\qquad Date \qquad Period \qquad Algebra Factoring Polynomials 7C

Factoring expressions is one of the gateway skills that is necessary for much of what we do in algebra for the rest of the course. The word factor has two meanings and both are important.

The Two Meanings of Factor

1. Factor (verb): To rewrite an algebraic expression as an equivalent product.
2. Factor (noun): An algebraic expression that is one part of a larger factored expression.

Factoring using GCF:

Take the greatest common factor (GCF) for the numerical coefficient. When choosing the GCF for the variables, if all the terms have a common variable, take the one with the lowest exponent.
ie) $9 x^{4}+3 x^{3}+12 x^{2}$
GCF: coefficients: 3
Variable (x) : x^{2}
GCF: $3 x^{2}$
What's left? Division of monomials:
$9 x^{4} / 3 x^{2}$
$3 x^{3} / 3 x^{2}$
$12 x^{2} / 3 x^{2}$
$3 x^{2}$
4
Factored Completely:

$$
3 x^{2}\left(3 x^{2}+x+4\right)
$$

Factor each problem using the GCF and check by distributing:

1) $14 x^{9}-7 x^{7}+21 x^{5}$
2) $26 x^{4} y-39 x^{3} y^{2}+52 x^{2} y^{3}-13 x y^{4}$
3) $32 x^{6}-12 x^{5}-16 x^{4}$
4) $16 x^{5} y^{2}-8 x^{4} y^{3}+24 x^{2} y^{4}-32 x y^{5}$
5) $24 \mathrm{~b}^{11}+4 \mathrm{~b}^{10}-6 \mathrm{~b}^{9}+2 \mathrm{~b}^{8}$
6) $96 a^{5} b+48 a^{3} b^{3}-144 a b^{5}$
7) $11 x^{3} y^{3}+121 x^{2} y^{2}-88 x y$
8) $75 x^{5}+15 x^{4}-25 x^{3}$

Exercise \#1: Consider the expression $6 x^{2}+15 x$.
(a) Write the individual terms $6 x^{2}$ and $15 x$ as completely factored expressions. Determine their greatest common factor.
(b) Using the Distributive Property, rewrite $6 x^{2}+15 x$ as a product involving $\boldsymbol{G C F}$ from (a).

It is important that you are fluent reversing the distributive property in order to factor out a common factor (most often the greatest common factor). Let's get some practice in the next exercise just identifying the greatest common factors.

The greatest common factor, or GCF, is the greatest factor that divides two numbers. To find the GCF of two numbers: List the prime factors of each number. Multiply those factors both numbers have in common. If there are no common prime factors, the GCF is 1.

$$
\begin{gathered}
24 x^{3}-16 x^{2}+8 x=8 x\left(3 x^{2}-2 x+1\right) \\
24 x^{3} \div 8 x=3 x^{2} \\
-16 x^{2} \div 8 x=-2 x \\
8 x \div 8 x=1
\end{gathered}
$$

Exercise \#2: For each of the following, identify the greatest common factor of each. Then factor each of the following. The first example is completed for you.
(a) $\frac{12 x^{3}+18 x}{6 x}$
$G C F=6 x$
$6 x\left(2 x^{2}+3\right)$
(c) $6 x^{2}+10 x$
(d) $3 x-24$
(e) $10 x^{3}-15 x$
(f) $21 x^{2} y^{5}+14 x y^{7}$
(g) $24 x^{3}+8 x^{2}-16 x$
(h) $20 x^{3}-12 x^{2}+28 x$
(i) $4 x^{2}+8 x+24$
(j) $6 x^{3}-8 x^{2}+2 x$
(k) $10 x^{3}-35 x^{2}$
(l) $10 x^{2}-40 x-50$
(m) $8 x^{3} y^{2}+24 x^{2} y^{4}-32 x y^{6}$
(n) $18 x^{2} y^{2}+45 x^{2} y-90 x y$

Being able to fluently factor out a gcf is an essential skill. Sometimes greatest common factors are more complicated than simple monomials. We have done this type of factoring back in Unit \#1.

