FACTORING METHOD 1: GREATEST COMMON FACTOR (GCF) Day 1

Warm-Up: What property is illustrated by: $5 a+5 b=5(a+b)$ \qquad

- To factor means to \qquad
- GCF Factored Answer will be written using the \qquad property

PROCEDURE FOR GCF FACTORING:

- Determine what \#/(or expression) may be divided out of each term (REVERSED OUT)
- Determine what variable (with highest exponent) may be divided out of each term (REVERSED OUT)

What is \qquad goes in \qquad of the parenthesis for the final factored answer

Factor the following:

1. $5 a^{2}-15$

2. $10 x-25 x^{2}$
3. $8 a x-56 a$
4. $x(2 x+5)-3(2 x+5)$
5. The area of a rectangle is represented by $3 x^{2}+6 x$ and the length by $x+2$. Express the width of the rectangle in terms of x.
6. The area of a triangle is represented by $24 x^{2}+4 x$ and the height by $8 x$. Express the base of the triangle in terms of x.

FACTOR BY GROUPING METHOD

Factor the following:

1. $4 r^{3}+24 r+r^{2}+6$
2. $6 x^{2}-4 x-3 x+2$
3. $15 x^{2}-10 x+9 x-6$
4. $7 x^{2}-14 x-6 x+12$
5. $2 x^{3}-5 x^{2}+14 x-35$

Practice:

1. $48 x^{2} y+36 x^{3} y^{2}$
2. $2 x(x-4)+(x-4)$
3. The perimeter of a square is represented by $36 x^{2}+8$. Find the area of the square.

FACTORING METHOD 2:
 DIFFERENCE OF 2 PERFECT SQUARES (D2PS) Day 2

Recall: Simplify the following: $(x+2)(x-2)$
****These pair of factors are \qquad of each other******

HOW TO FACTOR:

- STEP 1: ALWAYS CHECK FOR \qquad
- STEP 2: To use D2PS FACTORING method must satisfy CHECK OFF LIST
D.

2-
PS-
Always check remaining factored parts to determine if they can be factored again!!!!

HOW TO WRITE FINAL FACTORED ANSWER

- If expression has a GCF-
- divide out and leave GCF outside () in final answer
- After GCF is divided out... or there was no GCF...
- The remaining expression in the () will be broken down into parts using the following setup.
- Create $\mathbf{2}$ sets of () with $\mathbf{2}$ different operation signs in the middle of the () (1 set of () with a + sign, the other a - sign)
- Take the \qquad of both terms in expression.
- Fill in the square roots of the terms in the parentheses. In the correct positions (before and after the operation sign)
- ANSWER WILL ALWAYS REPRESENT A \qquad PAIR

Factor the following:

1. $y^{2}-16$
2. $100 \mathrm{r}^{2}-9$
3. $3 x^{2}-27$
4. $\frac{1}{25}-x^{2}$
5. $a^{2}-0.36$
6. $\mathrm{c}^{2}-\frac{9}{4}$
7. The area of a rectangle is $25 m^{3}-30 m^{2}$ and the width is $5 \mathrm{~m}^{2}$, what is the length in terms of m ?

Practice:

1. $\mathrm{cm}^{2}-\mathrm{cd}^{2}$
2. $25 x^{2}+100$
3. $36+n^{2}$
4. The area of rectangle is represented by $9 x^{2}-25$. Find the perimeter of the rectangle in terms of x.

FACTORING METHOD 3: TRINOMIALS Day 3 (GROUPING Method)

Recall: Simplify the following: $(2 y+3)(y-12)$

Answers are usually a TRINOMIAL in the form: \qquad , where a, b, and c are the coefficients.

HOW TO FACTOR:

- STEP 1: ALWAYS CHECK FOR \qquad
- If expression has a GCF-divide out and leave GCF outside () in final answer
- After GCF is divided out... or there was no GCF...
- The remaining expression in the () will be broken down into parts using the following setup.

STEPS for Factoring Trinomials

1. Make sure trinomial is in correct standard form.
2. Create the \mathbf{x}-diagram and fill in with $a c \#$ and $b \#$
a. Multiply a\# and c\# (this is your ac\#)
b. Write down the b\# (this is your sum \#)
c. Fill in missing parts with the factors

3. Rewrite the equation and SPLIT THE MIDDLE TERM (bx) using the 2 factors found in step 2 .
a. Put appropriate variables next to these terms
4. Factor the remaining expression (4-TERMS) by GROUP FACTORING.

Factor the following:

1. $3 x^{2}+10 x+8$

2. $b^{2}+5 b-24$
3. $4 x^{2}-5 x y-6 y^{2}$

Practice:

1. $2 x^{2}+7 x+6$
2. $3 x^{2}+2 x-5$
3. $k^{2}-k-30$
4. $y^{2}+10 y+25$

HOW TO FACTOR (STEPS)

Step 1: \qquad
THEN CHOOSE EITHER \qquad
2: \qquad

3: \qquad

Factor the following completely:

1. $m^{2}+13 m-30$
2. $6 x+18$
3. $25 x^{2}-100$
4. The area of a rectangular fountain is represented by $x^{2}+12 x+20 \mathrm{ft}^{2}$. The width is $x+2 \mathrm{ft}$. Find the length of the fountain.

5. The volume of a rectangular prism is $x^{3}-7 x^{2}+12 x$. Determine what would represent the length, width, and height.
6. The length of a rectangular porch is $(x+7) \mathrm{ft}$. The area of the porch is $\left(x^{2}+9 x+14\right) \mathrm{ft}^{2}$. Find the width of the porch.

Practice:

1. If the area of a rectangle is $27 a^{3}-18 a^{2}$ and the length is $3 a-2$, what is the width in terms of a?
2. One factor of $49 x^{2}-16$ is $7 x-4$. What is the other factor?
(1) $7 x-4$
(2) $7 x+4$
(3) $-7 x-4$
(4) $-7 x+4$
3. Which are the factors of $18 y^{2}-6 y$?
(1) $9 y$ and $2 y-3$
(3) $6 y$ and $3 y-1$
(2) $18 y^{2}$ and $-6 y$
(4) $3 y$ and $6 y-3$

REVIEW FACTORING METHODS Day 5

Recall: FACTORING STEPS:
1 : \qquad
2 : \qquad
3: \qquad

Factor the following completely:

1. $36 x y^{2}-48 x^{2} y$
2. $4 g^{2}-81 h^{2}$
3. $36-x^{2}$
4. $5(x+2)+x(x+2)$
5. $x^{2}+6 x+8$
6. $9 a^{2}+81 b^{2}$
7. $x^{2}-10 x+21$
8. $36 x^{2}-16 x^{5}$
9. $2 x(x-4)-(x-4)$
10. $x^{2}-22 x-75$
11. $2 x^{2}-10 x+3 x-15$
12. $7 x^{3}+35 x^{2}+8 x+40$
13. $a^{2}+3 a+2$
14. $6 y^{2}+2 y$
15. $25 x^{2}-16$
16. $5 k^{3}+15 k+10 k$
17. $2 x^{2}-7 x-15$
18. $a^{2}+a-56$
