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Well-used latent variable models 
Latent 
variable 
scale 

Observed variable scale 

Continuous Discrete 

Continuous Factor 
analysis 
LISREL 

Discrete FA 
IRT (item response) 

Discrete Latent profile 
Growth mixture 

Latent class 
analysis, regression 

General software:  MPlus, Latent Gold, WinBugs (Bayesian), NLMIXED (SAS)  



Objectives 
§  What is factor analysis? 

§  What do we need factor analysis for? 
 
§  What are the modeling assumptions? 
 
§  How to specify, fit, and interpret factor models? 
 
§  What is the difference between exploratory and 

confirmatory factor analysis? 
 
§  What is and how to assess model identifiability? 
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What is factor analysis 

§  Factor analysis is a theory driven 
statistical data reduction technique used to 
explain covariance among observed 
random variables in terms of fewer 
unobserved random variables named 
factors 
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An Example: General Intelligence 
(Charles Spearman, 1904) 

 

General 
Intelligence 

F 

Y1 

Y2 

Y3 

Y4 

Y5 

δ1 

δ2 

δ3 

δ4 

δ5 
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Why Factor Analysis? 
1.  Testing of theory 

§  Explain covariation among multiple observed variables by 
§  Mapping variables to latent constructs (called “factors”) 

2.  Understanding the structure underlying a set of 
measures  
§  Gain insight to dimensions 
§  Construct validation (e.g., convergent validity) 

3.  Scale development 
§  Exploit redundancy to improve scale’s validity and 

reliability  
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Part I. Exploratory Factor 
Analysis (EFA) 
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One Common Factor Model: 
 Model Specification 
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§  The factor F is not observed; only Y1, Y2, Y3 are observed 

§  δi represent variability in the Yi NOT explained by F 

§  Yi is a linear function of F and δi 
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One Common Factor Model: 
Model Assumptions 
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§  Factorial causation  
§  F is independent of δj, i.e. cov(F,δj)=0 
§  δi and δj are independent for i≠j, i.e. cov(δi,δj)=0 
§  Conditional independence:  Given the factor, observed variables 

are independent of one another, i.e. cov( Yi ,Yj | F ) = 0  
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One Common Factor Model: 
Model Interpretation 

Given all variables in standardized form, i.e. 
var(Yi)=var(F)=1 

§  Factor loadings: λi 
 λi = corr(Yi,F) 

 
§  Communality of Yi: hi

2 

 hi
2 = λi

2 = [corr(Yi,F)]2 

 =% variance of Yi explained by F 
 
§  Uniqueness of Yi: 1-hi

2  
 = residual variance of Yi 

 
§  Degree of factorial determination: 

 =Σ λi
2/n, where n=# observed variables Y 
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Two-Common Factor Model (Orthogonal): 
 Model Specification 
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λ32 λ22 

F1 and F2 are common factors because they are shared by ≥2 variables ! 
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Matrix Notation 
with n variables and m factors   

Ynx1 = ΛnxmFmx1 + δnx1 
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Factor Pattern Matrix 
§  Columns represent derived factors 
§  Rows represent input variables 
§  Loadings represent degree to which each 

of the variables “correlates” with each of 
the factors 

§  Loadings range from -1 to 1 
§  Inspection of factor loadings reveals 

extent to which each of the variables 
contributes to the meaning of each of the 
factors. 

