubernetes Extenders with Telemetry Aware Scheduler

 6

TAS policies, implemented as a K8s Custom Resource Definition, are then built on those processes (filtering, prioritization, and
descheduling) by defining, respectively, the scheduling strategies scheduleonmetric, dontschedule, and deschedule. Each of
these strategies is governed by rules that relate the platform metrics data values to a desired state defined by the user or operator.

An example policy, with strategies and rules as below, is available on the open-source repository.

2.2.2 demo-policy Example

apiVersion: telemetry.intel.com/v1alpha1
kind: TASPolicy
metadata:
 name: demo-policy
 namespace: default
spec:
 strategies:
 scheduleonmetric:
 rules:
 - metricname: health_metric
 operator: LessThan
 dontschedule:
 rules:
 - metricname: health_metric
 operator: Equals
 target: 1
 - metricname: health_metric
 operator: Equals
 target: 2
 deschedule:
 rules:
 - metricname: health_metric
 operator: Equals
 target: 2

The policy named demo-policy contains three separate rulesets defined under the requested strategies. Each of these rules uses
a metric named health_metric to build a set of recommendations based on the comparison of values defined in the policy field,
i.e., target, and the metrics collected by platform metrics.

The health_metric is the result of input from multiple sources, including Intel® Resource Director Technology (Intel® RDT),
processor performance monitoring units (PMUs), and Intel® Xeon® reliability, availability, and serviceability (RAS) metrics. If the
health_metric displays a value of 1, this means that there is some issue on the system and deployments of critical workloads
should be blocked. Whereas a value of 2 means that there is a serious fault and critical workloads should be evicted and
rescheduled on a healthier node. To learn more about using TAS for workload resilience and service healing, see the Closed Loop
Automation white paper.

In the above demo-policy example, the rule in the scheduleonmetric strategy advertises the default scheduler to place
workloads toward nodes with the lowest reading, i.e., the most healthy health_metric. The rules in the second strategy,
dontschedule, tell the scheduler to filter out nodes with readings of 1 or 2. The rule in the third strategy, deschedule, tells TAS
that the node for which the metric health_metric reading is equal to 2 is not healthy enough to keep running workloads.
Workloads in this node should be removed and rescheduled.

TAS policy system enforces rule-based strategies to control pod distribution across the cluster and influence the scheduling and
lifecycle placement process.

Telemetry Aware Scheduling via policy system enables smart scheduling recommendations and automation of actions that would
otherwise be done manually by the user/operator. As result, it increases the performance by improving the resource utilization
across the whole cluster.

https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/deploy/health-metric-demo/health-policy.yaml
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf

Technology Guide | Facilitating Consumption of Kubernetes Extenders with Telemetry Aware Scheduler

 7

2.3 Architecture

Figure 2. Architecture Diagram

Figure 2 shows a diagram of a Kubernetes cluster with a separate control plane node and worker nodes. The key components are as
follows.

A. Telemetry Aware Scheduling: TAS extender is made up of two main elements in the code base deployed as single container.
• Telemetry Scheduler recommends nodes for pod placement based on metrics rules.
• Controller watches the state of critical metrics and marks violating nodes as such.

B. Kubernetes Descheduler picks up the pods due to be evicted, runs safety checks, and deschedules.
C. Kubernetes API server validates and configures data for the K8s API objects.
D. Kubernetes Scheduler performs scheduling operations and looks for advice from TAS.
E. Custom Metric Pipeline gets metrics from the node metric exporter agents and makes them available to K8s API via Custom

Metric API.
F. Custom Metric API is a K8s API aggregation layer that receives metrics from Custom Metric Pipeline and makes them available

to TAS.
G. TAS Policy is a set of strategies and rules made available as a policy custom resource in K8s API.
H. Pod Spec specifically references the policy that should be used to influence the scheduling of this workload.
I. Node Metric Exporter agents “Collectd” and/or "Node Exporter”.
J. POD-1 linked to policy-1 deployed in a feasible node.

The architecture changes made (related to previous guide) to provide the necessary structure for the creation of a Platform Aware
Scheduler are as follows.

• Refactor of TAS Scheduler package of the previous code into generic and specific library packages. This allows improved usage
of the code for other extenders within the Platform Aware Scheduler, e.g., GAS.

https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf

Technology Guide | Facilitating Consumption of Kubernetes Extenders with Telemetry Aware Scheduler

 8

• TAS Extender and TAS Policy Controller combined in one binary component. Previously, the two components were deployed in
different containers by building different images. To help improve security, the two components were combined into a single
code and deployed in a single container.

