Factor Analysis

Qian-Li Xue
Biostatistics Program
Harvard Catalyst | The Harvard Clinical \& Translational Science
Center
Short course, October 27, 2016

Well-used latent variable models

Latent variable scale	Observed variable scale	
	Continuous	Discrete
Continuous	Factor analysis LISREL	Discrete FA IRT (item response)
Discrete	Latent profile Growth mixture General software:	Latent class MPatent Gold, WinBus (Bayesian), aLMMIXED (SAS)

Objectives

- What is factor analysis?
- What do we need factor analysis for?
- What are the modeling assumptions?
- How to specify, fit, and interpret factor models?
- What is the difference between exploratory and confirmatory factor analysis?
- What is and how to assess model identifiability?

What is factor analysis

- Factor analysis is a theory driven statistical data reduction technique used to explain covariance among observed random variables in terms of fewer unobserved random variables named factors

An Example: General Intelligence

(Charles Spearman, 1904)

Why Factor Analysis?

1. Testing of theory

- Explain covariation among multiple observed variables by
- Mapping variables to latent constructs (called "factors")

2. Understanding the structure underlying a set of measures

- Gain insight to dimensions
- Construct validation (e.g., convergent validity)

3. Scale development

- Exploit redundancy to improve scale' s validity and reliability

Part I. Exploratory Factor Analysis (EFA)

One Common Factor Model: Model Specification

$$
\begin{aligned}
& Y_{1}=\lambda_{1} F+\delta_{1} \\
& Y_{2}=\lambda_{2} F+\delta_{2} \\
& Y_{3}=\lambda_{3} F+\delta_{3}
\end{aligned}
$$

- The factor F is not observed; only $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}$ are observed
- δ_{i} represent variability in the Y_{i} NOT explained by F
- Y_{i} is a linear function of F and δ_{i}

One Common Factor Model: Model Assumptions

$$
\begin{aligned}
& Y_{1}=\lambda_{1} F+\delta_{1} \\
& Y_{2}=\lambda_{2} F+\delta_{2} \\
& Y_{3}=\lambda_{3} F+\delta_{3}
\end{aligned}
$$

- Factorial causation
- F is independent of δ_{j}, i.e. $\operatorname{cov}\left(F, \delta_{j}\right)=0$
- δ_{i} and δ_{j} are independent for $i \neq j$, i.e. $\operatorname{cov}\left(\delta_{i}, \delta_{j}\right)=0$
- Conditional independence: Given the factor, observed variables are independent of one another, i.e. $\operatorname{cov}\left(Y_{i}, Y_{j} \mid F\right)=0$

One Common Factor Model: Model Interpretation

$$
\begin{aligned}
& Y_{1}=\lambda_{1} F+\delta_{1} \\
& Y_{2}=\lambda_{2} F+\delta_{2} \\
& Y_{3}=\lambda_{3} F+\delta_{3}
\end{aligned}
$$

Given all variables in standardized form, i.e.

$$
\operatorname{var}\left(\mathrm{Y}_{\mathrm{i}}\right)=\operatorname{var}(\mathrm{F})=1
$$

- Factor loadings: λ_{i}

$$
\lambda_{i}=\operatorname{corr}\left(\mathrm{Y}_{\mathrm{i}}, \mathrm{~F}\right)
$$

- Communality of $Y_{i}: h_{i}^{2}$ $\mathrm{h}_{\mathrm{i}}{ }^{2}=\lambda_{\mathrm{i}}{ }^{2}=\left[\operatorname{corr}\left(\mathrm{Y}_{\mathrm{i}}, \mathrm{F}\right)\right]^{2}$
$=\%$ variance of Y_{i} explained by F
- Uniqueness of $Y_{i}: 1-h_{i}^{2}$
$=$ residual variance of Y_{i}
- Degree of factorial determination:
$=\Sigma \lambda_{i}^{2} / n$, where $n=\#$ observed variables Y

