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Factoring  

 Factoring 

Factoring is the reverse process of multiplication. Factoring polynomials in 
algebra has similar role as factoring numbers in arithmetic. Any number can 
be expressed as a product of prime numbers. For example, 6 = 2 ∙ 3. 
Similarly, any polynomial can be expressed as a product of prime 
polynomials, which are polynomials that cannot be factored any further. For 
example, 𝑥𝑥2 + 5𝑥𝑥 + 6 = (𝑥𝑥 + 2)(𝑥𝑥 + 3). Just as factoring numbers helps in 
simplifying or adding fractions, factoring polynomials is very useful in 

simplifying or adding algebraic fractions. In addition, it helps identify zeros of polynomials, which in turn allows 
for solving higher degree polynomial equations. 

In this chapter, we will examine the most commonly used factoring strategies with particular attention to special 
factoring. Then, we will apply these strategies in solving polynomial equations. 
 

F.1 Greatest Common Factor and Factoring by Grouping 
 

 Prime Factors 
 

When working with integers, we are often interested in their factors, particularly prime 
factors. Likewise, we might be interested in factors of polynomials. 
   

 Definition 1.1 To factor a polynomial means to write the polynomial as a product of ‘simpler’ 
polynomials. For example,  

   5𝑥𝑥 + 10 = 5(𝑥𝑥 + 2),   or   𝑥𝑥2 − 9 = (𝑥𝑥 + 3)(𝑥𝑥 − 3). 
 

 
In the above definition, ‘simpler’ means polynomials of lower degrees or polynomials with 
coefficients that do not contain common factors other than 1 or −1. If possible, we would 
like to see the polynomial factors, other than monomials, having integral coefficients and 
a positive leading term. 

When is a polynomial factorization complete? 

In the case of natural numbers, the complete factorization means a factorization into prime 
numbers, which are numbers divisible only by their own selves and 1. We would expect 
that similar situation is possible for polynomials. So, which polynomials should we 
consider as prime?  

Observe that a polynomial such as −4𝑥𝑥 + 12 can be written as a product in many different 
ways, for instance 

−(4𝑥𝑥 + 12),   2(−2𝑥𝑥 + 6),   4(−𝑥𝑥 + 3),   −4(𝑥𝑥 − 3),   −12 �1
3
𝑥𝑥 + 1�,  etc. 

Since the terms of 4𝑥𝑥 + 12 and −2𝑥𝑥 + 6 still contain common factors different than 1 or 
−1, these polynomials are not considered to be factored completely, which means that they 
should not be called prime. The next two factorizations, 4(−𝑥𝑥 + 3) and −4(𝑥𝑥 − 3) are 
both complete, so both polynomials −𝑥𝑥 + 3 and  𝑥𝑥 − 3 should be considered as prime. But 
what about the last factorization, −12 �1

3
𝑥𝑥 + 1�? Since the remaining binomial 1

3
𝑥𝑥 + 1 

does not have integral coefficients, such a factorization is not always desirable.  
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Here are some examples of prime polynomials:  

 any monomials such as −2𝑥𝑥2, 𝜋𝜋𝑟𝑟2, or 1
3
𝑥𝑥𝑥𝑥;  

 any linear polynomials with integral coefficients that have no common factors other 
than 1 or −1, such as 𝑥𝑥 − 1 or 2𝑥𝑥 + 5; 

 some quadratic polynomials with integral coefficients that cannot be factored into any 
lower degree polynomials with integral coefficients, such as 𝑥𝑥2 + 1 or 𝑥𝑥2 + 𝑥𝑥 + 1. 

For the purposes of this course, we will assume the following definition of a prime 
polynomial. 

  

 Definition 1.2 A polynomial with integral coefficients is called prime if one of the following conditions 
is true 

  -  it is a monomial, or  
  -  the only common factors of its terms are 𝟏𝟏 or −𝟏𝟏 and it cannot be factored into any 

lower degree polynomials with integral coefficients. 
  

 
  

 Definition 1.3 A factorization of a polynomial with integral coefficients is complete if all of its factors 
are prime.  

  

 Here is an example of a polynomial factored completely: 

−6𝑥𝑥3 − 10𝑥𝑥2 + 4𝑥𝑥 = −2𝑥𝑥(3𝑥𝑥 − 1)(𝑥𝑥 + 2) 

In the next few sections, we will study several factoring strategies that will be helpful in 
finding complete factorizations of various polynomials. 

 

 Greatest Common Factor 
 

The first strategy of factoring is to factor out the greatest common factor (GCF). 
  

 Definition 1.4 The greatest common factor (GCF) of two or more terms is the largest expression that is 
a factor of all these terms.  

 

 
In the above definition, the “largest expression” refers to the expression with the most 
factors, disregarding their signs. 

To find the greatest common factor, we take the product of the least powers of each type of 
common factor out of all the terms. For example, suppose we wish to find the GCF of the 
terms  

6𝑥𝑥2𝑦𝑦3,  −18𝑥𝑥5𝑦𝑦, and 24𝑥𝑥4𝑦𝑦2. 

First, we look for the GCF of 6, 18, and 24, which is 6. Then, we take the lowest power 
out of 𝑥𝑥2, 𝑥𝑥5, and 𝑥𝑥4, which is 𝑥𝑥2. Finally, we take the lowest power out of 𝑦𝑦3, 𝑦𝑦, and 𝑦𝑦2, 
which is 𝑦𝑦. Therefore,  

GCF(6𝑥𝑥2𝑦𝑦3 ,   − 18𝑥𝑥5𝑦𝑦,   24𝑥𝑥4𝑦𝑦2) = 6𝑥𝑥2𝑦𝑦 

This GCF can be used to factor the polynomial 6𝑥𝑥2𝑦𝑦3 − 18𝑥𝑥5𝑦𝑦 + 24𝑥𝑥4𝑦𝑦2 by first seeing 
it as  

6𝑥𝑥2𝑦𝑦 ∙ 𝑦𝑦2 − 6𝑥𝑥2𝑦𝑦 ∙ 3𝑥𝑥3 + 6𝑥𝑥2𝑦𝑦 ∙ 4𝑥𝑥2𝑦𝑦, 
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and then, using the reverse distributing property, ‘pulling’ the 6𝑥𝑥2𝑦𝑦 out of the bracket to 
obtain 

6𝑥𝑥2𝑦𝑦(𝑦𝑦2 − 3𝑥𝑥3 + 4𝑥𝑥2𝑦𝑦).   
 
 

Note 1: Notice that since 1 and −1 are factors of any expression, the GCF is defined up 
to the sign. Usually, we choose the positive GCF, but sometimes it may be convenient to 
choose the negative GCF. For example, we can claim that  

GCF(−2𝑥𝑥,−4𝑦𝑦) = 2   or   GCF(−2𝑥𝑥,−4𝑦𝑦) = −2, 

depending on what expression we wish to leave after factoring the GCF out:  

   −2𝑥𝑥 − 4𝑦𝑦 = 2⏟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐺𝐺𝐺𝐺𝐺𝐺

(−𝑥𝑥 − 2𝑦𝑦)�������
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

  or  −2𝑥𝑥 − 4𝑦𝑦 = −2�
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐺𝐺𝐺𝐺𝐺𝐺

(𝑥𝑥 + 2𝑦𝑦)�������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 

 

 
 

Note 2: If the GCF of the terms of a polynomial is equal to 1, we often say that these terms 
do not have any common factors. What we actually mean is that the terms do not have a 
common factor other than 1, as factoring 1 out does not help in breaking the original 
polynomial into a product of simpler polynomials. See Definition 1.1. 
 