Exercise \#3: Rewrite each of the following expressions as the product of two binomials by factoring out a common binomial factor.
(a) $(x+5)(x-1)+(x+5)(2 x-3)$
(b) $(2 x-1)(2 x+7)-(2 x-1)(x-3)$
\qquad Date \qquad Period \qquad
1.) Which of the following is the greatest common factor of the terms $36 x^{2} y^{4}$ and $24 x y^{7}$?
[1] $12 x y^{4}$
[3] $6 x^{2} y^{3}$
[2] $24 x^{2} y^{7}$
[4] $3 x y$
2.) Write each of the following as equivalent products of the polynomial's greatest common factor with another polynomial (of the same number of terms). The first example is done for you.
(a) $\frac{8 x-28}{4}$
$\mathrm{GCF}=4$
(b) $50 x+30$
(c) $24 x^{2}+32 x$
$4(2 x-7)$
(d) $18-12 x$
(e) $6 x^{3}+12 x^{2}-3 x$
(f) $x^{2}-x$
(g) $10 x^{2}+35 x-20$
(h) $21 x^{3}-14 x$
(i) $36 x-8 x^{2}$
(j) $30 x^{3}-75 x^{2}$
(k) $-16 t^{2}+96 t$
(l) $4 t^{3}-32 t^{2}+12 t$
3.) Which of the following is not a correct factorization of the binomial $10 x^{2}+40 x$?
[1] $10 x(x+4)$
[3] $5 x(2 x+4)$
[2] $10\left(x^{2}+4 x\right)$
[4] $5 x(2 x+8)$
4.) Rewrite each of the following expressions as a product of two binomials by factoring out a common factor. Watch out for the subtraction problems!!
(a) $(x+5)(x+1)+(x+8)(x+5)$
(b) $(2 x-1)(3 x+5)-(2 x-1)(x+4)$
(c) $(x-7)(x-9)+(x-7)(4 x+5)$
(d) $(x+1)(5 x-7)-(x-3)(x+1)$
5.) The area of a rectangle is represented by the polynomial $16 x^{2}+56 x$. The width of the rectangle is given by the binomial $2 x+7$.
(a) Given a monomial expression in terms of x for the length of the rectangle. Show how you arrived at your answer.
(b) If the length of the rectangle is 80 , what is the width of the rectangle? Explain your thinking.

Review Section:

_6.) Which value of x is a solution of the inequality $25 x-100<250$?
(1) 13
(3) 15
(2) 14
(4) 16
_ 7.) The set of integers in $[6,10)$ can be written as
(1) $\{6,7,8,9,10\}$
(3) $\{6,7,8,9\}$
(2) $\{7,8,9,10\}$
(4) $\{7,8,9\}$
8.) The length of a rectangle is represented by $x^{2}+3 x+2$, and the width is represented by $4 x$. Express the perimeter of the rectangle as a trinomial.
\qquad Date \qquad Period
Factoring Polynomials
7C HW

Homework Answers

1.) 2
2.) b) $10(5 x+3)$
c) $8 x(3 x+4)$
d) $6(3-2 x)$
e) $3 x\left(2 x^{2}+4 x-1\right)$
f) $x(x-1)$
g) $5\left(2 x^{2}+7 x-4\right)$
h) $7 x\left(3 x^{2}-2\right)$
i) $4 x(9-2 x)$
j) $15 x^{2}(2 x-5)$
k) $-16 t(t-6)$
l) $4 t\left(t^{2}-8 t+3\right)$
3.) 3
4.) a) $(x+5)(2 x+9)$
b) $(2 x-1)(2 x+1)$
c) $(x-7)(5 x-4)$
d) $(x+1)(4 x-4)$
5.) a) Length $=8 x$
b) Width $=27$
6.) 1
7.) 3
8.) Perimeter $=2 x^{2}+14 x+4$
\qquad Date \qquad Period
Factoring Polynomials (Day 2) 7D
Factoring Polynomials (Day 2) 7D
Algebra
Recall: Factoring expressions is one of the gateway skills that is necessary for much of what we do in algebra for the rest of the course. The word factor has two meanings and both are important.