Two-Common Factor Model (Orthogonal): Model Specification

$$
\begin{aligned}
& Y_{1}=\lambda_{11} F_{1}+\lambda_{12} F_{2}+\delta_{1} \\
& Y_{2}=\lambda_{21} F_{1}+\lambda_{22} F_{2}+\delta_{2} \\
& Y_{3}=\lambda_{31} F_{1}+\lambda_{32} F_{2}+\delta_{3} \\
& Y_{4}=\lambda_{41} F_{1}+\lambda_{42} F_{2}+\delta_{4} \\
& Y_{5}=\lambda_{51} F_{1}+\lambda_{52} F_{2}+\delta_{5} \\
& Y_{6}=\lambda_{61} F_{1}+\lambda_{62} F_{2}+\delta_{6}
\end{aligned}
$$

F1 and F2 are common factors because they are shared by ≥ 2 variables !

Matrix Notation

with n variables and m factors

$$
Y_{n \times 1}=\Lambda_{n \times m} F_{m \times 1}+\delta_{n \times 1}
$$

$$
\left[\begin{array}{c}
Y_{1} \\
\vdots \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{11} & \cdots & \cdots & \lambda_{m} \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\lambda_{n 1} & \cdots & \cdots & \lambda_{n m}
\end{array}\right]_{n \times m}\left[\begin{array}{c}
F_{1} \\
\vdots \\
F_{m}
\end{array}\right]_{m \times 1}+\left[\begin{array}{c}
\delta_{1} \\
\vdots \\
\vdots \\
\delta_{n}
\end{array}\right]_{n \times 1}
$$

Factor Pattern Matrix

- Columns represent derived factors
- Rows represent input variables
- Loadings represent degree to which each of the variables "correlates" with each of the factors
- Loadings range from -1 to 1
- Inspection of factor loadings reveals extent to which each of the variables contributes to the meaning of each of the factors.
- High loadings provide meaning and interpretation of factors (\sim regression coefficients)

Two-Common Factor Model (Orthogonal): Model Assumptions

- Factorial causation
- F_{1} and F_{2} are independent of δ_{j}, i.e. $\operatorname{cov}\left(F_{1}, \delta_{j}\right)=\operatorname{cov}\left(F_{2}, \delta_{j}\right)=0$
- δ_{i} and δ_{j} are independent for $i \neq j$, i.e. $\operatorname{cov}\left(\delta_{i}, \delta_{j}\right)=0$
- Conditional independence: Given factors F_{1} and F_{2}, observed variables are independent of one another, i.e. $\operatorname{cov}\left(Y_{i}, Y_{j} \mid F_{1}, F_{2}\right)=0$ for $i \neq j$
- Orthogonal (=independent):
$\operatorname{cov}\left(F_{1}, F_{2}\right)=0$

Two-Common Factor Model (Orthogonal): Model Interpretation

Given all variables in standardized form, i.e. $\operatorname{var}\left(\mathrm{Y}_{\mathrm{i}}\right)=\operatorname{var}\left(\mathrm{F}_{\mathrm{i}}\right)=1$;
AND orthogonal factors, i.e. $\operatorname{cov}\left(F_{1}, F_{2}\right)=0$

- Factor loadings: $\lambda_{i j}$
$\lambda_{\mathrm{ij}}=\operatorname{corr}\left(\mathrm{Y}_{\mathrm{i}}, \mathrm{F}_{\mathrm{j}}\right)$
- Communality of $Y_{i}: h_{i}^{2}$ $h_{i}{ }^{2}=\lambda_{i 1}{ }^{2}+\lambda_{i 2}{ }^{2}=\%$ variance of Y_{i} explained by F_{1} AND F_{2}
- Uniqueness of $\mathrm{Y}_{\mathrm{i}}: 1-\mathrm{h}_{\mathrm{i}}^{2}$
- Degree of factorial determination:
$=\Sigma \lambda_{\mathrm{ij}}{ }^{2} / \mathrm{n}, \mathrm{n}=\#$ observed variables Y