• Implementation of mutual TLS. TAS Scheduler Extender listens on a TLS endpoint, which requires a certificate and a key to be
supplied.

• Implementation of structured logs of klog to allow improved log description at different log levels.

3 Deployment
TAS is an open-source community project hosted by the Platform Aware Scheduling available at https://github.com/intel/platform-
aware-scheduling/tree/master/telemetry-aware-scheduling. Deployment is done directly on K8s, using Helm charts provided at the
same repository.

3.1 Installation of TAS and Dependencies
1. Install programming languages and packages to deploy and build TAS

• Go installation 1.13 or higher
• K8s installed on a multi-node cluster using Kubeadm/Kubespray Helm installed on the K8s cluster

2. Install custom metrics pipeline
• Prometheus - https://github.com/prometheus/prometheus
• Prometheus adapter - https://github.com/DirectXMan12/k8s-prometheus-adapter
• Node exporter - https://github.com/prometheus/node_exporter
• Collectd - https://github.com/collectd/collectd

3. Install TAS - Build, deploy, and configure TAS
• Deploy the TAS system - https://github.com/intel/platform-aware-scheduling/blob/v0.4/telemetry-aware-

scheduling/deploy/
• Configure K8s scheduler by deploying the TAS extender policy - https://github.com/intel/platform-aware-

scheduling/blob/v0.4/telemetry-aware-scheduling/deploy/extender-configuration/
4. Install the Kubernetes Descheduler - https://github.com/kubernetes-sigs/descheduler
Note: The deployment steps are based on TAS v0.1 described in the previous paper

[https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-
kubernetes-k8s-technology-guide.pdf] and the sequence is valid for TAS within PAS v0.4. Refer to the repository for the
latest aspects of the deployment process.

Note: The custom metric pipeline components can be installed by using Helm charts in the quick installation at
https://github.com/intel/platform-aware-scheduling/blob/v0.4/telemetry-aware-scheduling/docs/custom-
metrics.md#quick-install

Note: Collectd is an additional complementary node metrics provider that makes many additional platform metrics available.

3.2 TAS in Operation
After the dependency components are installed, configured, and up and running, TAS is ready to provide schedule decisions to the
default scheduler. Following the diagram in Figure 2, the steps below demonstrate how TAS works during the workload deployment
that is associated to the TAS policy. Note that the sequence of events is not necessarily in the presented order since some of the
processes can run concurrently.

1. Node metric agents (I) send the monitoring metrics (e.g., health_metric) to custom-metrics API (F) via custom-metric pipeline
(E) and therefore to K8s API (C).

2. TAS policies (G) deployed in the cluster are then advertised in K8s API (C).
3. TAS in the cluster (A) starts to watch continuously on the K8s API (C) for TAS policies and updates of policy changes.

• TAS checks the requested strategies and rules from TAS policies in the cluster.
• Based on the policy specs, TAS pulls the metric values advertised in custom-metric API through K8s API.
• If the deschedule strategy’s rules are requested and complied, TAS labels the nodes that comply with the deschedule

strategy’s rules as “violating”.
• The “violating” label is advertised on K8s API.

4. Descheduler component (B) in the cluster watches K8s API (C).
• If it perceives a node with “violating” label, it evicts pods associated to TAS policy on that node.
• The K8s Schedule (D) with TAS reschedules the evicted pods to other available and feasible nodes.

5. User deploys a pod associated to TAS policy (H), e.g., set policy-1, as a label in the pod specs.
• The requested pod is advertised on K8s API (C) and picked up by TAS via K8s Scheduler (D).
• TAS checks if the pod is linked to any TAS policy in the cluster by getting its name in the pod spec.
• TAS internally applies filter/prioritize according to the associated strategies and rules in TAS policy linked to the deployed

pod (G, H).

https://github.com/kubernetes/klog
https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-aware-scheduling
https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-aware-scheduling
https://github.com/prometheus/prometheus
https://github.com/DirectXMan12/k8s-prometheus-adapter
https://github.com/prometheus/node_exporter
https://github.com/collectd/collectd
https://github.com/intel/platform-aware-scheduling/blob/v0.4/telemetry-aware-scheduling/deploy/
https://github.com/intel/platform-aware-scheduling/blob/v0.4/telemetry-aware-scheduling/deploy/
https://github.com/intel/platform-aware-scheduling/blob/v0.4/telemetry-aware-scheduling/deploy/extender-configuration/
https://github.com/intel/platform-aware-scheduling/blob/v0.4/telemetry-aware-scheduling/deploy/extender-configuration/
https://github.com/kubernetes-sigs/descheduler
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://github.com/intel/platform-aware-scheduling/blob/v0.4/telemetry-aware-scheduling/docs/custom-metrics.md#quick-install
https://github.com/intel/platform-aware-scheduling/blob/v0.4/telemetry-aware-scheduling/docs/custom-metrics.md#quick-install

