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Measurement invariance (MI) is a pre-requisite for comparing latent variable scores across
groups. The current paper introduces the concept of approximate MI building on the work
of Muthén and Asparouhov and their application of Bayesian Structural Equation Modeling
(BSEM) in the software Mplus. They showed that with BSEM exact zeros constraints can
be replaced with approximate zeros to allow for minimal steps away from strict MI, still
yielding a well-fitting model. This new opportunity enables researchers to make explicit
trade-offs between the degree of MI on the one hand, and the degree of model fit on
the other. Throughout the paper we discuss the topic of approximate MI, followed by an
empirical illustration where the test for MI fails, but where allowing for approximate MI
results in a well-fitting model. Using simulated data, we investigate in which situations
approximate MI can be applied and when it leads to unbiased results. Both our empirical
illustration and the simulation study show approximate MI outperforms full or partial MI
In detecting/recovering the true latent mean difference when there are (many) small
differences in the intercepts and factor loadings across groups. In the discussion we
provide a step-by-step guide in which situation what type of MI is preferred. Our paper
provides a first step in the new research area of (partial) approximate MI and shows that
it can be a good alternative when strict MI leads to a badly fitting model and when partial
MI cannot be applied.

Keywords: measurement invariance, Bayesian structural equation modeling, Mplus, informative/subjective prior,

prior variance

INTRODUCTION
If scores on a latent variable are to be compared across groups
or time in a meaningful way, the underlying measurement model
should be equivalent. Measurement invariance (MI) implies that
(for continuous observed variables), conditional on the latent
trait scores, the covariances and the intercepts are equal across
groups (cf. Mellenbergh, 1989). In other words, the relation-
ships between the latent trait scores and the observed variables
do not depend on group membership. Studies of so-called “mea-
surement invariance” have often shown that the underlying
constructs are, however, not equivalent (e.g., Vandenberg and
Lance, 2000; Schmitt and Kuljanin, 2008; Millsap, 2011). The cur-
rent paper discusses approximate MI as a possible solution to
these situations, thereby building on the work of Muthén and
Asparouhov (2012b, 2013). Muthén and Asparouhov describe a
novel method where, using Bayesian structural equation models
(BSEM), exact zero constraints can be replaced with approxi-
mate zero constraints based on substantive theories. For example,
cross-loadings in confirmatory factor analysis are traditionally
constrained to be zero, but using the procedure of Muthén and

Asparouhov (2012b) these parameters can be estimated with
some, as we call it, “wiggle room” (Muthén and Asparouhov,
2012a), implying that very small cross-loadings are allowed. The
novel possibility of approximate zero constraints is an interest-
ing alternative to the use of exact zeros which has proven to be
unrealistic at times (see for example van Zuiden et al., 2011). The
current paper discusses another area where approximate zeros
might have an advantage: when full MI across groups is too strict
and small differences in factor loadings or intercepts are allowed
to make the model fit well. Possibly differences in use of the
response scale are described in Morren et al. (2011).

Muthén and Asparouhov (2013) use the BSEM approach as a
way to get the non-invariance information as you would get by
Maximum Likelihood (ML) modification indices. They propose
a two-step procedure where one first uses BSEM’s approximate
MI analysis to get modification indices and then free those non-
invariant parameters in a regular Bayes run as a final, second
step. BSEM modification indices are helpful, for example, when
having categorical items where no ML modification indices exist,
or with a large number of groups. This is often the case in the
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context of large scale international studies. In the current paper
we focus on the benefits or dangers when applying approximate
invariance when it is actually applied in a CFA model. As we will
show with both an empirical illustration and a simulation study,
approximate MI enables the researchers to make explicit trade-
offs between the degree of MI on the one hand, and the degree
of model fit on the other. However, as our simulation results
demonstrate, some bias in the estimated parameters occurs due
to the alignment issue (see also Muthén and Asparouhov, 2013),
which can be corrected using a method available in Mplus v7.1
(Asparouhov and Muthén, 2013).

In what follows we first illustrate issues with applying MI,
followed by an introduction of approximate MI. Thereafter, we
provide an empirical illustration where the test for strict MI fails,
but where approximate MI results in a well-fitting model. Then,
with a simulation study, we investigate whether approximate MI
can lead to unbiased estimates for differences in latent scores
across groups. Thereafter, we introduce the correction method
and show its influence on the parameters in our simulation study.
We conclude with a discussion and practical recommendations
for scholars who aim to meaningfully compare scores on latent
variables. Note that the application of approximate MI in the cur-
rent paper is limited to situations with a small number of groups,
continuous variables, and “almost” invariant models. For a more
general approach see Muthén and Asparouhov (2013).

THE ISSUE OF APPROXIMATE MEASUREMENT INVARIANCE:
SCYLLA OR CHARYBDIS
Questionnaires are often used to assess latent constructs, such as
human attitudes and behavior, with the goal to compare groups.
For such a comparison to be valid MI should apply, see (Millsap,
2011) or Vandenberg and Lance (2000) for a comprehensive
overview on possible methods testing MI. That is, a question-
naire should measure identical constructs with the same factor
structure across different groups. Stated differently, factor load-
ings, intercepts, and residual variances should be identical to get
the label “full measurement invariance.” If one wants to com-
pare latent means the intercepts are of major importance and
therefore, we focus on the intercepts.

Van de Schoot et al. (2012) stated that “When MI does not
hold, groups or subjects [. . .] respond differently to the items
and as a consequence factor means cannot reasonably be com-
pared” (p. 487). This statement refers to a potential bias in
the latent mean comparison when full MI is assumed, but not
supported by the data, or when MI is not assumed and the
latent means are (incorrectly) compared. In order to meaning-
fully compare latent means across groups, at least the factor
loadings and intercepts should be equal; this is the situation
of scalar invariance (Vandenberg and Lance, 2000). Henceforth,
when (full) MI is used we refer to scalar invariance. After test-
ing for scalar MI it might be that such a model does not fit the
data. What to do in such a situation? One solution is to allow
for partial MI. Steenkamp and Baumgartner (1998) suggested
that as long as at least two of the factor loadings and intercepts
are constrained to be equal across groups or time, the differ-
ence in the latent mean between the groups is unbiased (see
also Steinmetz, 2013). However, this procedure has been debated

much (Vandenberg, 2002), for example how to choose the ref-
erence category (Rensvold and Cheung, 2001). At least partial
invariance for the factor loadings before one can proceed to test
invariance of the intercepts (Steenkamp and Baumgartner, 1998).
This paper focuses on comparison of latent means, so we present
approximate MI in the context of the intercepts.