Two-Common Factor Model : The Oblique Case

Given all variables in standardized form,
 i.e. $\operatorname{var}\left(\mathrm{Y}_{\mathrm{i}}\right)=\operatorname{var}\left(\mathrm{F}_{\mathrm{i}}\right)=1$;

AND oblique factors (i.e. $\left.\operatorname{cov}\left(F_{1}, F_{2}\right) \neq 0\right)$

- The interpretation of factor loadings: λ_{ij} is no longer correlation between Y and F; it is direct effect of F on Y
- The calculation of communality of Yi $\left(h_{i}{ }^{2}\right)$ is more complex

Extracting initial factors

- Least-squares method (e.g. principal axis factoring with iterated communalities)
- Maximum likelihood method

Model Fitting: Extracting initial factors

Least-squares method (LS) (e.g. principal axis factoring with iterated communalities)

Goal: minimize the sum of squared differences between observed and estimated corr. matrices

* Fitting steps:
a) Obtain initial estimates of communalities (h^{2}) e.g. squared correlation between a variable and the remaining variables
b) Solve objective function: $\operatorname{det}\left(R_{L s}-\eta I\right)=0$, where $R_{L S}$ is the corr matrix with h^{2} in the main diag. (also termed adjusted corr matrix), η is an eigenvalue
c) Re-estimate h^{2}
d) Repeat b) and c) until no improvement can be made

Model Fitting: Extracting initial factors

Maximum likelihood method (MLE)

* Goal: maximize the likelihood of producing the observed corr matrix
Assumption: distribution of variables (Y and F) is multivariate normal
Objective function: $\operatorname{det}\left(R_{\text {MLE }}-\eta I\right)=0$, where $\mathrm{R}_{\mathrm{MLE}}=\mathrm{U}^{-1}\left(\mathrm{R}-\mathrm{U}^{2}\right) \mathrm{U}^{-1}=\mathrm{U}^{-1} \mathrm{R}_{\mathrm{LS}} \mathrm{U}^{-1}$, and U^{2} is $\operatorname{diag}\left(1-\mathrm{h}^{2}\right)$
* Iterative fitting algorithm similar to LS approach
* Exception: adjust R by giving greater weights to correlations with smaller unique variance, i.e. 1- h^{2}
* Advantage: availability of a large sample X^{2} significant test for goodness-of-fit (but tends to select more factors for large n !)

Choosing among Different Methods

- Between MLE and LS
- LS is preferred with
* few indicators per factor
* Equeal loadings within factors
* No large cross-loadings
* No factor correlations
* Recovering factors with low loadings (overextraction)
- MLE if preferred with
* Multivariate normality
* unequal loadings within factors
- Both MLE and LS may have convergence problems

Factor Rotation

- Goal is simple structure
- Make factors more easily interpretable
- While keeping the number of factors and communalities of Ys fixed!!!
- Rotation does NOT improve fit!

Factor Rotation

To do this we "rotate" factors:

- redefine factors such that 'loadings' (or pattern matrix coefficients) on various factors tend to be very high (-1 or 1) or very low (0)
- intuitively, it makes sharper distinctions in the meanings of the factors

Factor Rotation (Intuitively)

Factor $1 \quad$ Factor 2
$\begin{array}{llll} & & & \\ \text { x1 } & 0.4 & 0.69 \\ \text { x2 } & 0.4 & 0.69 \\ \text { x3 } & 0.65 & & 0.32 \\ \text { x4 } & 0.69 & & -0.4 \\ \text { x5 } & 0.61 & -0.35\end{array}$
$\begin{array}{ll}\frac{\text { Factor 1 }}{-0.8} & \frac{\text { Factor 2 }}{0} \\ -0.8 & 0 \\ -0.6 & 0.4 \\ 0 & 0.8 \\ 0 & 0.7\end{array}$