The Two Meanings of Factor

1. Factor (verb): To rewrite an algebraic expression as an equivalent product.
2. Factor (noun): An algebraic expression that is one part of a larger factored expression.

Exercise \#1: Consider the expression $4 x(x+3)-5(x+3)$.
(a) Identify the GCF of the expression.
(b) Factor the given expression into simplest form (the product of two binomials).

Exercise \#2: Factor each of the following expression into simplest form (the product of two binomials).
(a) $9 x(x+1)+7(x+1)$
(b) $4 x(x+6)+9(x+6)$
(c) $8 x(x+5)-11(x+5)$
(d) $14 x(x-12)+9(x-12)$
(e) $3 x(x+2)-5(x+2)$
(f) $6 x(x+7)+5(x+7)$
(g) $12 x(x-9)+7(x-9)$
(h) $7 x^{2}(x+12)-5(x+12)$
(i) $8 x^{2}(x+11)-3(x+11)$
(j) $12 x^{2}(x-4)+11(x-4)$

Exercise \#3: Factor each of the following expressions, by utilizing grouping, into simplest form (the product of two binomials).
(a) $3 x^{2}+3 x-4 x-4$
(b) $5 x^{2}+20 x-3 x-12$
(c) $7 x^{2}-14 x+x-2$
(d) $11 x^{2}-66 x+2 x-12$
(e) $2 x^{3}+2 x^{2}-7 x-7$
(f) $3 x^{2}-15 x+4 x-20$
(g) $4 x^{2}+36 x+5 x+45$
(h) $6 x^{3}-12 x^{2}-5 x+10$
(i) $8 x^{3}+24 x^{2}-x-3$
(j) $x^{2}+4 x+11 x+44$
\qquad Date \qquad Period \qquad
Algebra
Factoring Polynomials (Day 2) 7D HW
1.) Factor each of the following expression into simplest form (the product of two binomials).
(a) $3 x(x+1)-4(x+1)$
(b) $x^{2}(x+5)+2(x+5)$
(c) $5 x(x+4)-3(x+4)$
(d) $7 x(x-2)+1(x-2)$
(e) $11 x(x-6)+2(x-6)$
(f) $2 x^{2}(x+1)-7(x+1)$
(g) $9 x^{2}(x+2)+7(x+2)$
(h) $3 x(x-5)+4(x-5)$
(i) $8 x^{2}(x-4)+11(x-4)$
(j) $12 x(x+9)-5(x+9)$
2.) Factor each of the following expressions, by utilizing grouping, into simplest form (the product of two binomials).
(a) $3 x^{3}+2 x^{2}+15 x+10$
(b) $4 x^{3}-4 x^{2}+7 x-7$
(c) $x^{3}+4 x^{2}+3 x+12$
(d) $3 x^{3}+18 x^{2}-4 x-24$
(e) $2 x^{3}-8 x^{2}+5 x-20$
(f) $5 x^{3}-15 x^{2}-2 x+6$
(g) $6 x^{3}+30 x^{2}-x-5$
(h) $9 x^{3}+63 x^{2}+8 x+56$

Review Section:

_ 3.) The product of $6 x^{3} y^{3}$ and $2 x^{2} y$ is
(1) $3 x y^{2}$
(3) $12 x^{5} y^{4}$
(2) $8 x^{5} y^{4}$
(4) $12 x^{6} y^{3}$
__ 4.) An example of an algebraic equation is
(1) $r^{2}+1$
(3) $5 x=7$
(2) $2 a+(n-1) d$
(4) $-25 \pi+100$
5.) What is the result when $6 x^{2}-4 x+3$ is subtracted from $3 x^{2}-2 x+3$? Make sure to show all your work.
\qquad Period Factoring Polynomials (Day 2) 7D HW