To sum up, if MI is used to either see if measurement instru-
ments are equivalent across populations, or to compare the latent
means to each other, possible outcomes of MI are:

(1) (full or) scalar MI, where all intercepts are constrained to be
equal across groups.

(2) partial MI, where some of the intercepts between groups are
allowed to be freely estimated, while others are held constant
(see e.g., Steenkamp and Baumgartner, 1998; Steinmetz,
2013); or

(3) No invariance, where all intercepts between groups are
freely estimated, because such a model fits the data best.
Consequently, the questionnaire cannot be used for compar-
ing groups.

In the current paper we add a fourth option, initiated by Muthén
and Asparouhov (2012b, 2013) and introduced in more detail
below:

(4) Approximate MI, a Bayesian solution allowing for some wig-
gle room for the intercept differences between groups, where
the wiggle room is determined by the degree of precision of
the prior.

Metaphorically speaking, in testing for MI one has to choose
between Scylla and Charybdis, two mythical Greek sea monsters1.
In the current paper we apply this metaphor to the procedure of
testing for MI. On the one hand, there is the six-headed sea mon-
ster Scylla, who metaphorically represents imposing full MI on
the model with as a result that the model fit indices indicate a bad
fit to the data. On the other hand, however, we could fall victim
to Charybdis if we release the constraints. By not imposing MI,
our model will fit the data, but it will be impossible to compare
groups. This paper illustrates the third option, using approximate
MI, which could turn out to be the way to escape both threats.

Consider a CFA model with two groups, see Figure 1. Suppose
the difference between the intercepts of item 1 is 0.10. Now, we
impose MI on this model, by constraining the two intercepts to
be equal. As a result, the difference between both will be exactly
zero, that is, we are imposing a difference of zero on the parame-
ter estimates for the intercepts. In Figure 2 the likelihood function
(which is a function of the distribution of the data) is shown for

1The two monsters occur in an episode of the adventures of Odysseus; their
location is believed to have been at the Strait of Messina between Sicily and
the Italian mainland. Scylla, a six-headed sea monster, lived on one end of
this strait, while on the other Charybdis resided, causing huge whirlpools.
The two monsters were living so close to each other that they created an
inescapable threat. Sailors who avoided Charybdis were doomed to meet
Scylla and vice versa; it seemed almost impossible to pass the sea strait without
being confronted with either of the two mythical monsters.
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FIGURE 1 | A hypothetical model.

FIGURE 2 | The influence of applying MI while the difference between

factor loading is clearly not zero.

the difference between both intercepts, which is denoted by δ.
In this case there is a small difference in the intercepts between
both groups. When applying MI, the difference is forced to be
zero (δ = 0). By doing this, we have established MI and we are
allowed to compare the latent factor means between the two
groups. However, the estimated intercepts no longer resembles
their unconstrained counterparts. Stated differently, δ is forced
to be zero, whereas in the data δ > 0. The discrepancy between δ

in our model and δ in the data will probably result in poor model
fit. A bad model fit means we have to reject our model and cannot
interpret our model parameters.

Meanwhile, on the other side of the narrow channel between
Italy and Sicily, Charybdis lurks, forced to live in a cave beneath
the sea causing whirlpools. If we would analyze our hypotheti-
cal model without any constraints on the intercepts the model
will fit the data. As a consequence, however, we are lost in the
whirlpools caused by the furious Charybdis, because we can no
longer compare the latent means due to different intercepts across
the groups.

There we are, trapped between Scylla and Charybdis, and are
forced to choose between either a model with MI and a terri-
ble fit to the data, or a well-fitting model that we cannot use
for comparing the latent means across groups. However, just like
Odysseus, we believe we can pass in safety through the narrow
channel. One passage may be provided by imposing partial MI
allowing for one or two differences. Partial MI seems attractive

when relatively large differences (δ >> 0) exist for one or only
a few items. However, when differences are small and occur for
multiple items in a factor analysis, partial MI is not able to provide
a safe passage and approximate MI offers an attractive alternative.
With approximate MI, instead of forcing intercepts to be exactly
equal across groups, see Figure 2, a substantive prior distribution
is used to bring the parameters close to one another while allow-
ing for some wiggle room. Such a model falls in between full and
no MI, which could mean that we can still compare the means (as
MI holds approximately) while the model also fits well, allowing
an escape from Scylla and Charybdis. But how does this work?

USING BAYESIAN PRIORS ON INTERCEPT DIFFERENCES
To estimate a model with approximate MI we need Bayesian
statistics, which has been discussed in many papers and textbooks
(see, among others, Kruschke et al., 2012; Van de Schoot et al.,
2013). There are three essential ingredients underlying Bayesian
statistics. The first ingredient is prior distributions which repre-
sent background knowledge about the parameters of a model;
for example that the difference between two intercepts is close
to zero. Second, there is the likelihood function of the data con-
taining the information about the parameters from the data.
Thirdly, both prior and likelihood are summarized by the so-
called posterior distribution, which is a compromise of the prior
knowledge and the likelihood function. Stated otherwise, the pos-
terior distribution contains one’s updated knowledge balancing
prior knowledge with observed data.

The crucial ingredient of Bayesian statistics is the specifica-
tion of the prior distribution. In Figure 3, four different priors
are specified and combined with the likelihood function of the
difference between two intercepts which is denoted by δ. When
combining prior and likelihood, the posterior difference score is
obtained, denoted by δ′. Figure 3A displays a flat uninformative
prior for the difference between the two intercepts. Because such
a prior does not contain any information, the posterior estimate
for the difference will not be influenced and the results are similar
to a model without MI, that is δ = δ′. If, for example, a normal
prior distribution is used, see Figure 3B, the posterior estimate
for the difference, δ′, will be slightly pulled toward the mean of
the prior, in this case zero. If we decrease the prior variance, see
Figure 3C, the posterior difference comes closer to zero. If the
prior variance is very small, the posterior difference will approxi-
mate zero, δ′ ∼ 0, and we establish approximate MI allowing for
some wiggle room. To get back to our metaphor: if a small differ-
ence between the intercepts is allowed, we can escape Charybdis
because the difference between intercepts is smaller than in the
unconstrained model, Figure 3A. We also escape Scylla, because a
model with some wiggle room is less restrictive than full MI and
will therefore, still fit the data acceptably well, Figure 2. In con-
clusion, approximate MI finds a compromise between zero and
no constraints, through which both model fit and latent mean
comparison can be established.