Factor Rotation

- Uses "ambiguity" or non-uniqueness of solution to make interpretation more simple
- Where does ambiguity come in?
- Unrotated solution is based on the idea that each factor tries to maximize variance explained, conditional on previous factors
- What if we take that away?
- Then, there is not one "best" solution

Factor Rotation: Orthogonal vs. Oblique Rotation

- Orthogonal: Factors are independent
- varimax: maximize variance of squared loadings across variables (sum over factors)
* Goal: the simplicity of interpretation of factors
- quartimax: maximize variance of squared loadings across factors (sum over variables)
* Goal: the simplicity of interpretation of variables
- Intuition: from previous picture, there is a right angle between axes
- Note: "Uniquenesses" remain the same!

Factor Rotation: Orthogonal vs. Oblique Rotation

- Oblique: Factors are NOT independent. Change in "angle."
- oblimin: minimize covariance of squared loadings between factors.
- promax: simplify orthogonal rotation by making small loadings even closer to zero.
- Target matrix: choose "simple structure" a priori.
- Intuition: from previous picture, angle between axes is not necessarily a right angle.
- Note: "Uniquenesses" remain the same!

Pattern versus Structure Matrix

- In oblique rotation, one typically presents both a pattern matrix and a structure matrix
- Also need to report correlation between the factors
- The pattern matrix presents the usual factor loadings
- The structure matrix presents correlations between the variables and the factors
- For orthogonal factors, pattern matrix=structure matrix
- The pattern matrix is used to interpret the factors

Factor Rotation: Which to use?

- Choice is generally not critical
- Interpretation with orthogonal (varimax) is "simple" because factors are independent: "Loadings" are correlations.
- Configuration may appear more simple in oblique (promax), but correlation of factors can be difficult to reconcile.
- Theory? Are the conceptual meanings of the factors associated?

Factor Rotation: Unique Solution?

- The factor analysis solution is NOT unique!
- More than one solution will yield the same "result."

Derivation of Factor Scores

- Each object (e.g. each person) gets a factor score for each factor:
- The factors themselves are variables
- "Object's" score is weighted combination of scores on input variables $\hat{F}=\hat{W} Y$, where \hat{W} is the weight matrix.
- These weights are NOT the factor loadings!
- Different approaches exist for estimating \hat{W} (e.g. regression method)
- Factor scores are not unique
- Using factors scores instead of factor indicators can reduce measurement error, but does NOT remove it.
- Therefore, using factor scores as predictors in conventional regressions leads to inconsistent coefficient estimators!

Factor Analysis with Categorical Observed Variables

- Factor analysis hinges on the correlation matrix
- As long as you can get an interpretable correlation matrix, you can perform factor analysis
- Binary/ordinal items?
- Pearson corrlation: Expect attenuation!
- Tetrachoric correlation (binary)
- Polychoric correlation (ordinal)

To obtain polychoric correlation in STATA: polychoric var1 var2 var3 var4 var5 ...
To run princial component analysis:
pcamat $r(R)$, $n(328)$
To run factor analysis:
factormat $r(R)$, fa(2) ipf $n(328)$

Criticisms of Factor Analysis

- Labels of factors can be arbitrary or lack scientific basis
- Derived factors often very obvious
- defense: but we get a quantification
- "Garbage in, garbage out"
- really a criticism of input variables
- factor analysis reorganizes input matrix
- Correlation matrix is often poor measure of association of input variables.

Major steps in EFA

1. Data collection and preparation

- 2. Choose number of factors to extract

3. Extracting initial factors
4. Rotation to a final solution
5. Model diagnosis/refinement
6. Derivation of factor scales to be used in further analysis

Part II. Confirmatory Factor Analysis (CFA)

Exploratory vs. Confirmatory Factor Analysis

- Exploratory:
- summarize data
- describe correlation structure between variables
- generate hypotheses
- Confirmatory
- Testing correlated measurement errors
- Redundancy test of one-factor vs. multi-factor models
- Measurement invariance test comparing a model across groups
- Orthogonality tests