 

 Finding the Greatest Common Factor 
   

Find the Greatest Common Factor for the given expressions. 

a. 6𝑥𝑥4(𝑥𝑥 + 1)3,   3𝑥𝑥3(𝑥𝑥 + 1), 9𝑥𝑥(𝑥𝑥 + 1)2 b. 4𝜋𝜋(𝑦𝑦 − 𝑥𝑥),   8𝜋𝜋(𝑥𝑥 − 𝑦𝑦) 
c. 𝑎𝑎𝑏𝑏2,   𝑎𝑎2𝑏𝑏,   𝑏𝑏, 𝑎𝑎 d. 3𝑥𝑥−1𝑦𝑦−3,   𝑥𝑥−2𝑦𝑦−2𝑧𝑧 
 

a. Since GCF(6, 3, 9) = 3, the lowest power out of 𝑥𝑥4, 𝑥𝑥3, and 𝑥𝑥 is 𝑥𝑥, and the lowest 
power out of (𝑥𝑥 + 1)3, (𝑥𝑥 + 1), and (𝑥𝑥 + 1)2 is (𝑥𝑥 + 1), then 

GCF(6𝑥𝑥4(𝑥𝑥 + 1)3,   3𝑥𝑥3(𝑥𝑥 + 1),   9𝑥𝑥(𝑥𝑥 + 1)2) = 𝟑𝟑𝟑𝟑(𝒙𝒙 + 𝟏𝟏) 
 

b.  Since 𝑦𝑦 − 𝑥𝑥 is opposite to 𝑥𝑥 − 𝑦𝑦, then 𝑦𝑦 − 𝑥𝑥 can be written as −(𝑥𝑥 − 𝑦𝑦). So 4, 𝜋𝜋, and 
(𝑥𝑥 − 𝑦𝑦) is common for both expressions. Thus, 

GCF�4𝜋𝜋(𝑦𝑦 − 𝑥𝑥),   8𝜋𝜋(𝑥𝑥 − 𝑦𝑦)� = 𝟒𝟒𝟒𝟒(𝒙𝒙 − 𝒚𝒚) 
 

Note: The Greatest Common Factor is unique up to the sign. Notice that in the above 
example, we could write 𝑥𝑥 − 𝑦𝑦 as −(𝑦𝑦 − 𝑥𝑥) and choose the GCF to be 4𝜋𝜋(𝑦𝑦 − 𝑥𝑥). 
 

 

c. The terms 𝑎𝑎𝑏𝑏2, 𝑎𝑎2𝑏𝑏, 𝑏𝑏, and  𝑎𝑎 have no common factor other than 1, so 

GCF(𝑎𝑎𝑏𝑏2,   𝑎𝑎2𝑏𝑏,   𝑏𝑏,   𝑎𝑎) = 𝟏𝟏 
 

Solution           
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d. The lowest power out of 𝑥𝑥−1 and 𝑥𝑥−2 is 𝑥𝑥−2, and the lowest power out of 𝑦𝑦−3 and 
𝑦𝑦−2 is 𝑦𝑦−3. Therefore, 

GCF(3𝑥𝑥−1𝑦𝑦−3,   𝑥𝑥−2𝑦𝑦−2𝑧𝑧) = 𝒙𝒙−𝟐𝟐𝒚𝒚−𝟑𝟑 
 
 

 Factoring out the Greatest Common Factor   
 
Factor each expression by taking the greatest common factor out. Simplify the factors, if 
possible. 

a. 54𝑥𝑥2𝑦𝑦2 + 60𝑥𝑥𝑦𝑦3  b. 𝑎𝑎𝑎𝑎 − 𝑎𝑎2𝑏𝑏(𝑎𝑎 − 1) 

c. −𝑥𝑥(𝑥𝑥 − 5) + 𝑥𝑥2(5 − 𝑥𝑥) − (𝑥𝑥 − 5)2 d. 𝑥𝑥−1 + 2𝑥𝑥−2 − 𝑥𝑥−3 
  
a. To find the greatest common factor of 54 and 60, we can use the method of dividing 

by any common factor, as presented below. 
 

     
2 54, 60
3 27, 30
   9, 10

 

  

 So, GCF(54, 60) = 2 ∙ 3 = 6.  

 Since GCF(54𝑥𝑥2𝑦𝑦2, 60𝑥𝑥𝑦𝑦3) = 6𝑥𝑥𝑦𝑦2, we factor the 6𝑥𝑥𝑦𝑦2 out by dividing each term 
of the polynomial 54𝑥𝑥2𝑦𝑦2 + 60𝑥𝑥𝑦𝑦3 by 6𝑥𝑥𝑦𝑦2, as below.  

 
54𝑥𝑥2𝑦𝑦2 + 60𝑥𝑥𝑦𝑦3 

= 𝟔𝟔𝟔𝟔𝒚𝒚𝟐𝟐(𝟗𝟗𝟗𝟗+ 𝟏𝟏𝟏𝟏𝟏𝟏) 
 
 
Note: Since factoring is the reverse process of multiplication, it can be checked by 
finding the product of the factors. If the product gives us the original polynomial, the 
factorization is correct. 
 

 

b.  First, notice that the polynomial has two terms, 𝑎𝑎𝑎𝑎 and −𝑎𝑎2𝑏𝑏(𝑎𝑎 − 1). The greatest 
common factor for these two terms is 𝑎𝑎𝑎𝑎, so we have 

  𝑎𝑎𝑎𝑎 − 𝑎𝑎2𝑏𝑏(𝑎𝑎 − 1)   = 𝑎𝑎𝑎𝑎�𝟏𝟏 − 𝑎𝑎(𝑎𝑎 − 1)� 
 

  = 𝑎𝑎𝑎𝑎(1 − 𝑎𝑎2 + 𝑎𝑎) 
 
  = 𝑎𝑎𝑎𝑎(−𝑎𝑎2 + 𝑎𝑎 + 1) 
 

  = −𝒂𝒂𝒂𝒂�𝒂𝒂𝟐𝟐 − 𝒂𝒂 − 𝟏𝟏� 
 

Solution           

no more 
common factors 

for 9 and 10 

all common 
factors are listed 
in this column 

 
54𝑥𝑥2𝑦𝑦2

6𝑥𝑥𝑦𝑦2
= 9𝑥𝑥 

60𝑥𝑥𝑦𝑦3

6𝑥𝑥𝑦𝑦2
= 10𝑦𝑦 

 remember to leave 1 
for the first term 

 simplify and arrange 
in decreasing powers 

     take the “−“ out 
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Note: Both factorizations, 𝑎𝑎𝑎𝑎(−𝑎𝑎2 + 𝑎𝑎 + 1) and −𝑎𝑎𝑎𝑎(𝑎𝑎2 − 𝑎𝑎 − 1) are correct. 
However, we customarily leave the polynomial in the bracket with a positive leading 
coefficient. 
 

 
c. Observe that if we write the middle term 𝑥𝑥2(5 − 𝑥𝑥) as −𝑥𝑥2(𝑥𝑥 − 5) by factoring the 

negative out of the (5 − 𝑥𝑥), then (5 − 𝑥𝑥) is the common factor of all the terms of the 
equivalent polynomial  

−𝑥𝑥(𝑥𝑥 − 5) − 𝑥𝑥2(𝑥𝑥 − 5) − (𝑥𝑥 − 5)2. 

