Name	Date	_Period
Algebra	Factoring Polynomials	7C

Factoring expressions is one of the *gateway skills* that is necessary for much of what we do in algebra for the rest of the course. The word *factor* has two meanings and both are important.

Factoring using GCF:

Take the greatest common factor (GCF) for the numerical coefficient. When choosing the GCF for the variables, if all the terms have a common variable, take the one with the lowest exponent.

ie) $9x^4 + 3x^3 + 12x^2$ GCF: coefficients: 3 Variable (x) : x² GCF: $3x^2$ What's left? Division of monomials: $9x^4/3x^2$ $3x^2/3x^2$ $3x^2/3x^2$ Factored Completely: $3x^2(3x^2 + x + 4)$ Factor each problem using the GCF and check by distributing: 1) $14x^9 - 7x^7 + 21x^5$ 2) $26x^4y - 39x^3y^2 + 52x^2y^3 - 13xy^4$

3) $32x^{6} - 12x^{5} - 16x^{4}$ 4) $16x^{5}y^{2} - 8x^{4}y^{3} + 24x^{2}y^{4} - 32xy^{5}$

5)
$$24b^{11} + 4b^{10} - 6b^9 + 2b^8$$
 6) $96a^5b + 48a^3b^3 - 144ab^5$

7) $11x^{3}y^{3} + 121x^{2}y^{2} - 88xy$ 8) $75x^{5} + 15x^{4} - 25x^{3}$ **Exercise #1**: Consider the expression $6x^2 + 15x$. (a) Write the individual terms $6x^2$ and 15x as completely factored expressions. Determine their **greatest common factor**.

(b) Using the Distributive Property, rewrite $6x^2 + 15x$ as a product involving *GCF* from (a).

It is important that you are fluent reversing the distributive property in order to factor out a common factor (most often the greatest common factor). Let's get some practice in the next exercise just identifying the greatest common factors.

The greatest common factor, or GCF, is the greatest factor that divides two numbers. To find the GCF of two numbers: List the prime factors of each number. Multiply those factors both numbers have in common. If there are no common prime factors, the GCF is 1.

$$24x^{3} - 16x^{2} + 8x = 8x(3x^{2} - 2x + 1)$$
$$24x^{3} \div 8x = 3x^{2}$$
$$1-16x^{2} \div 8x = -2x$$
$$8x \div 8x = 1$$

Exercise #2: For each of the following, identify the greatest common factor of each. Then factor each of the following. The first example is completed for you.

(a) $\frac{12x^3 + 18x}{6x}$	GCF = 6x	(b) $5x^4 - 25x^2$
$6x(2x^2+3)$		
(c) $6x^2 + 10x$		(d) 3 <i>x</i> – 24

(e) $10x^3 - 15x$ (f) $21x^2y^5 + 14xy^7$

(g) $24x^3 + 8x^2 - 16x$ (h) $20x^3 - 12x^2 + 28x$

(i) $4x^2 + 8x + 24$ (j) $6x^3 - 8x^2 + 2x$

(k)
$$10x^3 - 35x^2$$
 (l) $10x^2 - 40x - 50$

(m) $8x^3y^2 + 24x^2y^4 - 32xy^6$ (n) $18x^2y^2 + 45x^2y - 90xy$

Being able to fluently factor out a gcf is an essential skill. Sometimes greatest common factors are more complicated than simple monomials. We have done this type of factoring back in Unit #1.

Exercise #3: Rewrite each of the following expressions as the product of two binomials by factoring out a common binomial factor.