Approximate MI is expected to be especially useful when
there are many small deviations from strict MI (De Boeck, 2008;
Muthén and Asparouhov, 2013). In the current paper we focus on
studying the differences between strict, partial and approximate
MI in a set of populations. In the current paper we assume
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FIGURE 3 | Four different prior distributions to demonstrate the influence of the prior on the posterior parameter estimates. (A) Uninformative prior;
(B) Wide normal prior; (C) Narrow normal prior; (D) Highly peaked prior.

that the main goal of applying MI is to compare latent means
and, therefore, focus on the potential bias in the latent mean
comparison when different degrees of MI are applied. There are
two indicators to keep in mind: (1) model fit and (2) a small
enough difference between either factor loadings or intercepts.

EMPIRICAL ILLUSTRATION
INTRODUCTION
The empirical illustration looks at the experiences of psychol-
ogists (group 1) and psychiatrists (group 2) with a new policy
in Dutch mental healthcare: Diagnosis Related Groups (DRGs;
Tummers et al., 2012). Diagnosis Related Groups were intro-
duced in January 2008 and were part of a process to convert the
Dutch healthcare system into one based on a regulated market.
The DRG policy differs significantly from the prior method in
which each medical action resulted in a financial claim, a so-
called fee-for-service system. Before 2008, the number of sessions
a professional had with a patient related directly to the amount of
money claimed from the health insurer. According to some stand-
points, this could lead to inefficiencies (Busse et al., 2011). The
DRG policy changed the situation by stipulating a standard rate
for each disorder. For instance, for a mild depression, the mental
healthcare professional gets a standard rate for treating the patient
(direct and indirect time) between 250–800 min.

Psychologists and psychiatrists had to implement these DRGs,
and we will investigate their willingness to do so. This is

important, as many of them opposed the DRG policy, set up
websites agitating against it, or even in a few cases quit their jobs
(Palm et al., 2008). The following quote of a healthcare profes-
sional [cited in Tummers (2012): 516], illustrates their point of
view:

“We experience the DRG policy as a disaster. I concentrate as much
as possible on treating my own patients, in order to derive some
satisfaction from my work.”

Furthermore, psychiatrists were far more resistant than psychol-
ogists. One of the reasons was that especially psychiatrists con-
sidered the DRGs as a threat to their autonomy (Smullen, 2013).
It is important to analyze the difference between the two groups,
in order to provide guidance to policy makers in their attempts
to adapt the policy and increase the satisfaction of professional
health workers. We would expect minor violations of MI given
that the both groups of professionals were expected to be quite
negative about the specific policy and also have slightly differ-
ent attributes to the concepts used in the questionnaires because
of their professional training and working environment (see for
instance Palm et al., 2008; Neukrug, 2011; Smullen, 2013).

METHODS
The sampling frame consisted of 5199 professionals, all members
of the two main nationwide mental healthcare associations: the
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Dutch Association of Psychologists (NIP) and the Netherlands
Association for Psychiatry (NVvP), who would, in principle, all
of them be required to work with the DRG policy. Using an
email and two reminders, 1307 questionnaires were returned; a
response rate of 25% with 1074 valid cases for the specific scale
we used. Despite the select sample the demographical composi-
tion of the respondent group was representative for the Dutch
population of mental healthcare professionals (Palm et al., 2008).

Willingness to implement the DRG policy was measured using
a validated four-item scale developed by Metselaar (1997), which
is based on the notion of “intention to act” in the theory of
planned behavior (Ajzen, 1991). The items use five-point Likert-
scale response categories (strongly disagree, disagree, neutral,
agree, and strongly agree). The items use templates in which one
can specify the change being assessed, for example, the item “I
intend to make time to implement the change” was changed into
“I intend to make time to implement the DRG-policy.” All item
descriptions, its means, variances, and correlations are included
in Table 1 and the data and all syntax files are available on the
website of the first author.

RESULTS
If we want to compare psychologists and psychiatrists on the
willingness to implement DRGs, we could simply compare
the mean scores based on the four items. It appeared that,
using a T-test in SPSS, psychiatrists (M = 2.23; SD = 0.81; n =
504) indeed scored significantly lower compared to psycholo-
gists (M = 2.46; SD = 0.76; n = 570; Mdif = 0.23; t = 4.83; p <

0.001). However, by using the mean score we assume that each
item reflects the underlying construct in the same way and, even
more importantly, that there is no measurement bias (Steinmetz,
2013). To accommodate these unwanted side-effects we con-
ducted a series of confirmatory factor analyses (CFA) using the
software Mplus v7 (Muthén and Muthén, 1998-2012). The data
and all syntax files are available as supplementary materials.

In the first model, a 2-group configural model, because
of the (slightly) non-normal distributed items estimated
with ML estimator with robust standard errors (i.e., MLR),
we allowed the factor loadings and intercepts to vary across
groups resulted in a well-fitting model (χ2 = 12.982; df = 4;
p = 0.011; RMSEA = 0.065; CFI = 0.992; TLI = 0.976)
with standardized factor loadings ranging between 0.56–
0.87. We tested for MI using the new option in Mplus v7.11
ANALYSIS: MODEL = CONFIGURAL METRIC SCALAR.