§  High loadings provide meaning and 
interpretation of factors (~ regression 
coefficients) 
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Two-Common Factor Model (Orthogonal): 
 Model Assumptions 
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§  Factorial causation  
§  F1 and F2 are independent of δj, i.e. 

cov(F1,δj)= cov(F2,δj)= 0 
§  δi and δj are independent for i≠j, i.e. 

cov(δi,δj)=0 
§  Conditional independence:  Given 

factors F1 and F2, observed variables 
are independent of one another, i.e. 
cov( Yi ,Yj | F1, F2) = 0 for i ≠j  

§  Orthogonal (=independent): 
cov(F1,F2)=0 
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Two-Common Factor Model (Orthogonal): 
 Model Interpretation 
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Given all variables in standardized form, i.e. 
var(Yi)=var(Fi)=1;  

AND orthogonal factors, i.e. cov(F1,F2)=0 

§  Factor loadings: λij 
 λij = corr(Yi,Fj) 

 
§  Communality of Yi: hi

2 

 hi
2 = λi1

2 + λ i22=% variance of Yi 
explained by F1 AND F2 

 
§  Uniqueness of Yi: 1-hi

2  
  

§  Degree of factorial determination: 
 =Σ λij

2/n, n=# observed variables Y 15 



Two-Common Factor Model : 
The Oblique Case 
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Given all variables in standardized form, 
i.e. var(Yi)=var(Fi)=1;  

AND oblique factors (i.e. cov(F1,F2)≠0) 
 
§  The interpretation of factor loadings: λij 

 is no longer correlation between Y and 
F; it is direct effect of F on Y 

 
§  The calculation of communality of Yi 

(hi
2) is more complex 
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Extracting initial factors 

§  Least-squares method (e.g. principal axis 
factoring with iterated communalities) 

§  Maximum likelihood method 
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Model Fitting: Extracting initial factors 

Least-squares method (LS) (e.g. principal axis factoring with 
iterated communalities) 

v  Goal: minimize the sum of squared differences 
between observed and estimated corr. matrices 

v  Fitting steps: 
a)  Obtain initial estimates of communalities (h2) 

 e.g. squared correlation between a variable and the 
remaining variables 

b)  Solve objective function: det(RLS-ηI)=0,  
 where RLS is the corr matrix with h2 in the main diag. (also 
termed adjusted corr matrix), η is an eigenvalue 

c)  Re-estimate h2 

d)  Repeat b) and c) until no improvement can be made 
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Model Fitting: Extracting initial factors 

Maximum likelihood method (MLE) 
v  Goal: maximize the likelihood of producing the observed corr 

matrix 
v  Assumption: distribution of variables (Y and F) is multivariate 

normal 
v  Objective function: det(RMLE- ηI)=0,  

 where RMLE=U-1(R-U2)U-1=U-1RLSU-1, and U2 is diag(1-h2) 
v  Iterative fitting algorithm similar to LS approach 
v  Exception: adjust R by giving greater weights to correlations 

with smaller unique variance, i.e. 1- h2 

v  Advantage: availability of a large sample χ2 significant test for 
goodness-of-fit (but tends to select more factors for large n!) 
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Choosing among Different Methods 

§  Between MLE and LS 
§  LS is preferred with  

v  few indicators per factor 
v Equeal loadings within factors 
v No large cross-loadings 
v No factor correlations 
v Recovering factors with low loadings (overextraction) 

§  MLE if preferred with  
v Multivariate normality 
v unequal loadings within factors 

§  Both MLE and LS may have convergence problems 
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Factor Rotation 

§ Goal is simple structure 
§ Make factors more easily interpretable 

§ While keeping the number of factors and 
communalities of Ys fixed!!! 

§ Rotation does NOT improve fit! 
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Factor Rotation 

To do this we “rotate” factors: 
§  redefine factors such that ‘loadings’ (or 

pattern matrix coefficients) on various factors 
tend to be very high (-1 or 1) or very low (0) 

§  intuitively, it makes sharper distinctions in the 
meanings of the factors 
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Factor Rotation (Intuitively) 

  

F1 
F1 F2 

F2 

Factor 1  Factor 2   
x1   0.4     0.69 
x2   0.4     0.69 
x3  0.65        0.32 
x4  0.69        -0.4   
x5  0.61     -0.35 

Factor 1  Factor 2   
x1     -0.8     0 
x2     -0.8     0 
x3     -0.6     0.4 
x4     0      0.8 
x5     0      0.7   

2 1, 

3 

4 

5 

2 1, 

3 

4 

5 
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Factor Rotation 

§  Uses “ambiguity” or non-uniqueness of solution 
to make interpretation more simple 

§  Where does ambiguity come in? 
§  Unrotated solution is based on the idea that each 

factor tries to maximize variance explained, 
conditional on previous factors 

§  What if we take that away? 