(a) (x+5)(x-1) + (x+5)(2x-3) (b) (2x-1)(2x+7) - (2x-1)(x-3)

Name		Date	Period
Algebra		Factoring Polynomials	7C HW
1.) Which of the following is the [1] $12xy^4$ [2] $24x^2y^7$	e greatest common factor of the to [3] $6x^2y^3$ [4] $3xy$	erms $36x^2y^4$ and $24xy^2$	7?
2.) Write each of the following as eq polynomial (of the same number of t			ctor with another
(a) $\frac{8x - 28}{4}$ GCF = 4	(b) $50x + 30$	(c) $24x^2 + 32x$	
4 4(2x - 7) (d) $18 - 12x$	(e) $6x^3 + 12x^2 - 3x$	(f) $x^2 - x$	
(g) $10x^2 + 35x - 20$	(h) $21x^3 - 14x$	(i) $36x - 8x^2$	
(j) $30x^3 - 75x^2$	(k) $-16t^2 + 96t$	(l) $4t^3 - 32t^2 +$	12 <i>t</i>

4.) Rewrite each of the following expressions as a product of two binomials by factoring out a common factor. Watch out for the subtraction problems!!

(a) (x+5)(x+1) + (x+8)(x+5) (b) (2x-1)(3x+5) - (2x-1)(x+4)

(c)
$$(x-7)(x-9) + (x-7)(4x+5)$$

(d)
$$(x+1)(5x-7) - (x-3)(x+1)$$

5.) The area of a rectangle is represented by the polynomial $16x^2 + 56x$. The width of the rectangle is given by the binomial 2x + 7.

(a) Given a monomial expression in terms of x for the length of the rectangle. Show how you arrived at your answer.

(b) If the length of the rectangle is 80, what is the width of the rectangle? Explain your thinking.

Review Section:

-6. Which value of x is a solution of the inequality 25x - 100 < 250?

- (1) 13 (3) 15
- (2) 14 (4) 16

_____7.) The set of integers in [6,10) can be written as

- 8.) The length of a rectangle is represented by $x^2 + 3x + 2$, and the width is represented by 4x. Express the perimeter of the rectangle as a trinomial.

Name ___ Algebra

Homework Answers

Date	Period
Factoring Polynomials	7C HW

1.) 2

- 2.) b) 10(5*x* + 3)
 - c) 8x(3x + 4)
 d) 6(3 2x)
 - e) $3x(2x^2 + 4x 1)$
 - f) x(x 1)
 - g) $5(2x^2 + 7x 4)$
 - h) $7x(3x^2 2)$
 - i) 4x(9-2x)
 - j) $15x^2(2x-5)$
 - k) -16t(t-6)
 - l) $4t(t^2 8t + 3)$

```
3.) 3
```

- 4.) a) (x + 5)(2x + 9)
 - b) (2x-1)(2x+1)
 - c) (x-7)(5x-4)
 - d) (x + 1)(4x 4)
- 5.) a) Length = 8x
 - b) Width = 27
- 6.) 1
- 7.) 3
- 8.) Perimeter = $2x^2 + 14x + 4$

Name	
Algebra	

Date _____ Period _____ Factoring Polynomials (Day 2) 7D

<u>Recall</u>: Factoring expressions is one of the **gateway skills** that is necessary for much of what we do in algebra for the rest of the course. The word **factor** has two meanings and both are important.

	THE TWO MEANINGS OF FACTOR
1.	Factor (verb): To rewrite an algebraic expression as an equivalent product.
2.	Factor (noun): An algebraic expression that is one part of a larger factored expression.

Exercise #1: Consider the expression 4x(x + 3) - 5(x + 3). (a) Identify the GCF of the expression.

(b) Factor the given expression into simplest form (the product of two binomials).

Exercise #2: Factor each of the following expression into simplest form (the product of two binomials). (a) 9x(x + 1) + 7(x + 1) (b) 4x(x + 6) + 9(x + 6)

(c) 8x(x+5) - 11(x+5) (d) 14x(x-12) + 9(x-12)

(e) 3x(x+2) - 5(x+2) (f) 6x(x+7) + 5(x+7)

(g) 12x(x-9) + 7(x-9) (h) $7x^2(x+12) - 5(x+12)$

(i) $8x^2(x+11) - 3(x+11)$ (j) $12x^2(x-4) + 11(x-4)$

Exercise #3: Factor each of the following expressions, by utilizing grouping, into simplest form (the product of two binomials). (a) $3x^2 + 3x - 4x - 4$ (b) $5x^2 + 20x - 3x - 12$