1) a) $(x+1)(3 x-4)$
b) $(x+5)\left(x^{2}+2\right)$
c) $(x+4)(5 x-3)$
d) $(x-2)(7 x+1)$
e) $(x-6)(11 x+2)$
f) $(x+1)\left(2 x^{2}-7\right)$
g) $(x+2)\left(9 x^{2}+7\right)$
h) $(3 x+4)(x-5)$
i) $\left(8 x^{2}+11\right)(x-4)$
j) $(12 x-5)(x+9)$
2.) a) $(3 x+2)\left(x^{2}+5\right)$
b) $(x-1)\left(4 x^{2}+7\right)$
c) $(x+4)\left(x^{2}+3\right)$
d) $(x+6)\left(3 x^{2}-4\right)$
e) $2(x-2)\left(x^{2}+2\right)$
f) $(x-3)\left(5 x^{2}-2\right)$
g) $2(x+5)\left(3 x^{2}-1\right)$
h) $(x+7)\left(9 x^{2}+8\right)$
3.) 3
4.) 3
5.) $-3 x^{2}+2 x$
\qquad Date \qquad Period \qquad
Algebra Trinomial Factoring (Sum) 7E

Exercise 1: Write each of the following products in equivalent trinomial form.
(a) $(x+5)(x+3)$
(b) $(2 x-3)(5 x-1)$

Factoring

Example) Factor $2 x^{2}-7 x+6$

Step 1 - List out a, b, and c
$2 x^{2}-7 x+6$
$a x^{2}+b x+c$

$$
\begin{aligned}
& a=2 \\
& b=-7 \\
& c=6
\end{aligned}
$$

Step 2-Split the middle term

Step 3 - Determine the two middle term signs Look at the last sign
Because (+) Sum the signs are the $\underline{\text { Same }}$
The signs are the same as the first sign (+)

Step 4 - To figure out the coefficients needed multiply $(a \cdot c)=(2 \cdot 6)=12$
Therefore we will need factors of 12 with a sum of 7

Factors $(a)(c)$	Sum (b)
Factors 12	Sum 7
1,12	13
2,6	8
$\mathbf{3 , 4}$	$\mathbf{7}$

Step 5 - Factor a GCF out of the created binomials

Step 6 - Factor out the common binomial to create a second binomial

$$
(2 x-3)(x-2)
$$

Exercise 2: Answer the following questions completely.
(a) $12 x^{2}-7 x+1$
(b) $10 x^{2}+9 x+2$
(c) $b^{2}-14 b+45$
(d) $x^{2}+8 x+12$

Name \qquad
Algebra

Date \qquad Period Trinomial Factoring (Sum) 7E HW

1) Which of the following products is equivalent to the trinomial $x^{2}-5 x-24$?
(1) $(x-12)(x+2)$
(3) $(x-8)(x+3)$
(2) $(x+12)(x-2)$
(4) $(x+8)(x-3)$
2) Written in factored form, the trinomial $2 x^{2}+15 x+28$ can be expressed equivalently as
(1) $(2 x+7)(x+4)$
(3) $(2 x+2)(x+14)$
(2) $(2 x+4)(x+7)$
(4) $(2 x+14)(x+2)$
3) Write each of the following trinomials in equivalent factored form. Remember to show all work that was shown in class.
(a) $x^{2}+12 x+35$
(b) $x^{2}-11 x+28$
(c) $8 x^{2}-18 x+9$
(d) $x^{2}-7 x+10$
(e) $x^{2}+12 x+36$
(f) $5 x^{2}-21 x+4$
(g) $2 x^{2}+13 x+21$
(h) $x^{2}-5 x+6$

Review Section:

4) Express the product of $2 x^{2}+7 x-10$ and $x+5$ in standard form.
${ }^{* *}$ There is another question below**
5) A function is graphed on the set of axes below.