§  Then, there is not one “best” solution 
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Factor Rotation:  
Orthogonal vs. Oblique Rotation 

§  Orthogonal:  Factors are independent 
§  varimax: maximize variance of squared loadings 

across variables (sum over factors) 
v Goal: the simplicity of interpretation of factors 

§  quartimax: maximize variance of squared loadings 
across factors (sum over variables) 
v Goal: the simplicity of interpretation of variables 

§  Intuition:  from previous picture, there is a right 
angle between axes 

§  Note: “Uniquenesses” remain the same! 

25 



Factor Rotation:  
Orthogonal vs. Oblique Rotation 

§  Oblique:  Factors are NOT independent. Change 
in “angle.” 
§  oblimin:  minimize covariance of squared loadings 

between factors.   
§  promax: simplify orthogonal rotation by making small 

loadings even closer to zero. 
§  Target matrix:  choose “simple structure” a priori.   
§  Intuition:  from previous picture, angle between 

axes is not necessarily a right angle. 
§  Note: “Uniquenesses” remain the same! 
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Pattern versus Structure Matrix 
§  In oblique rotation, one typically presents both a pattern 

matrix and a structure matrix 
 
§  Also need to report correlation between the factors 
 
§  The pattern matrix presents the usual factor loadings  

§  The structure matrix presents correlations between the 
variables and the factors 

§  For orthogonal factors, pattern matrix=structure matrix 

§  The pattern matrix is used to interpret the factors 

27 



Factor Rotation: Which to use? 

§  Choice is generally not critical 

§  Interpretation with orthogonal (varimax) is 
“simple” because factors are independent: 
“Loadings” are correlations. 

§  Configuration may appear more simple in 
oblique (promax), but correlation of factors 
can be difficult to reconcile.  

§  Theory?  Are the conceptual meanings of the 
factors associated? 
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Factor Rotation: Unique Solution? 

§  The factor analysis solution is NOT unique! 

§  More than one solution will yield the same 
“result.” 

29 



Derivation of Factor Scores 

§  Each object (e.g. each person) gets a factor score for each factor:  
§  The factors themselves are variables 
§  “Object’s” score is weighted combination of scores on input 

variables 
 
§  These weights are NOT the factor loadings! 
§  Different approaches exist for estimating     (e.g. regression method) 
§  Factor scores are not unique 
§  Using factors scores instead of factor indicators can reduce 

measurement error, but does NOT remove it. 
§  Therefore, using factor scores as predictors in conventional 

regressions leads to inconsistent coefficient estimators! 

matrix.  weightthe is   whereWYWF ˆ,ˆˆ =

Ŵ
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Factor Analysis with  
Categorical Observed Variables 

§  Factor analysis hinges on the correlation matrix 
§  As long as you can get an interpretable correlation 

matrix, you can perform factor analysis 
§  Binary/ordinal items?    

§  Pearson corrlation: Expect attenuation! 
§  Tetrachoric correlation (binary) 
§  Polychoric correlation (ordinal) 
 

To obtain polychoric correlation in STATA: 
polychoric var1 var2 var3 var4 var5 … 
To run princial component analysis: 
pcamat r(R), n(328) 
To run factor analysis: 
factormat r(R), fa(2) ipf n(328) 
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Criticisms of Factor Analysis 

§  Labels of factors can be arbitrary or lack scientific basis 
§  Derived factors often very obvious  

§  defense: but we get a quantification 
§  “Garbage in, garbage out” 