(c) $7x^2 - 14x + x - 2$

(d) $11x^2 - 66x + 2x - 12$

(e) $2x^3 + 2x^2 - 7x - 7$ (f) $3x^2 - 15x + 4x - 20$

(g) $4x^2 + 36x + 5x + 45$

(h) $6x^3 - 12x^2 - 5x + 10$

(i) $8x^3 + 24x^2 - x - 3$

Name	Date	Period
Algebra	Factoring Polynomials (D	Day 2) 7D HW

1.) Factor each of the following expression into simplest form (the product of two binomials). (b) $x^{2}(x+5) + 2(x+5)$ (a) 3x(x+1) - 4(x+1)

(c)
$$5x(x+4) - 3(x+4)$$
 (d) $7x(x-2) + 1(x-2)$

(e)
$$11x(x-6) + 2(x-6)$$
 (f) $2x^2(x+1) - 7(x+1)$

(g)
$$9x^2(x+2) + 7(x+2)$$
 (h) $3x(x-5) + 4(x-5)$

(i)
$$8x^2(x-4) + 11(x-4)$$
 (j) $12x(x+9) - 5(x+9)$

2.) Factor each of the following expressions, by utilizing grouping, into simplest form (the product of two binomials). (a) $3x^3 + 2x^2 + 15x + 10$

(b) $4x^3 - 4x^2 + 7x - 7$

(c) $x^3 + 4x^2 + 3x + 12$ (d) $3x^3 + 18x^2 - 4x - 24$

(g)
$$6x^3 + 30x^2 - x - 5$$

(h)
$$9x^3 + 63x^2 + 8x + 56$$

Review Section:

----- ^{4.}) An example of an algebraic equation is

(1) $r^2 + 1$ (2) 2a + (n-1)d(3) 5x = 7(4) $-25\pi + 100$

5.) What is the result when $6x^2 - 4x + 3$ is subtracted from $3x^2 - 2x + 3$? Make sure to show all your work.

Name_____ Algebra Homework Answers

Date	Perioc	l
Factoring Polynomials	(Day 2)	7D HW

1) a) $(x + 1)(3x - 4)$	b) $(x+5)(x^2+2)$
c) $(x+4)(5x-3)$	d) $(x-2)(7x+1)$
e) $(x-6)(11x+2)$	f) $(x+1)(2x^2 - 7)$
g) $(x+2)(9x^2+7)$	h) $(3x+4)(x-5)$
i) $(8x^2 + 11)(x - 4)$	
1) $(0x + 11)(x - 4)$	j) $(12x - 5)(x + 9)$
2.) a) $(3x + 2)(x^2 + 5)$	b) $(x-1)(4x^2+7)$
2.) a) $(3x + 2)(x^2 + 5)$	b) $(x-1)(4x^2+7)$
2.) a) $(3x + 2)(x^2 + 5)$ c) $(x + 4)(x^2 + 3)$	b) $(x - 1)(4x^2 + 7)$ d) $(x + 6)(3x^2 - 4)$

- 4.) 3
- 5.) $-3x^2 + 2x$

Name _____ Algebra

Exercise 1: Write each of the following products in equivalent trinomial form. (a) (x + 5)(x + 3) (b) (2x - 3)(5x - 1)

Factoring

Example) Factor $2x^2 - 7x + 6$		
Step 1 – List out a,b, and c $2x^2 - 7x + 6$ $ax^2 + bx + c$	a = 2 b = -7 c = 6	
<u>Step 2</u> – Split the middle term	$2x^2 - 7x + 6$	
<u>Step 3</u> – Determine the two middle term signs Look at the last sign	$2x^2 _x _x + 6$	
Because $(+)$ S um the signs are the S ame The signs are the same as the first sign $(+)$	$2x^2 - x - x + 6$	
Step 4 – To figure out the coefficients needed multiply $(a \cdot c) = (2 \cdot 6) = 12$ Therefore we will need factors of 12 with a sum of 7 Factors $(a)(c) Sum (b)$ Factors 12 Sum 7 1, 12 13 2, 6 8 3, 4 7	$2x^2 - 3x - 4x + 6$	
<u>Step 5</u> – Factor a GCF out of the created binomials	x(2x-3) - 2(2x-3)	
<u>Step 6</u> – Factor out the common binomial to create a second binomial	(2x-3)(x-2)	13