 Then notice that if we take −(𝑥𝑥 − 5) as the GCF, then the leading term of the 
remaining polynomial will be positive. So, we factor 

−𝑥𝑥(𝑥𝑥 − 5) + 𝑥𝑥2(5− 𝑥𝑥) − (𝑥𝑥 − 5)2 

  = −𝑥𝑥(𝑥𝑥 − 5) − 𝑥𝑥2(𝑥𝑥 − 5) − (𝑥𝑥 − 5)2 

 = −(𝑥𝑥 − 5)�𝑥𝑥 + 𝑥𝑥2 + (𝑥𝑥 − 5)� 

 = −(𝒙𝒙 − 𝟓𝟓)�𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟐𝟐 − 𝟓𝟓� 
 

d. The GCF(𝑥𝑥−1, 2𝑥𝑥−2, −𝑥𝑥−3) = 𝑥𝑥−3, as −3 is the lowest exponent of the common 
factor 𝑥𝑥. So, we factor out 𝑥𝑥−3 as below. 

𝑥𝑥−1 + 2𝑥𝑥−2 − 𝑥𝑥−3 

  = 𝒙𝒙−𝟑𝟑 �𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏� 
 
   

 
 To check if the factorization is correct, we multiply 

𝑥𝑥−3 (𝑥𝑥2 + 2𝑥𝑥 − 1) 

= 𝑥𝑥−3𝑥𝑥2 + 2𝑥𝑥−3𝑥𝑥 − 1𝑥𝑥−3  

  = 𝑥𝑥−1 + 2𝑥𝑥−2 − 𝑥𝑥−3 

 Since the product gives us the original polynomial, the factorization is correct. 
 

 

 Factoring by Grouping 
 

Consider the polynomial 𝑥𝑥2 + 𝑥𝑥 + 𝑥𝑥𝑥𝑥 + 𝑦𝑦. It consists of four terms that do not have any 
common factors. Yet, it can still be factored if we group the first two and the last two terms. 
The first group of two terms contains the common factor of 𝑥𝑥 and the second group of two 
terms contains the common factor of 𝑦𝑦. Observe what happens when we factor each group.  

𝑥𝑥2 + 𝑥𝑥���
 

+ 𝑥𝑥𝑥𝑥 + 𝑦𝑦���
 

 

 = 𝑥𝑥(𝑥𝑥 + 1) + 𝑦𝑦(𝑥𝑥 + 1) 

   = (𝑥𝑥 + 1)(𝑥𝑥 + 𝑦𝑦) 

When referring to a 
common factor, we 

have in mind a 
common factor other 

than 1. 

 the exponent 2 is found by 
subtracting −3 from −1 

 the exponent 1 is found by 
subtracting −3 from −2 

add exponents 

 
now  (𝑥𝑥 + 1) is the 

common factor of the 
entire polynomial 

 simplify and arrange 
in decreasing powers 
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This method is called factoring by grouping, in particular, two-by-two grouping. 
 

Warning:  After factoring each group, make sure to write the “+” or “−“ between the terms. 
Failing to write these signs leads to the false impression that the polynomial is already 
factored. For example, if in the second line of the above calculations we would fail to write 
the middle “+”, the expression would look like a product 𝑥𝑥(𝑥𝑥 + 1) 𝑦𝑦(𝑥𝑥 + 1), which is not 
the case. Also, since the expression 𝑥𝑥(𝑥𝑥 + 1) + 𝑦𝑦(𝑥𝑥 + 1) is a sum, not a product, we should 
not stop at this step. We need to factor out the common bracket (𝑥𝑥 + 1) to leave it as a 
product. 
 

 
A two-by-two grouping leads to a factorization only if the binomials, after factoring out 
the common factors in each group, are the same. Sometimes a rearrangement of terms is 
necessary to achieve this goal. 
 
For example, the attempt to factor 𝑥𝑥3 − 15 + 5𝑥𝑥2 − 3𝑥𝑥 by grouping the first and the last 
two terms, 

𝑥𝑥3 − 15�����
 

+ 5𝑥𝑥2 − 3𝑥𝑥�������
 

 

= (𝑥𝑥3 − 15) + 𝑥𝑥(5𝑥𝑥 − 3) 

does not lead us to a common binomial that could be factored out. 

However, rearranging terms allows us to factor the original polynomial in the following 
ways:  

𝑥𝑥3 − 15 + 5𝑥𝑥2 − 3𝑥𝑥      or  𝑥𝑥3 − 15 + 5𝑥𝑥2 − 3𝑥𝑥 

= 𝑥𝑥3 + 5𝑥𝑥2�������
 

+ −3𝑥𝑥 − 15�������
 

   = 𝑥𝑥3 − 3𝑥𝑥�����
 

+ 5𝑥𝑥2 − 15�������
 

 

= 𝑥𝑥2(𝑥𝑥 + 5) − 3(𝑥𝑥 + 5)   = 𝑥𝑥(𝑥𝑥2 − 3) + 5(𝑥𝑥2 − 3) 

= (𝑥𝑥 + 5)(𝑥𝑥2 − 3)    = (𝑥𝑥2 − 3)(𝑥𝑥 + 5) 
 
Factoring by grouping applies to polynomials with more than three terms. However, not all 
such polynomials can be factored by grouping. For example, if we attempt to factor 𝑥𝑥3 +
𝑥𝑥2 + 2𝑥𝑥 − 2 by grouping, we obtain  

𝑥𝑥3 + 𝑥𝑥2�����
 

+ 2𝑥𝑥 − 2���
 

 

 = 𝑥𝑥2(𝑥𝑥 + 1) + 2(𝑥𝑥 − 1). 

Unfortunately, the expressions 𝑥𝑥 + 1 and 𝑥𝑥 − 1 are not the same, so there is no common 
factor to factor out. One can also check that no other rearrangments of terms allows us for 
factoring out a common binomial. So, this polynomial cannot be factored by grouping. 