Which function is related to the graph?
(1) $f(x)= \begin{cases}x^{2}, & x<1 \\ x-2, & x>1\end{cases}$
(3) $f(x)= \begin{cases}x^{2}, & x<1 \\ 2 x-7, & x>1\end{cases}$
(2) $f(x)= \begin{cases}x^{2}, & x<1 \\ \frac{1}{2} x+\frac{1}{2}, & x>1\end{cases}$
(4) $f(x)= \begin{cases}x^{2}, & x<1 \\ \frac{3}{2} x-\frac{9}{2}, & x>1\end{cases}$

Name Homework Answers
Algebra

1) 3
2) 1
3) $(a)(x+7)(x+5)$
(b) $(x-7)(x-4)$
(c) $(2 x-3)(4 x-3)$
(d) $(x-5)(x-2)$
(e) $(x+6)(x+6)$
(f) $(x-4)(5 x-1)$
(g) $(2 x+7)(x+3)$
(h) $(x-3)(x-2)$
4) $2 x^{3}+17 x^{2}+25 x-50$
5) 2
\qquad
\qquad Period \qquad Trinomial Factoring (Difference)

Factoring

Example) Factor: $9 x^{2}+35 x-4$
Step 1 - List out a, b, and c
$9 x^{2}+35 x-4$
$a x^{2}+b x+c$

$$
\begin{aligned}
& a=9 \\
& b=35 \\
& c=-4
\end{aligned}
$$

Step 2-Split the middle term
Step 3 - Determine the two middle term signs
Look at the last sign
Because (-) $\underline{\text { Difference }}$ the signs are the $\underline{\text { Different }}$ One sign will be (+) and the other (-)

Step 4 - To figure out the coefficients needed multiply $(a \cdot c)=(9 \cdot 4)=36$
Therefore we will need factors of 36 with a difference of 35

Factors $(a)(c)$	Difference (b)
Factors 36	Difference 35
$\mathbf{1 , 3 6}$	$\mathbf{3 5}$
2,18	16
3,12	9
4,9	5
6,6	0

Step 5 - Factor a GCF out of the created binomials
$9 x(x+4)-1(x+4)$

Step 6 - Factor out the common binomial to create a second binomial

$$
(x+4)(9 x-1)
$$

Examples:

1) $7 x^{2}+19 x-6$
2) $7 x^{2}-19 x-6$
3) $s^{2}+s-56$
4) $2 x^{2}+5 x-33$
5) $3 x^{2}+11 x-4$

\qquad Period \qquad Algebra Trinomial Factoring (Difference) 7F HW
6) Write the following in equivalent trinomial form (If you need help, look at Exercise 1 from lesson $7 E$).
(a) $(2 x-3)(5 x+1)$
(b) $(6 x+7)(x+2)$
7) Write each of the following trinomials in equivalent factored form. Remember to show all work that was shown in class.
(a) $x^{2}-3 x-18$
(b) $x^{2}+3 x-40$
(c) $7 x^{2}+11 x-6$
(d) $x^{2}-10 x-24$
(e) $2 x^{2}-x-10$
(f) $3 x^{2}+16 x-12$
(g) $6 x^{2}+5 x-4$
(h) $x^{2}+8 x-9$

Review Section:

3) In the equation $x^{2}+10 x+24=(x+a)(x+b), b$ is an integer. Find algebraically all possible values of b.
There is another question below
4) The table below shows the average diameter of a pupil in a person's eye as he or she grows older.