Exercise 2: Answer the following questions completely. (a) $12x^2 - 7x + 1$

(b) $10x^2 + 9x + 2$

(c) $b^2 - 14b + 45$

(d) $x^2 + 8x + 12$

Date	Perio	od
Trinomial Fa	actoring (Sum)	7E HW

Name ______Algebra

1) Which of the following products is equivalent to the trinomial $x^2 - 5x - 24$?

 $(1) (x-12)(x+2) \qquad (3) (x-8)(x+3)$ $(2) (x+12)(x-2) \qquad (4) (x+8)(x-3)$

2) Written in factored form, the trinomial $2x^2 + 15x + 28$ can be expressed equivalently as (1) (2x+7)(x+4) = (3)(2x+2)(x+14)

(1)
$$(2x+7)(x+4)$$
 (3) $(2x+2)(x+14)$
(2) $(2x+4)(x+7)$ (4) $(2x+14)(x+2)$

3) Write each of the following trinomials in equivalent factored form. Remember to show all work that was shown in class.

(a) $x^2 + 12x + 35$ (b) $x^2 - 11x + 28$

(c) $8x^2 - 18x + 9$

(d) $x^2 - 7x + 10$

(g) $2x^2 + 13x + 21$

(h) $x^2 - 5x + 6$

Review Section: 4) Express the product of $2x^2 + 7x - 10$ and x + 5 in standard form.

There is another question below

5) A function is graphed on the set of axes below.

Which function is related to the graph?

(1)
$$f(x) = \begin{cases} x^2, & x < 1 \\ x - 2, & x > 1 \end{cases}$$
 (3) $f(x) = \begin{cases} x^2, & x < 1 \\ 2x - 7, & x > 1 \end{cases}$
(2) $f(x) = \begin{cases} x^2, & x < 1 \\ \frac{1}{2}x + \frac{1}{2}, & x > 1 \end{cases}$ (4) $f(x) = \begin{cases} x^2, & x < 1 \\ \frac{3}{2}x - \frac{9}{2}, & x > 1 \end{cases}$

Name	Homework Answers
Algebra	

- 1) 3
- 2) 1

3) (a) $(x + 7)(x + 5)$	(b) $(x-7)(x-4)$
(d) $(x-5)(x-2)$	(e) $(x+6)(x+6)$
(g) $(2x+7)(x+3)$	(h) $(x-3)(x-2)$

Date _____ Period _____ Trinomial Factoring (Sum) 7E HW

(c)
$$(2x-3)(4x-3)$$

(f)
$$(x-4)(5x-1)$$

- 4) $2x^3 + 17x^2 + 25x 50$
- 5) 2

Date	Period	
Trinomial Factoring	g (Difference)	7F

Name ____ Algebra

Example) Factor: $9x^2 + 35x - 4$	
Step 1 – List out a,b, and c $9x^2 + 35x - 4$ $ax^2 + bx + c$	a = 9 b = 35 c = -4
<u>Step 2</u> – Split the middle term <u>Step 3</u> – Determine the two middle term signs	$9x^2 + 35x - 4$ $9x^2 - x - 4$
Look at the last sign Because $(-)$ D ifference the signs are the D ifferent One sign will be $(+)$ and the other $(-)$	$9x^{2} + 35x - 4$ $9x^{2} - x - 4$ $9x^{2} + x - 4$ $-x - 4$
Step 4- To figure out the coefficients needed multiply $(a \cdot c) = (9 \cdot 4) = 36$ Therefore we will need factors of 36 with a difference of 35 Factors $(a)(c)$ Difference (b)Factors 36Difference 351,36352,18163,1294,956,60	$9x^2 + 36x - 1x - 4$
<u>Step 5</u> – Factor a GCF out of the created binomials	9x(x+4) - 1(x+4)
<u>Step 6</u> – Factor out the common binomial to create a second binomial	(x+4) (9x-1)