A model forcing scalar MI, i.e., factor loadings and intercepts
were constrained across groups, appeared to fit the data well
(χ2 = 32.032; df = 10; p < 0.001; RMSEA = 0.064; CFI = 0.980;
TLI = 0.976), but not better compared to the configural model
(�χ2 = 19.479; �df = 6; p = 0.003). Also the metric model,
where only the factor loadings were held equal across groups,
fitted the data (χ2 = 18.605; df = 7; p = 0.009; RMSEA =
0.056; CFI = 0.990; TLI = 0.982) and not any worse compared
to the configural model (�χ2 = 5.019; �df = 3; p = 0.170). We
also ran a comparison between the scalar and metric model and
it appeared that the scalar model fits the data worse compared
to the metric model (�χ2 = 13.988; �df = 3; p = 0.003).
According to most fit indices (e.g., χ2 not significantly worse
than the configural model, but significantly better than the
scalar model) the best model appeared to be the metric model
where the factor loadings are constrained while the intercepts are
allowed to differ across groups.

A solution offered by, for example Byrne et al. (1989; see also
Steenkamp and Baumgartner, 1998), is to apply partial MI. To
establish partial invariance, one studies the size of the uncon-
strained loadings and/or intercepts, and constrains all loadings
and intercepts except for the one loading/intercept with the largest
unstandardized difference, which is released. It appeared that psy-
chiatrists have lower intercepts than the psychologists, with the
differences being 0.193, 0.235, 0.167, and 0.324, respectively. We
applied partial MI, that is, constraining the intercepts of items 1
and 3 while releasing the constraints on intercepts 2 and 4 (χ2 =
20.271; df = 8; p = 0.009; RMSEA = 0.053; CFI = 0.989; TLI =
0.983). Using the procedure described on the website of Mplus to
compute MLR chi-square difference testing, it appeared that the
partial model did not result in a better fit compared to the metric
model (�χ2 = 1.502; �df = 1; p = 0.203), but better compared
to the scalar model (�χ2 = 12.313; �df = 2; p = 0.002).

We re-analyzed the two models, constrained and uncon-
strained intercepts, using the ML and Bayesian estimator using
the default prior settings [i.e., normal prior distributions for
the intercepts and factor loadings with a prior mean of zero
and a prior variance of 1010, and an inverse gamma distribu-
tion for the (residual) variance terms with hyperparameters −1
and zero], but with a stricter cut-off value for convergence
to reduce any bias caused by precision [i.e., Chains = 8,
Bconvergence = 0.01 and Biterations(20000)].
Table 2 shows the results for the intercepts, the difference between
the intercepts, and the Bayesian model fit information. These

Table 1 | Correlation matrix for Psychologists (n = 570) and Psychiatrists (n = 504) with the means (variances) on the diagonal.

1 2 3 4

1. I intend to try to convince employees of the benefits the DRG-policy 2.023 (0.727)/
1.831 (0.730)

2. I intend to put effort into achieving the goals of the DRG-policy 0.589/0.549 2.651 (1.040)/
2.414 (1.137)

3. I intend to reduce resistance among employees regarding the DRG-policy 0.727/0.737 0.616/0.599 2.353 (0.763)/
2.186 (0.950)

4. I intend to make time to implement the DRG-policy 0.451/0.470 0.442/0.492 0.483/0.514 2.795 (0.939)/
2.472 (1.091)
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results show that a model with strict MI assumed does not fit the
data. This is shown by the fact that (1) the posterior predictive
p-value is significant, and (2) the 95% CI of the replicated Chi
Square values does not include zero. Hence, the model without
MI does fit the data, but we are not allowed to compare the latent
means between psychiatrists and psychologist.

The new option is to use approximate MI. Using Bayesian
statistics parameters can be restricted by specifying a prior dis-
tribution. We would like the difference between the intercepts
to approximate zero, but to allow for some wiggle room (prior
variance) to maintain a fitting model. That is, the difference in
an intercept between the two groups is allowed to exist, but is
restricted to be very small, which is established by specifying a
specific prior distribution of that difference. We used the new
DIFF option available in Mplus v7 within the MODEL PRIOR
part of the syntax where subjective priors can be specified. The
full syntax is shown in the Appendix A, but the most important
part is:

MODEL:[Veran1- Veran4] (nu#_1 - nu#_4);

MODEL PRIOR: DO(1,4) DIFF(nu1_#-nu2_#)~N(0,0.50);

where (nu#_1 - nu#_4) defines labels for the four inter-
cepts. Because we used #,the labels are automatically specified
for both groups separately. The DO(1,4) option is a loop state-
ment telling Mplus to apply the function which comes after the
DO statement for items 1 through 4: #=1 to #=4. The DIFF
statement refers to the difference between the first intercept of
the psychiatrists, for example nu1_1, and the same intercept
for psychologists, for example nu1_2. Because we used the
DO option this is automatically repeated for all four intercepts.
Furthermore, ~N(0, 0.50) indicates the intercept differences
between groups to be normally distributed (N) with mean 0
and prior variance of 0.5 for all pairs of items. Note that we
parametrized the model by forcing both latent means to zero and
the variance to one.

The results for this specific model are shown in Table 2 in the
column labeled Model C. We varied the prior variance by using
σ2 = 0.05 (Model D), σ2 = 0.01 (Model E), σ2 = 0.005 (Model
F), and σ2 = 0.0005 (Model G).In Model C, with a large prior

variance, the difference between intercepts appeared not to be
smaller compared to the unconstrained Model B. In Model D,
however, the influence of the prior specification can be observed:
the difference between intercepts becomes smaller. In Model E
the intercepts are even closer, in Model F they are very close
and in Model G they are almost similar. However, the latter
two models do not fit the data very well; i.e., the 95% CI for
the difference between the observed and the replicated χ2 does
not include zero and the ppp-value (i.e., posterior predictive p-
value) is < 0.01. In sum, allowing for a prior variance of 0.01
between the intercepts, as is the case in Model E, resulted in an
acceptable model fit. Also, the confidence interval of �χ2 does
include zero. However, the posterior predictive p-value is signifi-
cant, and preferably should be closer to 0.50. A larger reduction,
which would be a model closer to scalar invariance, did not fit
the data.

To summarize, we have established MI using the newly avail-
able approximate MI method. Now, we can finally conclude
that psychiatrists score significantly lower on the willingness to
implement DRGs than psychologists. The mean difference equals
0.21 (p < 0.001), which would indeed be somewhat different
had we used full MI (Mdif = 0.19) or an unconstrained model
(Mdif = 0.14).