Age (years)	Average Pupil Diameter (mm)
20	4.7
30	4.3
40	3.9
50	3.5
60	3.1
70	2.7
80	2.3

What is the average rate of change, in millimeters per year, of a person's pupil diameter from age 20 to age 80 ?
(1) 2.4
(3) -2.4
(2) 0.04
(4) -0.04

Name_Homework Answers
Algebra
Date \qquad Period \qquad Trinomial Factoring (Difference) 7F HW

1) (a) $10 x^{2}-13 x-3$
(b) $6 x^{2}+19 x+14$
2) (a) $(x-6)(x-3)$
(b) $(x+8)(x-5)$
(c) $(x+2)(7 x-3)$
(d) $(x-12)(x+2)$
(e) $(2 x-5)(x+2)$
(f) $(x+6)(3 x-2)$
(g) $(3 x+4)(2 x-1)$
(h) $(x+9)(x-1)$
3) 6 or 4
4) 4
\qquad Period

Let's try factoring when everything is all mixed!
Write each of the following trinomials in equivalent factored form.

1) $x^{2}+10 x+16$
2) $x^{2}-8 x+15$
3) $11 x^{2}-10 x-1$
4) $x^{2}+30 x+200$
5) $10 x^{2}-13 x-3$
6) $x^{2}-15 x+50$
7) $x^{2}+5 x-14$
8) $7 x^{2}-26 x-8$

Date \qquad Period
Trinomial Factoring (Combination) 7G HW Algebra

Write each of the following trinomials in equivalent factored form. Remember to show all work that was shown in class.

1) $2 x^{2}-7 x-30$
2) $g^{2}-10 g+16$
3) $12 x^{2}+4 x-5$
4) $2 x^{2}-11 x+12$
5) $3 x^{2}+x-10$
6) $2 x^{2}+7 x+6$
7) $9 x^{2}-35 x-4$
8) $3 x^{2}+16 x-35$

Review Section:

9) Given the system of linear inequalities below, name a point that is in the solution set and one that is not in the solution set.

Point in the Solution Set: \qquad

Point not in the Solution Set: \qquad
There are two more questions below
10) A population that initially has 20 birds approximately doubles every

10 years. Which graph represents this population growth?

(1)

(2)

(3)

(4)
11)

I The number of carbon atoms in a fossil is given by the function $y=5100(0.95)^{x}$, where x represents the number of years since being discovered.

What is the percent of change each year? Explain how you arrived at your answer.

Name_Homework Answers
Algebra

1) $(x-6)(2 x+5)$
2) $(g-8)(g-2)$
3) $(6 x+5)(2 x-1)$
4) $(x-4)(2 x-3)$
5) $(x+2)(3 x-5)$
6) $(x+2)(2 x+3)$
7) $(x-4)(9 x+1)$
8) $(x+7)(3 x-5)$
9) In: $(5,-2)$ Out: $(5,3)$ There are several possible answers.
10) 3
11) 5 percent decrease
\qquad Date \qquad Period
Factoring with Two Squares
Example) Factor: $x^{2}-36$
Step 1 - List out a, b, and c

$$
x^{2}-36
$$

$$
a x^{2}+b x+c
$$

$$
\begin{aligned}
& a=1 \\
& b=0 \\
& c=-36
\end{aligned}
$$

Step 2-Split the middle term
Step 3 - Determine the two middle term signs Look at the last sign
Because (-) $\underline{\text { ifference }}$ the signs are the $\underline{\text { Different }}$ One sign will be (+) and the other (-)

Step 4 - To figure out the coefficients needed multiply $(a \cdot c)=(1 \cdot 36)=36$
Therefore we will need factors of 36 with a difference of 0

Factors $(a)(c)$	Difference (b) Factors 36
Difference 0	
1,36	35
2,18	16
3,12	9
4,9	5
6,6	0

Step 5 - Factor a GCF out of the created binomials

$$
x(x+6)-6(x+6)
$$

Step 6 - Factor out the common binomial to create a second binomial

$$
(x+6)(x-6)
$$

1) $x^{2}-25$

Is there a quicker way to do these?

