The following polynomial has four terms:

$$
x y+2 y+3 x+6
$$

Notice that there is no common factor among the four terms (no GCF). However the first two terms do have a common factor of y and the last two terms have a common factor of 3 . So while we can't factor the polynomial by taking out a GCF, we can factor by grouping. This means grouping the first two terms and factoring out a GCF, then grouping the last two terms and factoring out a GCF.

$$
\begin{gathered}
x y+2 y+\underline{3 x+6} \\
y(x+2)+\underline{3(x+2)}
\end{gathered}
$$

We now have a sum of two terms, and both terms have a common factor of $(x+2)$. If we take out the GCF of $(x+2)$ we are left with the following:

$$
\begin{gathered}
y(x+2)+3(x+2) \\
(x+2)\left(\frac{y(x+2)}{(x+2)}+\frac{3(x+2)}{(x+2)}\right) \\
(x+2)\left(\frac{y \cdot 1}{1}+\frac{3 \cdot 1}{1}\right) \\
(x+2)(y+3)
\end{gathered}
$$

This is an example of factoring a polynomial by grouping the terms.

Factor by grouping:

- grouping the terms of a polynomial and factoring out a GCF from each group
- you can group any terms that have a common factor
- this means the order of the two middle terms can be reversed and the final factored answer will remain the same; this will be important on the next page when we use the $a c$-method to factor

$$
\begin{array}{ll}
9 x^{3}+36 x^{2}+4 x+16 & 9 x^{3}+4 x+36 x^{2}+16 \\
\underline{9 x^{3}+36 x^{2}}+\underline{4 x+16} & \underline{9 x^{3}+4 x}+\underline{36 x^{2}+16} \\
9 x^{2}(x+4)+4(x+4) & x\left(9 x^{2}+4\right)+4\left(9 x^{2}+4\right) \\
(x+4)\left(9 x^{2}+4\right) & \left(9 x^{2}+4\right)(x+4)
\end{array}
$$

Example 1: Factor the following polynomials by grouping.
a. $x^{3}-4 x^{2}+6 x-24$
b. $24 x^{3}-6 x^{2}+8 x-2$

Always check to see if the terms in the polynomial have a GCF. In this problem, the four terms do not have a GCF, so I will simply factor by grouping.

$$
\begin{aligned}
& \frac{x^{3}-4 x^{2}}{x^{2}(x-4)+6(x-24} \\
& (x-4)\left(x^{2}+6\right)
\end{aligned}
$$

We have seen how to factor polynomials that contain a GCF, and how to factor polynomials where only certain groups of terms have a GCF. Next we will look at an algorithm for factoring quadratic trinomials (trinomials with a degree of 2 , such as $12 x^{2}+17 x-5$). In Lesson 7 we'll see examples of non-quadratic trinomials, such as $10 x^{6}-13 x^{3}+3$, and show how this algorithm can be used to factor those trinomials as well.

Using the $a c$-method to factor quadratic trinomials $\left(a x^{2}+b x+c\right)$:

1. check for a GCF first
a. this should be done regardless of how you are factoring or what type of polynomial you have (binomial, trinomial ...)
2. find two numbers whose product is $a c$ and whose sum is b
a. a is the leading coefficient of the polynomial and c is the constant term, while b is the coefficient of x
3. replace the middle term of the original trinomial ($b x$) with an expression containing the two numbers from step 2
4. factor the resulting polynomial by grouping

Example 2: Factor the following polynomials completely.
a. $12 x^{2}+17 x-5$

$\underline{a c}$	\underline{b}	Think about
		lhe
		$\underline{\text { signs of }}$
		$\underline{\text { product }}$
		land the
		sum.

b. $6 x^{4}+5 x^{3}+x^{2}$

$\underline{a c}$	\underline{b}	Think about
		the signs of
		$\underline{\text { the }}$
		product
		and the
		sum.

c. $16 x^{2}+24 x+9$

To factor this trinomial using the $a c$-method, I would start by trying to find two numbers with a of product $a c(16 \cdot 9=144)$ and a sum of b (24). In this case, those two numbers are 12 and 12 , so I will replace $24 x$ with $12 x+12 x$ in order to then factor by grouping.

$$
\begin{gathered}
16 x^{2}+12 x+12 x+9 \\
4 x(4 x+3)+3(4 x+3) \\
(4 x+3)(4 x+3)
\end{gathered}
$$

Since I end up with the same binomial twice, I can express it as a perfect square.

$$
(4 x+3)^{2}
$$

When to factor out a negative factor rather than a positive factor:

There are two scenarios in which it is beneficial to factor out a negative factor rather than a positive factor:

1. When the leading coefficient is negative

$$
\begin{aligned}
& 18+15 x-3 x^{2} \\
& -3 x^{2}+15 x+18 \\
& -3\left(x^{2}-5 x-6\right)
\end{aligned}
$$

The trinomial $x^{2}-5 x-6$ should be easier to factor than $-x^{2}+5 x+6$, which we would have had if we'd factored out 3 instead of -3 .
2. To make the binomials match when factoring by grouping

$$
\begin{gathered}
-3\left(x^{2}-5 x-6\right) \\
-3\left(x^{2}+x-6 x-6\right) \\
-3(x(x+1)-6(x+1)) \\
-3(x+1)(x-6)
\end{gathered}
$$

Had I factored out 6 from $-6 x-6$, I would have been left with the binomial $(-x-1)$ which would not have matched $(x+1)$. By factoring out a -6 instead, I had a common factor of $(x+1)$, which I was then able to factor out.

Example 3: Factor the following polynomials completely.
a. $150-25 x-x^{2}$
b. $-3 x^{3}+17 x^{2}-20 x$

Since this trinomial has a negative leading coefficient, I will start by factoring out a negative GCF in order to make the leading coefficient positive.

$$
-x\left(3 x^{2}-17 x+20\right)
$$

Next I will factor the trinomial that remains using the $a c$-method. To do so I will find two numbers with a of product $a c(3 \cdot 20=60)$ and a sum of $b(-17)$. In this case, those two numbers are -5 and -12 , so I would replace $-17 x$ with $-5 x-12 x$ in order to then factor by grouping.

$$
\begin{aligned}
& -x\left(3 x^{2}-5 x-12 x+20\right) \\
& -x(x(3 x-5)-4(3 x-5)) \\
& -x(3 x-5)(x-4)
\end{aligned}
$$

Answers to Examples:

1a. $(x-4)\left(x^{2}+6\right) ;$ 1b. $2(4 x-1)\left(3 x^{2}+1\right)$;
2a. $(3 x+5)(4 x-1) ; 2 b . x^{2}(3 x+1)(2 x+1) ; 2 c . \quad(4 x+3)^{2}$;
3a. $-1(x-5)(x+30) ; 3 b .-x(3 x-5)(x-4)$