However, little is known about the bias of parameters as a
result of approximate MI. Therefore, in the next section we will
conduct a simulation study to find out if we are truly allowed to
interpret the mean difference of the latent mean between groups
if we apply approximate MI.

SIMULATION STUDY
METHOD
To investigate the possible bias in the comparison of latent means
as a result of applying the approximate MI model we performed a
simulation study. Seven populations were specified from which
we obtained 1000 datasets each. The difference in intercepts
between both groups varied across these seven populations, see
Table 3. All other parameters were kept constant across popula-
tions; see Appendix B for the syntax and model specifications.
Most importantly, the mean of the latent variable in group 1 was
set to 0 and in group 2 to 0.5. Both latent factors were speci-
fied to have a population variance of 1. All items are standardized

Table 3 | Population values for the intercepts.

Intercepts

Item 1 Item 2 Item 3 Item 4

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

Population 1 0 0 0 0 0 0 0 0

Population 2 0 0 0 0 −0.01 0.01 −0.01 0.01

Population 3 0 0 0 0 −0.1 0.1 −0.1 0.1

Population 4 0 0 0 0 −0.5 0.5 −0.5 0.5

Population 5 −0.01 0.01 −0.01 0.01 −0.01 0.01 −0.01 0.01

Population 6 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

Population 7 −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5
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making the latent mean difference between the two groups of 0.5
a medium effect size (Cohen, 1992). The sample size per group
was specified as being 500.

The seven populations described in Table 3 were confronted
with a set of models:

– Model 1: scalar MI is applied to the intercepts and factor
loadings. Results were obtained with ESTIMATOR = ML
and with ESTIMATOR = BAYES. For the latter we used
BCONVERGENCE = 0.01, BITERATIONS = (5000),
and the default priors [i.e., normal prior distributions for the
intercepts and factor loadings with a prior mean of zero and a
prior variance of 1010, and an inverse gamma distribution for
the (residual) variance terms with hyperparameters −1 and
zero].

– Model 2: partial MI is applied to those intercepts that are not
similar in the population. For population 1 no partial MI can
be applied, since all intercepts are similar in the population, for
populations 2–4 partial MI is applied to the intercepts of items
3 and 4, and for populations 5–7 partial MI is applied to all
intercepts. Note that the factor loadings are held equal across
groups. Results were obtained with ESTIMATOR = ML
and with ESTIMATOR = BAYES. For the latter, we used
BCONVERGENCE = 0.01, BITERATIONS = (5000),
and the default priors.

– Model 3: approximate MI is applied only to the intercepts.
We varied the prior variance: σ2 = 0.5 (Model 3a), σ2 = 0.05
(Model 3b), σ2 = 0.01 (Model 3c), and σ2 = 0.005 (Model
3d). For all other parameters we used the default prior settings.

– Model 4: partial approximate MI, where wiggle room is applied
only to those intercepts that are not equal in the population;
populations 2–4. We varied the amount of prior variance: σ2 =
0.5 (Model 4a), σ2 = 0.05 (Model 4b), σ2 = 0.01 (Model 4c),
and σ2 = 0.005 (Model 4d).

The simulated differences in intercepts may cause an alignment
issue, i.e., a biased estimate of the latent mean difference across
groups, which will be discussed in more details in the next section.
Because researchers usually wish to compare latent means across
groups, we focus on whether or not the estimated difference in
latent means is biased. We focused on four outcome criteria that
might indicate the degree to which the mean difference is biased:

(1) the empricial standard deviation of the 1000 estimated mean
differences, which should be <0.10.

(2) the relative mean bias defined as ((M − 0.5)/0.5)∗100, where
M is the average mean obtained from the simulation study.
We used a cut-off value of <10% as a criterion, as sug-
gested by Hoogland and Boomsma (1998) for “reasonable”
accuracy.

(3) The proportion of replications with a ppp-value smaller than
pre-specified cut-off values. 95% coverage of the population
value and its 95% significance.

Note that, concerning (3), the ppp-value, which defined as the
proportion of chi-square values obtained in the simulated data

that exceed that of the actual data and ppp-values around 0.50
indicate a well-fitting model.

To determine whether the simulation results resemble a good
model fit, the proportion of replications where the critical value of
0.05 is exceeded should be close to 0.05, as p-values are expected
to be uniformly distributed. The 95% coverage is defined as the
percentage of replications for which the 95% CI included the pop-
ulation value of �M = 0.5. The significance criterion was defined
as the percentage of datasets for which the 95% CI did not include
zero, i.e., the percentage of datasets for which we would have con-
cluded that �M is larger than zero in the population, which it was
for all populations.

RESULTS
Table 4 provides the results for Model 1 and 2 with ML and
Bayesian estimation, Table 5 provides the results for Models 3a–
3d and Table 6 provides the results for Models 4a–4d. We will first
discuss the results row wise, i.e., per model, followed by a column
wise comparison, i.e., per population.

When full MI (Model 1) is applied to populations where there
are differences on the intercepts between the groups (Pop. 2–7)
there is a bias in the latent factor means, which does not occur
when applied to a population with no differences (Pop. 1). The
only exception is Population 5 with many small intercept differ-
ences. However, the coverage is smaller than 95% in this case.
When partial MI (Model 2) is applied to populations with inter-
cept differences between all intercepts (Pop. 5–7) there is a large
bias, which does not occur when applied to populations with only
2 intercepts having differences between the groups (Pop. 2–4)
or without any intercept differences (Pop. 1). Applying approx-
imate MI to all intercepts (Model 3) leads to no bias when
applied to a population with no differences (Pop. 1), or a pop-
ulation with small differences (Pop. 5). It does lead to a bias in
the other populations with moderate or large intercept differ-
ences no matter which prior variance was used (Pop. 2,4,6,7).
Applying approximate MI to only those intercepts that are dif-
ferent in the population (Model 4 applied to Pop. 2 and 3) leads
to a bias, where the magnitude of the bias is dependent on the
prior variance specified.