 

 Factoring by Grouping 
   

Factor each polynomial by grouping, if possible. Remember to check for the GCF first. 
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a. 2𝑥𝑥3 − 6𝑥𝑥2 + 𝑥𝑥 − 3 b. 5𝑥𝑥 − 5𝑦𝑦 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 
c. 2𝑥𝑥2𝑦𝑦 − 8 − 2𝑥𝑥2 + 8𝑦𝑦 d. 𝑥𝑥2 − 𝑥𝑥 + 𝑦𝑦 + 1 
 
a. Since there is no common factor for all four terms, we will attempt the two-by-two 

grouping method.  
2𝑥𝑥3 − 6𝑥𝑥2�������

 
+ 𝑥𝑥 − 3���

 
 

  = 2𝑥𝑥2(𝑥𝑥 − 3) + 1(𝑥𝑥 − 3) 

  = (𝒙𝒙 − 𝟑𝟑)�𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟏𝟏� 
 

b.  As before, there is no common factor for all four terms. The two-by-two grouping 
method works only if the remaining binomials after factoring each group are exactly 
the same. We can achieve this goal by factoring –𝑎𝑎 , rather than 𝑎𝑎, out of the last two 
terms. So,  

5𝑥𝑥 − 5𝑦𝑦�����
 

  −𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎�������
 

 

  = 5(𝑥𝑥 − 𝑦𝑦) − 𝑎𝑎(𝑥𝑥 − 𝑦𝑦) 

  = (𝒙𝒙 − 𝟑𝟑)�𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟏𝟏� 
 

c. Notice that 2 is the GCF of all terms, so we factor it out first. 

2𝑥𝑥2𝑦𝑦 − 8 − 2𝑥𝑥2 + 8𝑦𝑦 

  = 2(𝑥𝑥2𝑦𝑦 − 4 − 𝑥𝑥2 + 4𝑦𝑦) 

 Then, observe that grouping the first and last two terms of the remaining polynomial 
does not help, as the two groups do not have any common factors. However, 
exchanging for example the second with the fourth term will help, as shown below.  

  = 2(𝑥𝑥2𝑦𝑦 + 4𝑦𝑦�������
 

 −𝑥𝑥2 − 4�����)
 

 

  = 2[𝑦𝑦(𝑥𝑥2 + 4) − (𝑥𝑥2 + 4)] 

  = 𝟐𝟐�𝒙𝒙𝟐𝟐 + 𝟒𝟒�(𝒚𝒚 − 𝟏𝟏) 
 
 

d.  The polynomial 𝑥𝑥2 − 𝑥𝑥 + 𝑦𝑦 + 1 does not have any common factors for all four terms. 
Also, only the first two terms have a common factor. Unfortunately, when attempting 
to factor using the two-by-two grouping method, we obtain  

𝑥𝑥2 − 𝑥𝑥 + 𝑦𝑦 + 1 

  = 𝑥𝑥(𝑥𝑥 − 1) + (𝑦𝑦 + 1), 

 which cannot be factored, as the expressions 𝑥𝑥 − 1 and 𝑦𝑦 + 1 are different.  

 One can also check that no other arrangement of terms allows for factoring of this 
polynomial by grouping. So, this polynomial cannot be factored by grouping. 

  
 

Solution           

 write the 1 for 
the second term 

 reverse signs when 
‘pulling’ a “−“ out 

 reverse signs when 
‘pulling’ a “−” out 

 
the square bracket is 

essential here because 
of the factor of 2 

now, there is no need for the square 
bracket as multiplication is associative 
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 Factoring in Solving Formulas 
   

Solve 𝑎𝑎𝑎𝑎 = 3𝑎𝑎 + 5 for 𝑎𝑎. 
 

 First, we move the terms containing the variable 𝑎𝑎 to one side of the equation, 

𝑎𝑎𝑎𝑎 = 3𝑎𝑎 + 5 
𝑎𝑎𝑎𝑎 − 3𝑎𝑎 = 5, 

and then factor 𝑎𝑎 out 
𝑎𝑎(𝑏𝑏 − 3) = 5. 

So, after dividing by 𝑏𝑏 − 3, we obtain  𝒂𝒂 = 𝟓𝟓
𝒃𝒃−𝟑𝟑

. 

 
 
 
 
   

 F.1  Exercises  

 
Vocabulary Check  Complete each blank with the most appropriate term or phrase from the given list:  
  common factor, distributive, grouping, prime, product. 

1. To factor a polynomial means to write it as a ____________ of simpler polynomials.  

2. The greatest ______________ _____________ of two or more terms is the product of the least powers of 
each type of common factor out of all the terms. 

3. To factor out the GCF, we reverse the ______________ property of multiplication.  

4. A polynomial with four terms having no common factors can be still factored by _____________ its terms.  

5. A ___________ polynomial, other than a monomial, cannot be factored into two polynomials, both different 
that 1 or −1.  

 
Concept Check  True or false. 

6. The polynomial 6𝑥𝑥 + 8𝑦𝑦 is prime.  

7. The factorization 1
2
𝑥𝑥 − 3

4
𝑦𝑦 = 1

4
(2𝑥𝑥 − 3𝑦𝑦) is essential to be complete. 

8. The GCF of the terms of the polynomial 3(𝑥𝑥 − 2) + 𝑥𝑥(2 − 𝑥𝑥) is (𝑥𝑥 − 2)(2 − 𝑥𝑥). 
 
Concept Check  Find the GCF with a positive coefficient for the given expressions.  

9. 8𝑥𝑥𝑥𝑥, 10𝑥𝑥𝑥𝑥, −14𝑥𝑥𝑥𝑥       10. 21𝑎𝑎3𝑏𝑏6, −35𝑎𝑎7𝑏𝑏5, 28𝑎𝑎5𝑏𝑏8      

11. 4𝑥𝑥(𝑥𝑥 − 1), 3𝑥𝑥2(𝑥𝑥 − 1)      12. −𝑥𝑥(𝑥𝑥 − 3)2,   𝑥𝑥2(𝑥𝑥 − 3)(𝑥𝑥 + 2)   

13. 9(𝑎𝑎 − 5),   12(5− 𝑎𝑎)      14. (𝑥𝑥 − 2𝑦𝑦)(𝑥𝑥 − 1),   (2𝑦𝑦 − 𝑥𝑥)(𝑥𝑥 + 1)   

Solution           
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15. −3𝑥𝑥−2𝑦𝑦−3,   6𝑥𝑥−3𝑦𝑦−5      16. 𝑥𝑥−2(𝑥𝑥 + 2)−2, −𝑥𝑥−4(𝑥𝑥 + 2)−1 
 
Factor out the greatest common factor. Leave the remaining polynomial with a positive leading coeficient. 
Simplify the factors, if possible. 

17. 9𝑥𝑥2 − 81𝑥𝑥      18. 8𝑘𝑘3 + 24𝑘𝑘     19. 6𝑝𝑝3 − 3𝑝𝑝2 − 9𝑝𝑝4  

20. 6𝑎𝑎3 − 36𝑎𝑎4 + 18𝑎𝑎2    21. −10𝑟𝑟2𝑠𝑠2 + 15𝑟𝑟4𝑠𝑠2  22. 5𝑥𝑥2𝑦𝑦3 − 10𝑥𝑥3𝑦𝑦2  

23. 𝑎𝑎(𝑥𝑥 − 2) + 𝑏𝑏(𝑥𝑥 − 2)      24. 𝑎𝑎(𝑦𝑦2 − 3) − 2(𝑦𝑦2 − 3)     

25. (𝑥𝑥 − 2)(𝑥𝑥 + 3) + (𝑥𝑥 − 2)(𝑥𝑥 + 5)   26. (𝑛𝑛 − 2)(𝑛𝑛 + 3) + (𝑛𝑛 − 2)(𝑛𝑛 − 3)   

27. 𝑦𝑦(𝑥𝑥 − 1) + 5(1 − 𝑥𝑥)      28. (4𝑥𝑥 − 𝑦𝑦) − 4𝑥𝑥(𝑦𝑦 − 4𝑥𝑥) 

29. 4(3 − 𝑥𝑥)2 − (3 − 𝑥𝑥)3 + 3(3 − 𝑥𝑥)   30. 2(𝑝𝑝 − 3) + 4(𝑝𝑝 − 3)2 − (𝑝𝑝 − 3)3 
 
Factor out the least power of each variable. 