Confirmatory Factor Analysis (CFA)

- Takes factor analysis a step further.
- We can "test" or "confirm" or "implement" a "highly constrained a priori structure that meets conditions of model identification"
- But be careful, a model can never be confirmed!!
- CFA model is constructed in advance
- number of latent variables ("factors") is pre-set by analyst (not part of the modeling usually)
- Whether latent variable influences observed is specified
- Measurement errors may correlate
- Difference between CFA and the usual SEM:
- SEM assumes causally interrelated latent variables
- CFA assumes interrelated latent variables (i.e. exogenous)

Exploratory Factor Analysis

Two factor model:

$$
x=\Lambda \xi+\delta
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{ll}
\lambda_{11} & \lambda_{12} \\
\lambda_{21} & \lambda_{22} \\
\lambda_{31} & \lambda_{32} \\
\lambda_{41} & \lambda_{42} \\
\lambda_{51} & \lambda_{52} \\
\lambda_{61} & \lambda_{62}
\end{array}\right]\left[\begin{array}{l}
\delta_{1} \\
\xi_{1} \\
\xi_{2}
\end{array}\right]+\left[\begin{array}{l}
\xi_{2} \\
\delta_{3} \\
\delta_{4} \\
\delta_{5} \\
\delta_{6}
\end{array}\right]
$$

CFA Notation

Two factor model:

$x=\Lambda \xi+\delta$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{11} & 0 \\
\lambda_{21} & 0 \\
\lambda_{31} & 0 \\
0 & \lambda_{42} \\
0 & \lambda_{52} \\
0 & \lambda_{62}
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]+\left[\begin{array}{l}
\delta_{1} \\
\delta_{2} \\
\delta_{3} \\
\delta_{4} \\
\delta_{5} \\
\delta_{6}
\end{array}\right]
$$

Difference between CFA and EFA

CFA

$$
\begin{aligned}
& x_{1}=\lambda_{11} \xi_{1}+\delta_{1} \\
& x_{2}=\lambda_{21} \xi_{1}+\delta_{2} \\
& x_{3}=\lambda_{31} \xi_{1}+\delta_{3} \\
& x_{4}=\lambda_{44} \xi_{2}+\delta_{4} \\
& x_{5}=\lambda_{52} \xi_{2}+\delta_{5} \\
& x_{6}=\lambda_{62} \xi_{2}+\delta_{6} \\
& \operatorname{cov}\left(\xi_{1}, \xi_{2}\right)=\varphi_{12}
\end{aligned}
$$

EFA
$x_{1}=\lambda_{11} \xi_{1}+\lambda_{12} \xi_{2}+\delta_{1}$
$x_{2}=\lambda_{21} \xi_{1}+\lambda_{22} \xi_{2}+\delta_{2}$
$x_{3}=\lambda_{31} \xi_{1}+\lambda_{32} \xi_{2}+\delta_{3}$
$x_{4}=\lambda_{41} \xi_{1}+\lambda_{42} \xi_{2}+\delta_{4}$
$x_{5}=\lambda_{51} \xi_{1}+\lambda_{52} \xi_{2}+\delta_{5}$
$x_{6}=\lambda_{61} \xi_{1}+\lambda_{62} \xi_{2}+\delta_{6}$
$\operatorname{cov}\left(\xi_{1}, \xi_{2}\right)=0$

Model Constraints

- Hallmark of CFA
- Purposes for setting constraints:
- Test a priori theory
- Ensure identifiability
- Test reliability of measures

Identifiability

- Let θ be a $t \times 1$ vector containing all unknown and unconstrained parameters in a model. The parameters θ are identified if $\Sigma\left(\theta_{1}\right)=\Sigma\left(\theta_{2}\right) \Leftrightarrow \theta_{1}=\theta_{2}$
- Estimability \neq Identifiability !!
- Identifiability - attribute of the model
- Estimability - attribute of the data