In population 1, with no intercept differences, the bias is small-
est for the Model with strict MI, but the coverage is higher for the
models with approximate MI and a high precision of the prior
(Models 3c and 3d). In the population with 2 small differences,
approximate MI with a high precision of the prior (Models 3c and
3d) modestly outperforms strict and partial MI in terms of bias
and coverage. For the populations with moderate and large differ-
ences, and invariance on either 2 or 4 items, partial MI is clearly
the best model. Also, for the model with many small differences,
approximate MI with a high precision of the prior (Models 3c
and 3d) just outperforms strict MI and clearly outperforms par-
tial MI. The models with a low precision of the prior were never
unbiased.

As pointed out by one of the reviewers, comparing Table 3 and
Table 4 on Population 5, partial MI using both ML and Bayes gave
smaller relative bias, smaller standard errors, and more accurate
95% coverage than model 3c and model 3d. Indeed, the coverage
of model 3c and 3d is too high because in an ideal situation the
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Table 5 | Simulation results for Model 3.

Model Outcome Population 1: Population 2: Population 3: Population 4: Population 5: Population 6: Population 7:

No differences 2 items 2 items 2 items 4 items 4 items 4 items

with small with moderate with large with small with moderate with large

differences differences differences differences differences differences

#3a N∼(0, 0.5) Estimated �M
and SE

0.0404
(0.5161)

0.8537
(0.5923)

0.6417
(0.6627)

1.1153
(0.7033)

0.8779
(0.5924)

0.9018
(0.6975)

2.3347
(0.7101)

Convergence 100% 100% 100% 100% 100% 99.4% 99.8%

Relative bias
�M(%)

−91.92 70.74 28.34 123.06 75.58 80.36 366.94

95% coverage 92.9% 100% 100% 100% 100% 100% 0%

95% significance 0% 0.1% 0% 2.1% 0.1% 0% 100%

#3b N∼(0, 0.05) Estimated �M
and SE

0.4143
(0.2294)

0.5378
(0.2239)

0.6125
(0.2393)

1.1672
(0.2612)

0.5622
(0.2240)

0.8560
(0.2409)

2.3644
(0.2709)

Convergence 100% 100% 100% 100% 100% 100% 100%

Relative bias
�M(%)

−17.14 7.56 22.5 133.44 12.44 71.2 372.88

95% coverage 100% 100% 99.9% 7.3% 99.9% 87.6% 0%

95% significance 45.9% 89.5% 97.1% 100% 94.2% 100% 100%

#3c N∼(0, 0.01) Estimated �M
and SE

0.4554
(0.1246)

0.5124
(0.1352)

0.6167
(0.1320)

1.6506
(0.2169)

0.5368
(0.1353)

0.8596
(0.1368)

2.4984
(0.2011)

Convergence 100% 100% 100% 100% 100% 100% 100%

Relative bias
�M(%)

−8.92 2.48 23.34 230.12 7.36 71.92 399.68

95% coverage 98.2% 99.7% 94.7% 0% 99.7% 17.2% 0%

95% significance 99.4% 99.8% 100% 100% 99.9% 100% 100%

#3d N∼(0, 0.005) Estimated �M
and SE

0.4671
(0.1072)

0.5084
(0.1173)

0.6218
(0.1122)

1.9494
(0.2205)

0.5328
(0.1175)

0.8611
(0.1142)

2.5453
(0.1900)

Convergence 100% 100% 100% 100% 100% 100% 100%

Relative bias
�M(%)

−6.58 1.68 24.36 289.88 6.56 72.22 409.06

95% coverage 97.3% 98.9% 86.9% 0% 98.6% 7.7% 0%

95% significance 99.8% 100% 100% 100% 100% 100% 100%

95% confidence interval should cover the true parameter value in
exactly 95% of the times. The coverage of almost 100% is probably
caused by the standard error in model 3c to be overestimated,
which can result in the reduction of statistical power. In conclu-
sion, approximate MI should not be applied when full MI holds
in the population. If large differences exist in the population on
only a few intercepts, partial MI outperforms approximate MI,
but partial approximate MI with a large prior variance can also
be used. If moderate or small differences exist in the population
on only a few intercepts, partial approximate MI is preferred.
If small differences exist in the population on many intercepts,
approximate MI outperforms applying full MI.

RESOLVING THE ALIGNMENT ISSUE
In the previous section we have seen that some of the parame-
ter values, in our case the difference between the latent means,
that generated the data are not recovered due to the alignment
problem, which reflects an indeterminacy in the CFA. Applying
approximate invariance using the DIFF statement tends to pull

the deviating parameter toward the average of the parameters
across all groups. As a result the deviating parameter will be
underestimated and the invariant parameters overestimated, see
also the simulation results in Asparouhov and Muthén (2013).
With biased intercepts the latent factor means will be biased as
well and this is what we call the alignment issue (Asparouhov
and Muthén, 2013; in preparation). If one would use plain BSEM
the results of the CFA model might be biased in the estimates of
the latent mean difference scores, especially when the precision of
the DIFF prior is low (i.e., large prior variance), which is unde-
sirable. There are two options to deal with the alignment issues:
(1) Freeing the parameters found not invariant (as in Asparouhov
and Muthén, 2013), or (2) using the alignment methods available
in Mplus v7.1. In the current paper we will focus on the second
option, for a comparison of both methods see Asparouhov and
Muthén (in preparation for the special issue).

In Mplus v7.1 the alignment-method handles the issue of
alignment through rotation. The rotation for the alignment-
method uses the same principles as for EFA (Jennrich, 2006) and
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Table 6 | Simulation results for Model 4.

Model Outcome Population 2: Population 3: Population 4:

2 items with 2 items with 2 items with

small differences moderate differences large differences

#4a (N∼(0, 0.5)) Estimated �M and SE 0.4926 (0.0993) 0.4939 (0.0994) 0.4998 (0.1000)

Convergence 100% 100% 100%

Relative bias �M(%) −1.48 −1.22 −0.04

95% coverage 95% 95% 95.5%

95% significance 99.9% 99.9% 99.9%

#4b (N∼(0, 0.05)) Estimated �M and SE 0.4931 (0.0985) 0.5051 (0.0996) 0.5703 (0.1072)

Convergence 100% 100% 100%

Relative bias �M(%) −1.38 1.02 14.09

95% coverage 95.7% 95.6% 90.9%

95% significance 99.9% 99.9% 100%

#4c (N∼(0, 0.01)) Estimated �M and SE 0.4952 (0.0966) 0.5403 (0.0999) 1.4388 (0.2410)

Convergence 100% 100% 100%

Relative bias �M(%) −0.96 8.06 187.76

95% coverage 96.4% 93.6% 3.6%

95% significance 100% 100% 100%

#4d(N∼(0, 0.005)) Estimated �M and SE 0.4971 (0.0954) 0.5656 (0.0999) 1.9635 (0.2390)

Convergence 100% 100% 100%

Relative bias �M(%) −0.58 13.12 292.7

95% coverage 96.4% 91.4% 0%

95% significance 100% 100% 100%

is described in more details in Asparouhov and Muthén (2013).
As stated in the version 7.1 Mplus language addendum (Muthén
and Muthén, 2013, p. 2): “the alignment optimization method
consists of three steps:

(1) Analysis of a configural model with the same number of
factors and same pattern of zero factor loadings in all groups.