31. 3𝑥𝑥−3 + 𝑥𝑥−2     32. 𝑘𝑘−2 + 2𝑘𝑘−4    33. 𝑥𝑥−4 − 2𝑥𝑥−3 + 7𝑥𝑥−2 

34. 3𝑝𝑝−5 + 𝑝𝑝−3 − 2𝑝𝑝−2    35. 3𝑥𝑥−3𝑦𝑦 − 𝑥𝑥−2𝑦𝑦2   36. −5𝑥𝑥−2𝑦𝑦−3 + 2𝑥𝑥−1𝑦𝑦−2 
 
Factor by grouping, if possible.  

37. 20 + 5𝑥𝑥 + 12𝑦𝑦 + 3𝑥𝑥𝑥𝑥    38. 2𝑎𝑎3 + 𝑎𝑎2 − 14𝑎𝑎 − 7  39. 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏  

40. 2𝑥𝑥𝑥𝑥 − 𝑥𝑥2𝑦𝑦 + 6 − 3𝑥𝑥    41. 3𝑥𝑥2 + 4𝑥𝑥𝑥𝑥 − 6𝑥𝑥𝑥𝑥 − 8𝑦𝑦2  42. 𝑥𝑥3 − 𝑥𝑥𝑥𝑥 + 𝑦𝑦2 − 𝑥𝑥2𝑦𝑦 

43. 3𝑝𝑝2 + 9𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝 − 3𝑞𝑞2    44. 3𝑥𝑥2 − 𝑥𝑥2𝑦𝑦 − 𝑦𝑦𝑧𝑧2 + 3𝑧𝑧2  45. 2𝑥𝑥3 − 𝑥𝑥2 + 4𝑥𝑥 − 2 

46. 𝑥𝑥2𝑦𝑦2 + 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑦𝑦2 − 𝑏𝑏𝑥𝑥2   47. 𝑥𝑥𝑥𝑥 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑎𝑎𝑎𝑎  48. 𝑥𝑥2𝑦𝑦 − 𝑥𝑥𝑥𝑥 + 𝑥𝑥 + 𝑦𝑦 

49. 𝑥𝑥𝑥𝑥 − 6𝑦𝑦 + 3𝑥𝑥 − 18  50. 𝑥𝑥𝑛𝑛𝑦𝑦 − 3𝑥𝑥𝑛𝑛 + 𝑦𝑦 − 5  51. 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + 2𝑎𝑎𝑛𝑛 + 𝑥𝑥𝑛𝑛 + 2 
 

Factor completely. Remember to check for the GCF first. 

52. 5𝑥𝑥 − 5𝑎𝑎𝑎𝑎 + 5𝑎𝑎𝑎𝑎𝑎𝑎 − 5𝑏𝑏𝑏𝑏    53. 6𝑟𝑟𝑟𝑟 − 14𝑠𝑠 + 6𝑟𝑟 − 14   

54. 𝑥𝑥4(𝑥𝑥 − 1) + 𝑥𝑥3(𝑥𝑥 − 1) − 𝑥𝑥2 + 𝑥𝑥   55. 𝑥𝑥3(𝑥𝑥 − 2)2 + 2𝑥𝑥2(𝑥𝑥 − 2) − (𝑥𝑥 + 2)(𝑥𝑥 − 2)  
 
Discussion Point 

56.  One of possible factorizations of the polynomial 4𝑥𝑥2𝑦𝑦5 − 8𝑥𝑥𝑦𝑦3  is  2𝑥𝑥𝑦𝑦3(2𝑥𝑥𝑦𝑦2 − 4). Is this a complete 
factorization? 

 
Use factoring the GCF strategy to solve each formula for the indicated variable. 

57. 𝐴𝐴 = 𝑷𝑷 + 𝑷𝑷𝑟𝑟,   for  𝑷𝑷    58. 𝑀𝑀 = 1
2
𝒑𝒑𝑞𝑞 + 1

2
𝒑𝒑𝑟𝑟,  for  𝒑𝒑 

59. 2𝒕𝒕 + 𝑐𝑐 = 𝑘𝑘𝒕𝒕,  for  𝒕𝒕    60. 𝑤𝑤𝒚𝒚 = 3𝒚𝒚 − 𝑥𝑥, for  𝒚𝒚 
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Analytic Skills Write the area of each shaded region in factored form. 
 
61.      62.  

 

 

 
63.      64.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4𝑥𝑥 

𝑥𝑥 
𝑥𝑥 

𝑟𝑟 𝑅𝑅 
𝑟𝑟 

𝑟𝑟 
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F.2 Factoring Trinomials 

In this section, we discuss factoring trinomials. We start with factoring 
quadratic trinomials of the form 𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, then quadratic trinomials 
of the form 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, where 𝑎𝑎 ≠ 1, and finally trinomials reducible 
to quadratic by means of substitution. 

 

 Factorization of Quadratic Trinomials 𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄  
 

Factorization of a quadratic trinomial 𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 is the reverse process of the FOIL 
method of multiplying two linear binomials. Observe that  

(𝑥𝑥 + 𝑝𝑝)(𝑥𝑥 + 𝑞𝑞) = 𝑥𝑥2 + 𝑞𝑞𝑥𝑥 + 𝑝𝑝𝑥𝑥 + 𝑝𝑝𝑝𝑝 = 𝑥𝑥2 + (𝑝𝑝 + 𝑞𝑞)𝑥𝑥 + 𝑝𝑝𝑝𝑝 

So, to reverse this multiplication, we look for two numbers 𝑝𝑝 and 𝑞𝑞, such that the product 
𝑝𝑝𝑝𝑝 equals to the free term 𝑐𝑐 and the sum 𝑝𝑝 + 𝑞𝑞 equals to the middle coefficient 𝑏𝑏 of the 
trinomial. 

𝑥𝑥2 + 𝑏𝑏⏟
(𝒑𝒑+𝒒𝒒)

𝑥𝑥 + 𝑐𝑐⏟
𝒑𝒑𝒑𝒑

= (𝑥𝑥 + 𝑝𝑝)(𝑥𝑥 + 𝑞𝑞) 

For example, to factor 𝑥𝑥2 + 5𝑥𝑥 + 6, we think of two integers that multiply to 6 and add to 
5. Such integers are 2 and 3, so 𝑥𝑥2 + 5𝑥𝑥 + 6 = (𝑥𝑥 + 2)(𝑥𝑥 + 3). Since multiplication is 
commutative, the order of these factors is not important.  