Model Constraints: Identifiability

- Latent variables (LVs) need some constraints
- Because factors are unmeasured, their variances can take different values
- Recall EFA where we constrained factors:

$$
F \sim N(0,1)
$$

- Otherwise, model is not identifiable.
- Here we have two options:
- Fix variance of latent variables (LV) to be 1 (or another constant)
- Fix one path between LV and indicator

Necessary Constraints

Fix variances:

Fix path:

Model Parametrization

Fix variances:

$$
\begin{aligned}
& x_{1}=\lambda_{11} \xi_{1}+\delta_{1} \\
& x_{2}=\lambda_{21} \xi_{1}+\delta_{2} \\
& x_{3}=\lambda_{31} \xi_{1}+\delta_{3} \\
& x_{4}=\lambda_{42} \xi_{2}+\delta_{4} \\
& x_{5}=\lambda_{52} \xi_{2}+\delta_{5} \\
& x_{6}=\lambda_{62} \xi_{2}+\delta_{6} \\
& \operatorname{cov}\left(\xi_{1}, \xi_{2}\right)=\varphi_{12} \\
& \operatorname{var}\left(\xi_{1}\right)=1 \\
& \operatorname{var}\left(\xi_{2}\right)=1
\end{aligned}
$$

Fix path:

$$
\begin{aligned}
& x_{1}=\xi_{1}+\delta_{1} \\
& x_{2}=\lambda_{21} \xi_{1}+\delta_{2} \\
& x_{3}=\lambda_{31} \xi_{1}+\delta_{3} \\
& x_{4}=\xi_{2}+\delta_{4} \\
& x_{5}=\lambda_{52} \xi_{2}+\delta_{5} \\
& x_{6}=\lambda_{62} \xi_{2}+\delta_{6} \\
& \operatorname{cov}\left(\xi_{1}, \xi_{2}\right)=\varphi_{12} \\
& \operatorname{var}\left(\xi_{1}\right)=\varphi_{11} \\
& \operatorname{var}\left(\xi_{2}\right)=\varphi_{22}
\end{aligned}
$$

Identifiability Rules for CFA

(1) Two-indicator rule (sufficient, not necessary)

1) At least two factors
2) At least two indicators per factor
3) Exactly one non-zero element per row of Λ
(translation: each x only is pointed at by one LV)
4) Non-correlated errors (Θ is diagonal)
(translation: no double-header arrows between the δ 's)
5) Factors are correlated (Φ has no zero elements)*
(translation: there are double-header arrows between all of the LVs)

* Alternative less strict criteria: each factor is correlated with at least one other factor. (see page 247 on Bollen)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{11} & 0 \\
\lambda_{21} & 0 \\
\lambda_{31} & 0 \\
0 & \lambda_{42} \\
0 & \lambda_{52} \\
0 & \lambda_{62}
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{1} \\
\xi_{2}
\end{array}\right]+\left[\begin{array}{l}
\delta_{2} \\
\delta_{3} \\
\delta_{4} \\
\delta_{5} \\
\delta_{6}
\end{array}\right]
$$

$$
\Theta=\operatorname{var}(\delta)=\left[\begin{array}{cccccc}
\theta_{11} & 0 & 0 & 0 & 0 & 0 \\
0 & \theta_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & \theta_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & \theta_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & \theta_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & \theta_{66}
\end{array}\right] \quad \Phi=\operatorname{var}(\xi)=\left[\begin{array}{cc}
1 & \varphi_{12} \\
\varphi_{12} & 1
\end{array}\right]
$$

Example: Two-Indicator Rule

Example: Two-Indicator Rule

Example: Two-Indicator Rule

Identifiability Rules for CFA

(2) Three-indicator rule (sufficient, not necessary)

1) at least one factor
2) at least three indicators per factor
3) one non-zero element per row of Λ
(translation: each x only is pointed at by one LV)
4) non-correlated errors (Θ is diagonal)
(translation: no double-headed arrows between the δ 's)
[Note: no condition about correlation of factors (no restrictions on Φ).]