Technology Guide | Facilitating Consumption of Kubernetes Extenders with Telemetry Aware Scheduler

 9

• TAS sends the results to K8s scheduler (D).
• K8s scheduler (D) schedules the pod by considering TAS results and then advertises the result in K8s API (C).
• Kubernetes internal components make sure that the pod associated to TAS policy is ready in the feasible worker node (J).

Figure 3. Deployment Diagram

The above figure illustrates an example of how pods are deployed with a demo-health policy demonstrated in Section 2.2, where:

• Time t0:
− No pods with demo-policy label in the nodes.
− Node3 is filtered out by strategy dontschedule in TAS policy.

• Time t1:
− Pod1 and Pod2 are deployed with demo-policy.
− Since the metric values do not violate the policy, Pod1 and Pod2 are deployed on Node1 and Node2.

• Time t2:
− Node2 has metric value = 2. This violates policy scheduling and follows strategy deschedule.
− Node2 now labeled as ‘violating’.
− Descheduler evicts Pod2.

• Time t3:
− Node2 is now filtered out along with Node3.
− Node1 metric value allows strategy scheduleonmetric.
− Pod2 is now scheduled on Node1.

By using either the previous guide or the repository, TAS and its dependencies are then up and running in the cluster with the
demo-policy TAS policy. The implemented example uses a dummy metric (health_metric) with three different values that

https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/docs/health-metric-example.md

Technology Guide | Facilitating Consumption of Kubernetes Extenders with Telemetry Aware Scheduler

 10

represent the metrics for the health of a node. These values are manually changed in a text file that is scraped by the node metric
agent (node exporter). The changes in the health_metric values trigger specific actions from TAS. Two values are defined in the
demo-policy TAS policy described in Section 2.2. Therefore, any metric values different from 1 or 2 make the nodes feasible for
the deployment of workloads that are associated to the demo-policy. If there is more than one feasible node, TAS advertises a
priority list based on the metric values and the rule applied for the scheduleonmetric strategy defined in the demo-policy. In
the implemented example, the rule tells the scheduler to direct workloads toward nodes with the lowest reading, i.e., most healthy
health_metric reading. For the value of 1 equivalent to dontschedule strategy, TAS indicates to the K8s scheduler that nodes
with that metric value are not feasible and they should be filtered out of scheduling. Nodes with health_metric equal to 2 are
labeled by TAS as “violating.” Workloads in such nodes are suitable for eviction by the Descheduler and are rescheduled in another
feasible node (see Figure 3 that summarizes the example implemented).

4 Summary
Telemetry Aware Scheduling is introduced as an extender to help Kubernetes and the community to improve resource optimization
based on the telemetry data generated from the workload’s resources. TAS overcomes the performance difficulties faced by the
default scheduler by bridging data information from the platform telemetry to decisions taken at the scheduler. It does that by
targeting specific metrics to the desired workloads’ specifics within customized policies (a set of customized strategies and rules),
which allows TAS to forward the workloads to the right node in the working cluster. TAS also helps to indicate critical nodes that
should not receive workloads or even nodes that should have workloads descheduled from one platform.

Platform Aware Scheduling that hosts TAS is ready to receive other extenders that use TAS code in order to take telemetry into
account for scheduling workloads with the desired resources.

TAS and other extenders within the platform can provide automation actions on workloads scheduling and many opportunities to
reduce the operational cost, and at the same time reduce the overhead, on cluster management and make an overall improvement
of the system. Those interested in further information on the benefits of PAS/TAS can access the open-source project repository at
https://github.com/intel/platform-aware-scheduling where deployment scripts and instructions are readily available.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. You may not use or
facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree
to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.

 0921/DN/WIT/PDF 648029-001US

https://github.com/intel/platform-aware-scheduling
http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	2.1 Challenges Addressed
	2.2 Technology Description
	2.2.1 scheduler-extender-policy Example
	2.2.2 demo-policy Example

	2.3 Architecture

	3 Deployment
	3.1 Installation of TAS and Dependencies
	3.2 TAS in Operation

	4 Summary