This could also be illustrated geometrically, using algebra tiles.  
 
 
 
 

The area of a square with the side length 𝑥𝑥 is equal to 𝑥𝑥2. The area of a rectangle with the 
dimensions 𝑥𝑥 by 1 is equal to 𝑥𝑥, and the area of a unit square is equal to 1. So, the trinomial 
𝑥𝑥2 + 5𝑥𝑥 + 6  can be represented as 
 

 
 
 
To factor this trinomial, we would like to rearrange these tiles to fulfill a rectangle.  

 
 
 
 

 

 
The area of such rectangle can be represented as the product of its length, (𝑥𝑥 + 3), and 
width, (𝑥𝑥 + 2) which becomes the factorization of the original trinomial.  
 
In the trinomial examined above, the signs of the middle and the last terms are both positive. 
To analyse how different signs of these terms influence the signs used in the factors, observe 
the next three examples. 
 

𝑥𝑥2 𝑥𝑥 

1 

𝑥𝑥2 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 

1 1 1 1 1 1 

𝑥𝑥2 𝑥𝑥 𝑥𝑥 𝑥𝑥 

𝑥𝑥 
𝑥𝑥 1 1 

1 1 1 
1 

     𝑥𝑥       +   3                                                
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�           

 

                                          
�
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�

  
               𝑥𝑥      +

 2 
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To factor 𝑥𝑥2 − 5𝑥𝑥 + 6, we look for two integers that multiply to 6 and add to −5. Such 
integers are −2 and −3, so 𝑥𝑥2 − 5𝑥𝑥 + 6 = (𝑥𝑥 − 2)(𝑥𝑥 − 3). 
 
To factor 𝑥𝑥2 + 𝑥𝑥 − 6, we look for two integers that multiply to −6 and add to 1. Such 
integers are −2 and 3, so 𝑥𝑥2 + 𝑥𝑥 − 6 = (𝑥𝑥 − 2)(𝑥𝑥 + 3). 
 
To factor 𝑥𝑥2 − 𝑥𝑥 − 6, we look for two integers that multiply to −6 and add to −1. Such 
integers are 2 and −3, so 𝑥𝑥2 − 𝑥𝑥 − 6 = (𝑥𝑥 + 2)(𝑥𝑥 − 3). 
 
Observation: The positive constant 𝒄𝒄 in a trinomial 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 tells us that the 
integers 𝑝𝑝 and 𝑞𝑞 in the factorization (𝑥𝑥 + 𝑝𝑝)(𝑥𝑥 + 𝑞𝑞) are both of the same sign and their 
sum is the middle coefficient 𝑏𝑏. In addition, if 𝑏𝑏 is positive, both 𝑝𝑝 and 𝑞𝑞 are positive, and 
if 𝑏𝑏 is negative, both 𝑝𝑝 and 𝑞𝑞 are negative. 

The negative constant 𝒄𝒄 in a trinomial 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 tells us that the integers 𝑝𝑝 and 𝑞𝑞 in the 
factorization (𝑥𝑥 + 𝑝𝑝)(𝑥𝑥 + 𝑞𝑞) are of different signs and a difference of their absolute 
values is the middle coefficient 𝑏𝑏.  In addition, the integer whose absolute value is larger 
takes the sign of the middle coefficient 𝑏𝑏. 
 
These observations are summarized in the following Table of Signs. 

Assume that |𝑝𝑝| ≥ |𝑞𝑞|. 
sum 𝒃𝒃 product 𝒄𝒄 𝒑𝒑 𝒒𝒒 comments 

+ + + + 𝑏𝑏 is the sum of 𝑝𝑝 and 𝑞𝑞 
− + − − 𝑏𝑏 is the sum of 𝑝𝑝 and 𝑞𝑞 
+ − + − 𝑏𝑏 is the difference |𝑝𝑝| − |𝑞𝑞| 
− − − + 𝑏𝑏 is the difference |𝑞𝑞| − |𝑝𝑝| 

 

 
 

 Factoring Trinomials with the Leading Coefficient Equal to 1 
   

Factor each trinomial, if possible. 

a. 𝑥𝑥2 − 10𝑥𝑥 + 24   b. 𝑥𝑥2 + 9𝑥𝑥 − 36  
c. 𝑥𝑥2 − 39𝑥𝑥𝑥𝑥 − 40𝑦𝑦2   d. 𝑥𝑥2 + 7𝑥𝑥 + 9 
 
a. To factor the trinomial 𝑥𝑥2 − 10𝑥𝑥 + 24, we look for two integers with a product of 24 

and a sum of −10. The two integers are fairly easy to guess, −4 and −6. However, if 
one wishes to follow a more methodical way of finding these numbers, one can list the 
possible two-number factorizations of 24 and observe the sums of these numbers.  

product = 𝟐𝟐𝟐𝟐 
(pairs of factors of 24) 

sum = −𝟏𝟏𝟏𝟏 
(sum of factors) 

𝟏𝟏 ∙ 𝟐𝟐𝟐𝟐 25 
𝟐𝟐 ∙ 𝟏𝟏𝟏𝟏 14 
𝟑𝟑 ∙ 𝟖𝟖 11 
𝟒𝟒 ∙ 𝟔𝟔 10 

  

Solution           

𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩! 

For simplicity, the table 
doesn’t include signs of the 

integers. The signs are 
determined according to 

the Table of Signs.  
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 Since the product is positive and the sum is negative, both integers must be negative. 
So, we take −4 and −6. 

 Thus, 𝑥𝑥2 − 10𝑥𝑥 + 24 = (𝒙𝒙 − 𝟒𝟒)(𝒙𝒙 − 𝟔𝟔). The reader is encouraged to check this 
factorization by multiplying the obtained binomials. 

 
b.  To factor the trinomial 𝑥𝑥2 + 9𝑥𝑥 − 36, we look for two integers with a product of −36 

and a sum of 9. So, let us list the possible factorizations of 36 into two numbers and 
observe the differences of these numbers.  

product = −𝟑𝟑𝟑𝟑 
(pairs of factors of 36) 

sum = 𝟗𝟗 
(difference of factors) 

𝟏𝟏 ∙ 𝟑𝟑𝟑𝟑 35 
𝟐𝟐 ∙ 𝟏𝟏𝟏𝟏 16 
𝟑𝟑 ∙ 𝟏𝟏𝟏𝟏 9 
𝟒𝟒 ∙ 𝟗𝟗 5 
𝟔𝟔 ∙ 𝟔𝟔 0 

  
 Since the product is negative and the sum is positive, the integers are of different signs 

and the one with the larger absolute value assumes the sign of the sum, which is 
positive. So, we take 12 and −3. 