Examples: 1) $7x^2 + 19x - 6$

3) $s^2 + s - 56$

5) $3x^2 + 11x - 4$

Name	Date	Period	
Algebra	Trinomial Fac	ctoring (Difference)	7F HW

1) Write the following in equivalent trinomial form (*If you need help, look at Exercise 1 from lesson 7E*).
(a) (2x - 3)(5x + 1)
(b) (6x + 7)(x + 2)

2) Write each of the following trinomials in equivalent factored form. Remember to show all work that was shown in class.

(a) $x^2 - 3x - 18$ (b) $x^2 + 3x - 40$

(c) $7x^2 + 11x - 6$

(d) $x^2 - 10x - 24$

(g) $6x^2 + 5x - 4$

(h) $x^2 + 8x - 9$

Review Section:

3) In the equation $x^2 + 10x + 24 = (x + a)(x + b)$, b is an integer. Find algebraically all possible values of b.

There is another question below

4) The table below shows the average diameter of a pupil in a person's eye as he or she grows older.

Age (years)	Average Pupil Diameter (mm)	
20	4.7	
30	4.3	
40	3.9	
50	3.5	
60	3.1	
70	2.7	
80	2.3	

What is the average rate of change, in millimeters per year, of a person's pupil diameter from age 20 to age 80?

- (1) 2.4 (3) -2.4
- (2) 0.04 (4) -0.04

Name <u>Homework Ans</u> Algebra	wers	Date Period Trinomial Factoring (Difference) 7F HW
1) (a) $10x^2 - 13x - 3$	(b) $6x^2 + 19x + 14$	
2) (a) $(x-6)(x-3)$	(b) $(x+8)(x-5)$	
(c) $(x+2)(7x-3)$	(d) $(x-12)(x+2)$	
(e) $(2x-5)(x+2)$	(f) $(x+6)(3x-2)$	
(g) $(3x+4)(2x-1)$	(h) $(x+9)(x-1)$	

- 3) 6 or 4
- 4) 4

Name	 	 	
Algebra			

Date	Period	
Trinomial Factoring	(Combination)	7G

Let's try factoring when everything is all mixed! Write each of the following trinomials in equivalent factored form. 1) $x^2 + 10x + 16$ 2) $x^2 - 8x + 15$

3) $11x^2 - 10x - 1$

4) $x^2 + 30x + 200$

7) $x^2 + 5x - 14$

8) $7x^2 - 26x - 8$

Name	Date	Period	
Algebra	Trinomial Factoring (Combination)	7G HW

Write each of the following trinomials in equivalent factored form. Remember to show all work that was shown in class.

1) $2x^2 - 7x - 30$ 2) $g^2 - 10g + 16$

3) $12x^2 + 4x - 5$

4) $2x^2 - 11x + 12$

7) $9x^2 - 35x - 4$

8) $3x^2 + 16x - 35$

Review Section:

9) Given the system of linear inequalities below, name a point that is in the solution set and one that is not in the

solution set.

Point in the Solution Set:_____

Point *not* in the Solution Set:_____

There are two more questions below

10) A population that initially has 20 birds approximately doubles every 10 years. Which graph represents this population growth?

11)

The number of carbon atoms in a fossil is given by the function $y = 5100(0.95)^x$, where *x* represents the number of years since being discovered.

What is the percent of change each year? Explain how you arrived at your answer.