(2) Alignment optimization of the measurement parameters,
factor loadings and intercepts/thresholds according to a sim-
plicity criterion that favors few non-invariant measurement
parameters.

(3) Adjustment of the factor means and variances in line with the
optimal alignment.”

The third step in this procedure is expected to decrease the bias
in the latent variable means as we discussed above. We included
the syntax ANALYSIS: ALIGNMENT = FIXED (BSEM);
where FIXED enforces the first latent mean to be zero and
the second latent mean to be estimated. When FREE would
have been specified all latent means would have been estimated,
which is only recommended if more than two groups are speci-
fied (Asparouhov and Muthén, 2013. p. 16). Furthermore, BSEM
refers to the combination of the alignment-method with the
DIFF statements.

To explore the performance of the BSEM-alignment method
we ran additional models on population 5 where groups exhibit
small differences on the intercepts of all four items (see Table 3).

Recall that the bias for this population when applying plain BSEM
was 7.36% (SE = 0.1353) with the DIFF statement imposed upon
all intercepts, but where the factor loadings were constrained
across groups (denoted by Model 5a). When population 5 was
confronted with a model that imposed plain-BSEM with the
DIFF statement on both intercepts and factor loadings (Model
5b) we encountered a bias of 3.62% (SE = 0.1279). When the
ALIGNMENT = FIXED(BSEM) command was added on top
of DIFF statements (Model 5c) the bias appeared to be 4.28%
with a lower SE of 0.1174. Thus, in this situation the alignment
method leads to less bias. Note that these findings are all con-
ditional on normal priors for the DIFF statements with a prior
variance of 0.01.

Since prior variance turned out to influence bias and SE’s in
previous runs we ran Model 5b and Model 5c with prior vari-
ances of 0.5 and 0.05 in the DIFF statements. Model 5b with a
prior variance of 0.05 yielded a bias of −1.35% (SE = 0.2039)
and Model 5c yielded a bias of 4.02% (SE = 0.1413). Just as with
a prior variance of 0.01, if the ALIGNMENT command is added
to the DIFF commands, the standard error decreased. When the
prior variance of the DIFF statements is increased to 0.5 Model 5b
yielded a bias of −43.46% (SE = 0.4035), whereas Model 5c with
the alignment method performed much better in terms of relative
bias and SE : −1.34% and a SE of 0.1413.

Similar findings were obtained for a population with large
differences on all intercepts across groups (Population 7). For
this population the bias and SE’s were even higher: 399%
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(SE = 0.2011), 391% (SE = 0.1940) and 394% (SE = 0.3057)
for Models 5a, 5b, and 5c with prior variances of 0.01, respec-
tively. It appeared the alignment method, just like plain BSEM,
does not resolve the incurred bias when group intercept differ-
ences are moderate or high, especially if many items are affected.
Since we only used four items in our simulation design more
research is needed to investigate whether it is the magnitude of
the non-invariance or the number of items affected.

Finally, we ran simulations with models 5a, 5b and 5c for
the populations where only two of the items in the pop-
ulation were dissimilar (Populations 1–3, see Table 3), again
with a prior variance of 0.01 for the DIFF priors. The results
were comparable with the results discussed above (results not
shown but these can be requested from the first author).
With the ALIGNMENT command we obtained slightly smaller
SEs with only small differences in the population com-
pared to approximate MI without the ALIGNMENT com-
mand. However, with moderate or large intercept differences
between groups the bias and SE for all models were once more
too high.

Taken together, DIFF statements imposed upon parameters
without the support of an ALIGNMENT command (i.e., plain
BSEM) introduced slightly higher standard errors compared
to DIFF statements that are combined with the ALIGNMENT
command.

CONCLUSION
If a researcher wants to compare latent means across groups or
over time one has four options:

(1) Impose (full or) scalar MI. When a full MI structure results
in approporiate model fit any difference in latent means resp-
resents true, unbiased difference between groups/timepoints.

(2) Impose partial MI, where one studies the size of the differ-
ences between unconstrained loadings and/or intercepts, and
constrains all loadings and intercepts except for the one load-
ing/intercept with the largest difference, which is released.
If the fit statistics are satisfied, any difference in the latent
means is indicative of true mean differences. Sumscores,
however, are biased due to the items where differences in the
intercepts/factor loadings are allowed (Steinmetz, 2013).

(3) Impose no MI, leading to the conclusion that the latent
means cannot be used for comparing groups because any
difference in the latent means can be caused by many differ-
ences.

With Muthén and Asparouhov’s introduction of approximate MI
(2012a; 2012b; 2013), a fourth option for testing MI became
available.

(4a) Approximate MI salvages MI in the case of seemingly ignor-
able (i.e., near zero) differences between parameters.

Or when combined with partial MI:

(4b) Partial approximate MI, which is a hybrid form of partial
MI and approximate MI.