 Thus, 𝑥𝑥2 + 9𝑥𝑥 − 36 = (𝒙𝒙 + 𝟏𝟏𝟏𝟏)(𝒙𝒙 − 𝟑𝟑). Again, the reader is encouraged to check 
this factorization by mltiplying the obtained binomials. 

 
c. To factor the trinomial 𝑥𝑥2 − 39𝑥𝑥𝑥𝑥 − 40𝑦𝑦2, we look for two binomials of the form 

(𝑥𝑥+ ?𝑦𝑦)(𝑥𝑥+ ?𝑦𝑦) where the question marks are two integers with a product of −40 
and a sum of 39. Since the two integers are of different signs and the absolute values 
of these integers differ by 39, the two integers must be −40 and 1.  

 Therefore, 𝑥𝑥2 − 39𝑥𝑥𝑥𝑥 − 40𝑦𝑦2 = (𝒙𝒙 − 𝟒𝟒𝟒𝟒𝟒𝟒)(𝒙𝒙 + 𝒚𝒚).  
 
Suggestion: Create a table of pairs of factors only if guessing the two integers with the 
given product and sum becomes too difficult. 
 
d. When attempting to factor the trinomial 𝑥𝑥2 + 7𝑥𝑥 + 9, we look for a pair of integers 

that would multiply to 9 and add to 7. There are only two possible factorizations of 9: 
9 ∙ 1 and 3 ∙ 3. However, neither of the sums, 9 + 1 or 3 + 3, are equal to 7. So, there 
is no possible way of factoring 𝑥𝑥2 + 7𝑥𝑥 + 9 into two linear binomials with integral 
coefficients. Therefore, if we admit only integral coefficients, this polynomial is not 
factorable.  

 
 

 Factorization of Quadratic Trinomials 𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄  with 𝒂𝒂 ≠0 
 

Before discussing factoring quadratic trinomials with a leading coefficient different than 1, 
let us observe the multiplication process of two linear binomials with integral coefficients. 

(𝒎𝒎𝑥𝑥 + 𝑝𝑝)(𝒏𝒏𝑥𝑥 + 𝑞𝑞) = 𝑚𝑚𝑚𝑚𝑥𝑥2 + 𝑚𝑚𝑞𝑞𝑥𝑥 + 𝑛𝑛𝑝𝑝𝑥𝑥 + 𝑝𝑝𝑝𝑝 = 𝒂𝒂⏟
𝒎𝒎𝒎𝒎

𝑥𝑥2 + 𝒃𝒃⏟
(𝒎𝒎𝒒𝒒+𝒏𝒏𝒑𝒑)

𝑥𝑥 + 𝒄𝒄⏟
𝒑𝒑𝒑𝒑

 

This row contains the 
solution, so there is no 
need to list any of the 

subsequent rows. 
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To reverse this process, notice that this time, we are looking for four integers 𝑚𝑚, 𝑛𝑛, 𝑝𝑝, and 
𝑞𝑞 that satisfy the conditions 

𝑚𝑚𝑚𝑚 = 𝑎𝑎,   𝑝𝑝𝑝𝑝 = 𝑐𝑐,   𝑚𝑚𝑞𝑞 + 𝑛𝑛𝑝𝑝 = 𝑏𝑏, 

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are the coefficients of the quadratic trinomial that needs to be factored. This 
produces a lot more possibilities to consider than in the guessing method used in the case 
of the leading coefficient equal to 1. However, if at least one of the outside coefficients, 𝑎𝑎 
or 𝑐𝑐, are prime, the guessing method still works reasonably well. 

For example, consider 2𝑥𝑥2 + 𝑥𝑥 − 6. Since the coefficient 𝑎𝑎 = 2 = 𝑚𝑚𝑚𝑚 is a prime number, 
there is only one factorization of 𝑎𝑎, which is 1 ∙ 2. So, we can assume that 𝑚𝑚 = 2 and 𝑛𝑛 =
1. Therefore, 

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± |𝑝𝑝|)(𝑥𝑥 ∓ |𝑞𝑞|) 

Since the constant term 𝑐𝑐 = −6 = 𝑝𝑝𝑝𝑝 is negative, the binomial factors have different signs 
in the middle. Also, since 𝑝𝑝𝑝𝑝 is negative, we search for such 𝑝𝑝 and 𝑞𝑞 that the inside and 
outside products differ by the middle term 𝑏𝑏 = 𝑥𝑥, up to its sign. The only factorizations of 
6 are 1 ∙ 6 and  2 ∙ 3. So we try 

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± 1)(𝑥𝑥 ∓ 6) 

 

 
2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± 6)(𝑥𝑥 ∓ 1) 

 

 
2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± 2)(𝑥𝑥 ∓ 3) 

 
 

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 ± 3)(𝑥𝑥 ∓ 2) 

 
 
Then, since the difference between the inner and outer products should be positive, the 
larger product must be positive and the smaller product must be negative. So, we distribute 
the signs as below. 

2𝑥𝑥2 + 𝑥𝑥 − 6 = (2𝑥𝑥 − 3)(𝑥𝑥 + 2) 

 

 
In the end, it is a good idea to multiply the product to check if it results in the original 
polynomial. We leave this task to the reader. 
 
What if the outside coefficients of the quadratic trinomial are both composite? Checking 
all possible distributions of coefficients 𝑚𝑚, 𝑛𝑛, 𝑝𝑝, and 𝑞𝑞 might be too cumbersome. Luckily, 
there is another method of factoring, called decomposition.  
 

𝑥𝑥 

12𝑥𝑥 
differs by 11𝑥𝑥 → too much 

6𝑥𝑥 
  2𝑥𝑥 

differs by 4𝑥𝑥 → still too much 

2𝑥𝑥 
  6𝑥𝑥 

differs by 4𝑥𝑥 → still too much 

3𝑥𝑥 
  4𝑥𝑥 

differs by 𝑥𝑥 → perfect! 

−3𝑥𝑥 
  4𝑥𝑥 

 

Observe that these two trials 
can be disregarded at once 
as 2 is not a common factor 

of all the terms of the 
trinomial, while it is a 

common factor of the terms 
of one of the binomials. 
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The decomposition method is based on the reverse FOIL process. 
Suppose the polynomial 6𝑥𝑥2 + 19𝑥𝑥 + 15 factors into (𝑚𝑚𝑥𝑥 + 𝑝𝑝)(𝑛𝑛𝑥𝑥 + 𝑞𝑞). Observe that the 
FOIL multiplication of these two binomials results in the four term polynomial,  

𝑚𝑚𝑚𝑚𝑥𝑥2 + 𝑚𝑚𝑞𝑞𝑥𝑥 + 𝑛𝑛𝑝𝑝𝑥𝑥 + 𝑝𝑝𝑝𝑝, 

which after combining the two middle terms gives us the original trinomial. So, reversing 
these steps would lead us to the factored form of  6𝑥𝑥2 + 19𝑥𝑥 + 15.  

To reverse the FOIL process, we would like to:  

• Express the middle term, 19𝑥𝑥, as a sum of two terms,  𝑚𝑚𝑞𝑞𝑥𝑥 and 𝑛𝑛𝑝𝑝𝑥𝑥, such that the 
product of their coefficients, 𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝, is equal to the product of the outside 
coefficients 𝑎𝑎𝑎𝑎 = 6 ∙ 15 = 90.  

• Then, factor the four-term polynomial by grouping. 
 