§  really a criticism of input variables 
§  factor analysis reorganizes input matrix 

§  Correlation matrix is often poor measure of association of 
input variables. 
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Major steps in EFA 

1.  Data collection and preparation 
2.  Choose number of factors to extract 
3.  Extracting initial factors 
4.  Rotation to a final solution 
5.  Model diagnosis/refinement 
6.  Derivation of factor scales to be 

used in further analysis 
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Part II. Confirmatory Factor 
Analysis (CFA) 
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Exploratory vs. Confirmatory  
Factor Analysis 

§  Exploratory: 
§  summarize data 
§  describe correlation structure between variables 
§  generate hypotheses 

§  Confirmatory  
§  Testing correlated measurement errors 
§  Redundancy test of one-factor vs. multi-factor models 
§  Measurement invariance test comparing a model 

across groups 
§  Orthogonality tests 
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Confirmatory Factor Analysis (CFA) 
§  Takes factor analysis a step further. 
§  We can “test” or “confirm” or “implement” a “highly 

constrained a priori structure that meets conditions of 
model identification” 

§  But be careful, a model can never be confirmed!! 
§  CFA model is constructed in advance 
§  number of latent variables (“factors”) is pre-set by 

analyst (not part of the modeling usually) 
§  Whether latent variable influences observed is 

specified 
§  Measurement errors may correlate 
§  Difference between CFA and the usual SEM: 

§  SEM assumes causally interrelated latent variables 
§  CFA assumes interrelated latent variables (i.e. exogenous) 
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Exploratory Factor Analysis 

x = +Λξ δTwo factor model:   
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CFA Notation 
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Difference between CFA and EFA 
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Model Constraints  

§  Hallmark of CFA 
§  Purposes for setting constraints: 

§  Test a priori theory 
§  Ensure identifiability 
§  Test reliability of measures 
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Identifiability 

§  Let θ be a t×1 vector containing all 
unknown and unconstrained parameters in 
a model. The parameters θ are identified if 
Σ(θ1)= Σ(θ2) ⇔ θ1=θ2  

§  Estimability ≠ Identifiability !! 
§  Identifiability – attribute of the model 
§  Estimability – attribute of the data 
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Model Constraints: Identifiability 

§  Latent variables (LVs) need some 
constraints  

§  Because factors are unmeasured, their 
variances can take different values 

§  Recall EFA where we constrained factors:   
   F ~ N(0,1) 

§  Otherwise, model is not identifiable. 
§  Here we have two options: 

§  Fix variance of latent variables (LV) to be 1 (or 
another constant) 

§  Fix one path between LV and indicator  
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Fix variances: Fix path: 
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Necessary Constraints 
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Fix variances: Fix path: 
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Identifiability Rules for CFA 
(1) Two-indicator rule (sufficient, not necessary) 

1)   At least two factors  
2)   At least two indicators per factor 
3)   Exactly one non-zero element per row of Λ 

  (translation:  each x only is pointed at by one LV) 

4)   Non-correlated errors (Θ is diagonal)  
 (translation:  no double-header arrows between the δ’s) 

5)   Factors are correlated (Φ has no zero elements)* 
 (translation:  there are double-header arrows between all of 
the LVs) 

* Alternative less strict criteria:  each factor is correlated with  
   at least one other factor. 

(see page 247 on Bollen) 45 
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Identifiability Rules for CFA 
(2) Three-indicator rule (sufficient, not necessary) 

1)  at least one factor 
2)  at least three indicators per factor  
3)  one non-zero element per row of Λ 
    (translation:  each x only is pointed at by one LV) 

4)  non-correlated errors (Θ is diagonal)  
  (translation:  no double-headed arrows between the δ’s) 

[Note:  no condition about correlation of factors (no 
restrictions on Φ).] 

ξ1 

x1 

x3 

x2 

δ1 

δ2 

δ3 
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