Example A) Factor: $x^{2}-100$
Step 1 - List out a, b, and c

$$
x^{2}-100
$$

$$
a x^{2}+b x+c
$$

Step 2 - Create two binomial parentheses
Step 3 - Take the square root of each term.
To ensure the " B " term $=0$, the signs must be different

$$
\sqrt{x^{2}}=x \quad \sqrt{100}=10
$$

Example B) Factor: $169-9 x^{2}$
Step 1 - List out a, b, and c

$$
169-9 x^{2}
$$

$$
a x^{2}+b x+c
$$

Step 2 - Create two binomial parentheses
Step 3 - Take the square root of each term.
To ensure the " B " term $=0$, the signs must be different

$$
\begin{aligned}
& a=1 \\
& b=0 \\
& c=-100
\end{aligned}
$$

**Take note that $\mathrm{b}=0^{* *}$
This means special case factoring!

$$
x^{2}-100
$$

$$
(x \quad)(x \quad)
$$

$$
(x+10)(x-10)
$$

$$
\begin{aligned}
& a=-9 \\
& b=0 \\
& c=169
\end{aligned}
$$

${ }^{* *}$ Take note that $\mathrm{b}=0^{* *}$
This means special case factoring!

$$
169-9 x^{2}
$$

$\left(\begin{array}{ll}x &)\end{array}(x \quad)\right.$

$$
\sqrt{169}=13 \quad \sqrt{9 x^{2}}=3 x
$$

$$
(13+3 x)(13-3 x)
$$

Examples:

1) $a^{2}-16$
2) $m^{2}-81$
3) $x^{2}-256$
4) $121-x^{2}$
5) $484-m^{2}$
6) $36 x^{2}-25$
7) $4 x^{2}-49$
8) $144-25 x^{2}$
9) Billy and Sally are having a disagreement about how to factor the expression $x^{2}+64$. Billy is arguing that the factors should be $(x+8)(x+8)$. Sally is saying that the correct factors should be $(x+8)(x-8)$. Who do you think is correct? If you agree with one, explain why. If you don't agree with either one, explain why.
10) $x^{2}-196$
11) $x^{2}+196$

\qquad
Algebra
Date \qquad Period \qquad Factoring with Two Squares 7H HW

Complete all of the following examples. Please show all necessary work in order to receive full credit.

1) $g^{2}-36$
2) $t^{2}-121$
3) $y^{2}-9$
4) $w^{2}-44$
5) $a^{2}+100$
6) $196-m^{2}$
7) $49 n^{2}-121$
8) $4-25 x^{2}$
9) $c^{2}-441$
10) $x^{2}-4 x-21$
11) $9 x^{2}-289$
12) $x^{2}-144$
13) $x^{2}+25$
14) $3 x^{2}-11 x-4$
15) $k^{2}-81$
16) $g^{2}-49$
17) $x^{2}+16$
18) $m^{2}-11 m-26$

Review Section:

19) If $f(x)=x^{2}-2 x-8$ and $g(x)=\frac{1}{4} x-1$, for which values of x is $f(x)=g(x)$?
(1) -1.75 and -1.438
(3) -1.438 and 0
(2) -1.75 and 4
(4) 4 and 0
20) Last week, a candle store received $\$ 355.60$ for selling 20 candles. Small candles sell for $\$ 10.98$ and large candles sell for $\$ 27.98$.
How many large candles did the store sell?
\qquad Period
21) $(g+6)(g-6)$
22) $(t+11)(t-11)$
23) $(y+3)(y-3)$
24) prime; not factorable
25) prime; not factorable
26) $(14+m)(14-m)$
27) $(7 n+11)(7 n-11)$
28) $(2+5 x)(2-5 x)$
29) $(c+21)(c-21)$
30) $(x-7)(x+3)$
31) $(3 x+17)(3 x-17)$
32) $(x+12)(x-12)$
33) prime; not factorable
34) $(x-4)(3 x+1)$
35) $(k+9)(k-9)$
36) $(g+7)(g-7)$
37) prime; not factorable
38) $(m-13)(m+2)$
39) 2
40) 8 large candles
\qquad
Algebra
Date \qquad Period \qquad
GCF Combination 7I

Factoring

Example) Factor $6 x^{2}+26 x+8$

Step 1 - List out a, b, and c

$$
6 x^{2}+26 x+8
$$

$$
a x^{2}+b x+c
$$

Step 2 - Identify if the trinomial has a GCF and divide the GCF out.