Name Homework	Answers	Date	Period	
Algebra		Trinomial Factoring		7G HW
1) $(x-6)(2x+5)$				
2) $(g-8)(g-2)$				
3) $(6x+5)(2x-1)$				
4) $(x-4)(2x-3)$				
5) $(x+2)(3x-5)$				
6) $(x+2)(2x+3)$				
7) $(x-4)(9x+1)$				
8) $(x+7)(3x-5)$				
9) In: (5,-2) Out: (5,3)	There are several possible answers.			
10)3				
11) 5 percent decrease				

Name Algebra		Date Factoring with	Period Two Squares 7H
Example) Factor: $x^2 - 36$			
Step 1 – List out a,b, and c $x^2 - 36$ $ax^2 + bx + c$			a = 1 b = 0 c = -36
<u>Step 2</u> – Split the middle term	I	x^2	- 36
<u>Step 3</u> – Determine the two m Look at the last sign Because (–) <u>D</u> ifferen One sign will be (+) a	ce the signs are the <u>D</u> ifferent	$x^{2} _ x$ $x^{2} + _ x$	
<i>Factors</i> (<i>a</i>)(<i>c</i>) <u><i>Factors</i> 36</u> 1,36 2,18	36) = 36 ed factors of 36 with a difference <i>Difference</i> (<i>b</i>) <u><i>Difference</i> 0 35</u>		-6x - 36
<u>Step 5</u> – Factor a GCF out of th	ne created binomials	x(x+6) ·	-6(x+6)
<u>Step 6</u> – Factor out the comm a second binomial	on binomial to create	(x+6)	(x-6)

Let's try one: 1) $x^2 - 25$

Is there a quicker way to do these?

Example A) Factor: $x^2 - 100$ <u>Step 1</u> – List out a,b, and c $x^2 - 100$ $ax^2 + bx + c$	a = 1 b = 0 c = -100 **Take note that b = 0** This means special case factoring!
<u>Step 2</u> – Create two binomial parentheses	$x^2 - 100$
<u>Step 3</u> – Take the square root of each term. To ensure the "B" term = 0, the signs must be different	(x)(x)
$\sqrt{x^2} = x \qquad \sqrt{100} = 10$	(x + 10) (x - 10)
Example B) Factor: $169 - 9x^2$ <u>Step 1</u> – List out a,b, and c $169 - 9x^2$ $ax^2 + bx + c$	a = -9 b = 0 c = 169 **Take note that b = 0** This means special case factoring!
<u>Step 2</u> – Create two binomial parentheses	$169 - 9x^2$
<u>Step 3</u> – Take the square root of each term. To ensure the "B" term = 0, the signs must be different	(x)(x)
$\sqrt{169} = 13 \qquad \sqrt{9x^2} = 3x$	(13+3x)(13-3x)
Examples:	

Examples:

1) a² - 16

2) $m^2 - 81$

3) $x^2 - 256$

4) $121 - x^2$

7) $36x^2 - 25$

8) $4x^2 - 49$

9) $144 - 25x^2$

10) Billy and Sally are having a disagreement about how to factor the expression $x^2 + 64$. Billy is arguing that the factors should be (x+8)(x+8). Sally is saying that the correct factors should be (x+8)(x-8). Who do you think is correct? If you agree with one, explain why. If you don't agree with either one, explain why.

11) $x^2 - 196$

12) $x^2 + 196$

Name	Date	Period
Algebra	Factoring with Two S	quares 7H HW

Complete all of the following examples. Please show all necessary work in order to receive full credit.

1) <i>g</i> ² - 36	2) <i>t</i> ² - 121	3) $y^2 - 9$
4) w ² - 44	5) $a^2 + 100$	6) 196 – <i>m</i> ²
7) 49 <i>n</i> ² – 121	8) $4 - 25x^2$	9) <i>c</i> ² - 441
10) $x^2 - 4x - 21$	11) $9x^2 - 289$	12) $x^2 - 144$

16) $g^2 - 49$

17) $x^2 + 16$

18) $m^2 - 11m - 26$

Review Section:

19) If f(x) = x² - 2x - 8 and g(x) = ¹/₄x - 1, for which values of x is f(x) = g(x)?
(1) -1.75 and -1.438
(3) -1.438 and 0
(2) -1.75 and 4
(4) 4 and 0

20) Last week, a candle store received \$355.60 for selling 20 candles. Small candles sell for \$10.98 and large candles sell for \$27.98. How many large candles did the store sell?