The results of our paper have shown that applying approximate
MI might provide a safe passage through the narrow channel
between Italy and Sicily in order to facilitate the escape from
the mythical sea monsters Scylla and Charybdis, just as Odysseus
was able to. The whirlpools caused by Charybdis, who dislikes
comparing latent mean scores if the factor loadings/intercepts
are dissimilar across groups, can be avoided. The reason is that
with approximate MI, parameters are restricted to be closer to
each other than with partial MI. The use of Bayesian statistics
on the difference in parameters introduces a posterior distribu-
tion, which tries to find a compromise between the ideal situation
(difference = zero) and the situation we find in the data. The
willingness to compromise between ideology and reality has the
following effect: the posterior difference in parameters across
groups is close enough to its ideal zero to allow latent mean com-
parisons, yet close enough to the reality of the data to result in
acceptable model fit. As was noted by one of the reviewers, a cru-
cial distinction between partial invariance factor models and the
Bayesian approach involving priors is that the former typically is
coupled with a substantive interpretation of the group differences
in the parameters of interest. Although substantive considera-
tions may certainly help inform the nature of group differences,
there is always a risk of ad hoc reasoning in applications. The
Bayesian approach may do more justice to the unexpected and
possibly inexplicable failures of invariance. In a related vein, par-
tial measurement models have often been criticized for lacking
specificity in the sense that large modification indices of certain
items/indicators may actually reflect failures of invariance of other
items/indicators (see e.g., Reise et al., 1993).

Likewise it is possible to avoid Scylla, who will devour badly
fitting models resulting from forcing scalar MI on a model where
differences do exist. Both our empirical example and the simu-
lation study have taught us that there seems to be an optimum
specification of the prior variance. The alignment method pro-
vides promising results for decreasing the influence of the prior
specifications, but more research is warranted.

We recommend the following procedure if the test for full
MI fails. First, determine which parameters are different between
groups, for example by using modification indices or by using
the DIFFERENCE OUTPUT which is obtained when the DIFF
statement is used in Mplus. The latter output provides each
parameter with a significance test for its deviance with its con-
strained counterpart. Do not impose MI when there are large
parameter differences across groups, or impose approximate MI
when you are able to locate just a few deviating parameters.
If there are (many) small differences we recommend to apply
full approximate MI. Use the ALIGNMENT method when you
don’t want to use small prior variances in the DIFF statements.
We acknowledge the issue of defining “small differences.” With
“small” we imply that parameters of substantive interest do not
change in a meaningful way if MI does not fully hold (cf. Oberski,
2013). We note that the choice of the priors is extremely impor-
tant and since the field of approximate MI is rather unexplored
we advise always do sensitivity analyses and never just “choose”
a prior value. One aspect influencing the definition of a “small
difference” is that the prior are sensible for a given data set,
and hence, that the choice of the prior variance does have huge
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implications on the parameter estimates. In particular, because
the difference in intercepts is a function of the scaling of the
observed variable, as was noted by one of the reviewers, it may
be helpful to relate the variances of the normal priors to the scal-
ing (or variability) of the observed variables. For example, for a
prior with hyperparameters N (0, 0.01) indicates there is a (sub-
jective belief of) 95% chance that the absolute intercept difference
is equal or smaller than 0.01 [i.e., sqrt(0.01) = 0.1].

Since the field of approximate MI is relatively new we pro-
pose the following research agenda. First, there are two variables
influencing the performance of MI: (1) the number of items with
differences on the factor loading or intercepts and (2) the size
of the difference itself. What we do not know is what the exact
cut-off values are for these decisions (number of items and mag-
nitude of differences). This topic needs further attention, given
that it can help researchers make informed choices about apply-
ing partial or approximate MI without having to test them both.
Second, more simulation studies have to be performed to find
out which prior specification in which model is to be advised,
since the optimum prior specification is model and data depen-
dent. Third, the bias in substantive results if the incorrect type of
MI is used should be investigated in more detail. Fourth, more
research is needed to study the effects of the alignment method.
Fifth, misspecification of the baseline model should be further

investigated. A fifth area for further exploration is the comparison
of the approximate MI procedure with alternative approaches, for
example the commonly used delta-goodness-of-fit-indexes (i.e.,
�GFI; Cheung and Rensvold, 2002; Chen, 2007). And finally, in
our simulation study we used a relative large sample size in rela-
tion to the degrees of freedom. It should be investigated which
sample sizes vis-à-vis model DFs are needed for the Bayesian anal-
ysis to work properly. It is expected that the Bayesian test for MI
can deal with smaller sample sizes compared to the ML counter-
parts, as was also the case for regular SEM models, see Lee and
Song (2004) and Van de Schoot et al. (submitted).

It should be noted that approximate MI might be an interest-
ing alternative approach for testing MI, but it does not replace
the original MI test which is based on, for example chi-square
difference testing. Approximate MI, as introduced in our paper
provides a first step in this challenging and promising new area of
testing and exploring MI if the chi-square test, or any other test,
rejects the invariance model. Also, our paper provides a warning
not to use approximate MI in all situations where MI is tested, but
this warning message also applies to strict MI and partial MI.
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APPENDIX A

DATA:
FILE IS data Tummers.dat;

VARIABLE:
NAMES ARE CaseNR BCPsych Veran1 Veran2 Veran3 Veran4
mean;
USEVARIABLES ARE Veran1 Veran2 Veran3 Veran4;
MISSING ARE ALL (-9999);
KNOWNCLASS IS g (BCPsych=0 BCPsych=1);
CLASSES IS g(2);

ANALYSIS:
MODEL IS allfree;
TYPE IS is mixture;
ESTIMATOR IS BAYES;
Bconvergence=0.01;
Biterations = 500000 (20000);
processor is 8;
chains is 8;
bseed 100;

MODEL:
%overall%
Willingness by Veran1-Veran4∗(1-4);
Willingness@1;
[Willingness@0];
[Veran1- Veran4] (nu#_1 - nu#_4);

MODEL PRIORS:
DO(1, 4) DIFF(nu1_#-nu2_#) ∼ N(0, 0.5);

OUTPUT:
SAMPSTAT TECH1 TECH8 STAND(STDYX);

PLOT:
type is plot2;

APPENDIX B
The population input file for the population 3:

MODEL POPULATION:
f1 by y1@.7 y2@.6 y3@.4 y4@.2;
f1@1; [f1@0];
y1-y4@1;
[y1@0]; [y2@0];
[y3@-.1]; [y4@-.1];

MODEL POPULATION-g2:
f1 by y1@.7 y2@.6 y3@.4 y4@.2;
f1@1; [f1@.5];
y1-y4@1;
[y1@0]; [y2@0]; [y3@.1]; [y4@.1]
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