Now, $a=3, b=13$, and $c=4$
Step 3-Split the middle term

Step 4 - Determine the two middle term signs
Look at the last sign
Because (+) Sum the signs are the $\underline{\text { Same }}$
The signs are the same as the first sign (+)
Step 5 - To figure out the coefficients needed multiply $(a \cdot c)=(3 \cdot 4)=12$
Therefore we will need factors of 12 with a sum of 13

Factors $(a)(c)$	Sum (b)
Factors 12	Sum 13
$\mathbf{1 , 1 2}$	$\mathbf{1 3}$
2,6	8
3,4	7

Step 6 - Factor a GCF out of the created binomials
Step 7 - Factor out the common binomial to create a second binomial

$$
\begin{aligned}
& a=6 \\
& b=26 \\
& c=8
\end{aligned}
$$

Take note all numbers are even This means you can divide out a GCF!

$$
\begin{gathered}
6 x^{2}+26 x+8 \\
2\left(3 x^{2}+13 x+4\right)
\end{gathered}
$$

$$
\begin{aligned}
& 2\left(3 x^{2}+13 x+4\right) \\
& 2\left(3 x^{2}-x \mid x+4\right)
\end{aligned}
$$

$$
2\left(3 x^{2}+_x+\ldots x+4\right)
$$

$$
\begin{aligned}
& 2\left(3 x^{2}+12 x \mid+1 x+4\right) \\
& 2(3 x(x+4) \mid+1(x+4))
\end{aligned}
$$

$$
2(x+4)(3 x+1)
$$

Examples:

1) $10 x^{2}+15 x-10$
2) $3 g^{3}+27 g^{2}+60 g$
3) $2 x^{2}-18$
4) $4 b^{2}+20 b+24$
5) $12 x^{2}-3$
hino
 fisinfactors dBCDII binomialssum COMmOn equal prime important D special

firist
\qquad Period \qquad Algebra GCF Combination 7I HW

Complete all of the following examples. Please show all necessary work in order to receive full credit.

1) $25 r^{2}-100$
2) $100 z^{2}+10 z-20$
3) $21 w^{2}+93 w+36$
4) $x^{2}-10 x+16$
5) $24 d^{2}-6 d-30$
6) $144 m^{2}-49$

Review Section:

9) A pattern of blocks is shown below.

If the pattern of blocks continues, which formula(s) could be used to determine the number of blocks in the nth term?

I	II	III
$a_{n}=n+4$	$a_{1}=2$	$a_{n}=4 n-2$
$a_{n}=a_{n-1}+4$		

(1) I and II
(3) II and III
(2) I and III
(4) III, only
There are two more questions below
10) Dylan invested $\$ 600$ in a savings account at a 1.6% annual interest rate. He made no deposits or withdrawals on the account for 2 years. The interest was compounded annually. Find, to the nearest cent, the balance in the account after 2 years.
11) Albert says that the two systems of equations shown below have the same solutions.

First System	Second System
$8 x+9 y=48$	$8 x+9 y=48$
$12 x+5 y=21$	$-8.5 y=-51$

Determine and state whether you agree with Albert. Justify your answer.
\qquad Period \qquad Algebra GCF Combination 7I HW

1) $25(r+2)(r-2)$
2) $10(2 z+1)(5 z-2)$
3) $3(w+4)(7 w+3)$
4) $(x-8)(x-2)$
5) $6(4 d-5)(d+1)$
6) $(12 m+7)(12 m-7)$
7) $2(2 s-5)(3 s+2)$
8) $(2 x-7)(x+3)$
9) 3
10) $\$ 619.35$
11) $y=6$ and $x=-\frac{3}{4}$; I agree with Albert. Both share the same solution.