Name	Homework Answers
Algebra	

Date	Period
Factoring with Two	Squares 7H HW

1) $(g+6)(g-6)$	2) $(t+11)(t-11)$
3) $(y+3)(y-3)$	4) prime; not factorable
5) prime; not factorable	6) $(14+m)(14-m)$
7) $(7n + 11)(7n - 11)$	8) $(2+5x)(2-5x)$
9) $(c+21)(c-21)$	10) $(x-7)(x+3)$
11) $(3x + 17)(3x - 17)$	12) $(x + 12)(x - 12)$
13) prime; not factorable	14) $(x-4)(3x+1)$
15) $(k + 9)(k - 9)$	16) $(g+7)(g-7)$
17) prime; not factorable	18) $(m-13)(m+2)$

- 19) 2
- 20) 8 large candles

Name
Algebra

Date	Period
GCF Combination	71

Factoring

Example) Factor $6x^2 + 26x + 8$	
Step 1 – List out a,b, and c $6x^2 + 26x + 8$ $ax^2 + bx + c$	a = 6 b = 26 c = 8 **Take note all numbers are even** This means you can divide out a GCF!
<u>Step 2</u> – Identify if the trinomial has a GCF and divide the GCF out. Now, $a = 3, b = 13$, and $c = 4$ <u>Step 3</u> – Split the middle term	$6x^{2} + 26x + 8$ 2 (3x ² + 13x + 4) 2 (3x ² + 13x + 4)
<u>Step 4</u> – Determine the two middle term signs Look at the last sign Because (+) <u>S</u> um the signs are the <u>S</u> ame The signs are the same as the first sign (+)	$2(3x^{2} _x _x+4)$ $2(3x^{2} + _x + _x+4)$
Step 5– To figure out the coefficients needed multiply $(a \cdot c) = (3 \cdot 4) = 12$ Therefore we will need factors of 12 with a sum of 13 Factors $(a)(c)$ Sum(b) Sum(b)Factors 12Sum 131,12132,683,47	$2(3x^{2} + 12x + 1x + 4)$ $2(3x(x + 4) + 1(x + 4))$
<u>Step 6</u> – Factor a GCF out of the created binomials	2(3x(x+4) + 1(x+4))
<u>Step 7</u> – Factor out the common binomial to create a second binomial	2(x+4)(3x+1)

Examples: $1)10x^2 + 15x - 10$

2) $3g^3 + 27g^2 + 60g$

3) $2x^2 - 18$

5) $12x^2 - 3$

Name	Date	Period
Algebra	GCF Combination	7I HW

Complete all of the following examples. Please show all necessary work in order to receive full credit.

1) $25r^2 - 100$ 2) $100z^2 + 10z - 20$

3) $21w^2 + 93w + 36$

4) $x^2 - 10x + 16$

5) $24d^2 - 6d - 30$

6) 144*m*² - 49

Review Section:

9) A pattern of blocks is shown below.

If the pattern of blocks continues, which formula(s) could be used to determine the number of blocks in the *n*th term?

Ι	II	III
$a_n = n + 4$	$a_1 = 2$ $a_n = a_{n-1} + 4$	$a_n = 4n - 2$

(3) II and III

- (1) I and II
- (2) I and III (4) III, only

There are two more questions below

10) Dylan invested \$600 in a savings account at a 1.6% annual interest rate. He made no deposits or withdrawals on the account for 2 years. The interest was compounded annually. Find, to the *nearest cent*, the balance in the account after 2 years.

11) Albert says that the two systems of equations shown below have the same solutions.

System
$\partial y = 48$ = -51

Determine and state whether you agree with Albert. Justify your answer.

Name Homework Answers Algebra	Date GCF Combination	Period 7I HW
1) $25(r+2)(r-2)$		
2) $10(2z+1)(5z-2)$		
3) $3(w+4)(7w+3)$		
4) $(x-8)(x-2)$		
5) $6(4d-5)(d+1)$		
6) $(12m+7)(12m-7)$		
7) $2(2s-5)(3s+2)$		
8) $(2x-7)(x+3)$		
9) 3		

10) \$619.35

11) y = 6 and $x = -\frac{3}{4}$; I agree with Albert. Both share the same solution.