Thus, we are looking for two integers with the product of 90 and the sum of 19. One can 
check that 9 and 10 satisfy these conditions. Therefore,  

6𝑥𝑥2 + 19𝑥𝑥 + 15 

= 6𝑥𝑥2 + 9𝑥𝑥 + 10𝑥𝑥 + 15 

= 3𝑥𝑥(2𝑥𝑥 + 3) + 5(2𝑥𝑥 + 3) 

= (2𝑥𝑥 + 3)(3𝑥𝑥 + 5) 
 

 

 Factoring Trinomials with the Leading Coefficient Different than 1 
   

Factor completely each trinomial.  

a. 6𝑥𝑥3 + 14𝑥𝑥2 + 4𝑥𝑥 b. −6𝑦𝑦2 − 10 + 19𝑦𝑦 
c. 18𝑎𝑎2 − 19𝑎𝑎𝑎𝑎 − 12𝑏𝑏2 d. 2(𝑥𝑥 + 3)2 + 5(𝑥𝑥 + 3) − 12 
 
a. First, we factor out the GCF, which is 2𝑥𝑥. This gives us 

6𝑥𝑥3 + 14𝑥𝑥2 + 4𝑥𝑥 = 2𝑥𝑥(3𝑥𝑥2 + 7𝑥𝑥 + 2) 

 The outside coefficients of the remaining trinomial are prime, so we can apply the 
guessing method to factor it further. The first terms of the possible binomial factors 
must be 3𝑥𝑥 and 𝑥𝑥 while the last terms must be 2 and 1. Since both signs in the trinomial 
are positive, the signs used in the binomial factors must be both positive as well. So, 
we are ready to give it a try: 

2𝑥𝑥(3𝑥𝑥 +   2  )(𝑥𝑥 +  1  )    or     2𝑥𝑥(3𝑥𝑥 +  1  )(𝑥𝑥 +   2  ) 

 
 

 The first distribution of coefficients does not work as it would give us 2𝑥𝑥 + 3𝑥𝑥 = 5𝑥𝑥 
for the middle term. However, the second distribution works as 𝑥𝑥 + 6𝑥𝑥 = 7𝑥𝑥, which 
matches the middle term of the trinomial. So, 

6𝑥𝑥3 + 14𝑥𝑥2 + 4𝑥𝑥 = 𝟐𝟐𝟐𝟐(𝟑𝟑𝟑𝟑 + 𝟏𝟏)(𝒙𝒙 + 𝟐𝟐) 

Solution           

This product is often 
referred to as the 

master product or 
the 𝒂𝒂𝒂𝒂-product. 

2𝑥𝑥 
  3𝑥𝑥 

𝑥𝑥 
  6𝑥𝑥 
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b.  Notice that the trinomial is not arranged in decreasing order of powers of 𝑦𝑦. So, first, 
we rearrange the last two terms to achieve the decreasing order. Also, we factor out 
the −1, so that the leading term of the remaining trinomial is positive. 

−6𝑦𝑦2 − 10 + 19𝑦𝑦 = −6𝑦𝑦2 + 19𝑦𝑦 − 10 = −(6𝑦𝑦2 − 19𝑦𝑦 + 10) 

 Then, since the outside coefficients are composite, we will use the decomposition 
method of factoring. The 𝑎𝑎𝑎𝑎-product equals to 60 and the middle coefficient equals to 
−19. So, we are looking for two integers that multiply to 60 and add to −19. The 
integers that satisfy these conditions are −15 and −4. Hence, we factor 

−(6𝑦𝑦2 − 19𝑦𝑦 + 10) 

= −(6𝑦𝑦2 − 15𝑦𝑦 − 4𝑦𝑦 + 10) 

= −[3𝑦𝑦(2𝑦𝑦 − 5) − 2(2𝑦𝑦 − 5)] 

= −(𝟐𝟐𝟐𝟐 − 𝟓𝟓)(𝟑𝟑𝟑𝟑 − 𝟐𝟐) 
 

c. There is no common factor to take out of the polynomial 18𝑎𝑎2 − 19𝑎𝑎𝑎𝑎 − 12𝑏𝑏2. So, 
we will attempt to factor it into two binomials of the type (𝑚𝑚𝑎𝑎 ± 𝑝𝑝𝑏𝑏)(𝑛𝑛𝑎𝑎 ∓ 𝑞𝑞𝑏𝑏), using 
the decomposition method. The 𝑎𝑎𝑎𝑎-product equals −12 ∙ 18 = −2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 3 and 
the middle coefficient equals −19. To find the two integers that multiply to the  𝑎𝑎𝑎𝑎-
product and add to −19, it is convenient to group the factors of the product  

2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 3 

  in such a way that the products of each group differ by 19. It turns out that grouping 
all the 2’s and all the 3’s satisfy this condition, as 8 and 27 differ by 19. Thus, the 
desired integers are −27 and 8, as the sum of them must be −19. So, we factor 

18𝑎𝑎2 − 19𝑎𝑎𝑎𝑎 − 12𝑏𝑏2 

= 18𝑎𝑎2 − 27𝑎𝑎𝑎𝑎 + 8𝑎𝑎𝑎𝑎 − 12𝑏𝑏2 

= 9𝑎𝑎(2𝑎𝑎 − 3𝑏𝑏) + 4𝑏𝑏(2𝑎𝑎 − 3𝑏𝑏) 

= (𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑)(𝟗𝟗𝟗𝟗 + 𝟒𝟒𝟒𝟒) 
 

d. To factor 2(𝑥𝑥 + 3)2 + 5(𝑥𝑥 + 3) − 12, first, we notice that treating the group (𝑥𝑥 + 3) 
as another variable, say 𝑎𝑎, simplify the problem to factoring the quadratic trinomial 

2𝑎𝑎2 + 5𝑎𝑎 − 12 

 This can be done by the guessing method. Since 

2𝑎𝑎2 + 5𝑎𝑎 − 12 = (2𝑎𝑎 − 3)(𝑎𝑎 + 4), 

 
 then 

2(𝑥𝑥 + 3)2 + 5(𝑥𝑥 + 3) − 12 = [2(𝑥𝑥 + 3) − 3][(𝑥𝑥 + 3) + 4] 

  = (2𝑥𝑥 + 6 − 3)(𝑥𝑥 + 3 + 4) 

  = (𝟐𝟐𝟐𝟐 + 𝟑𝟑)(𝒙𝒙 + 𝟕𝟕) 

 remember to 
reverse the sign! 

 
the square bracket is 

essential because of the 
negative sign outside 

−3𝑎𝑎 
  8𝑎𝑎 

IN
 F
O
R
M
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Note 1: Polynomials that can be written in the form 𝒂𝒂(    )𝟐𝟐 + 𝒃𝒃(    ) + 𝒄𝒄,  where 𝑎𝑎 ≠ 0 
and (    ) represents any nonconstant polynomial expression, are referred to as 
quadratic in form. To factor such polynomials, it is convenient to replace the 
expression in the bracket by a single variable, different than the original one. 
This was illustrated in Example 2d by substituting 𝑎𝑎 for (𝑥𝑥 + 3). However, when 
using this substitution method, we must remember to leave the final answer 
in terms of the original variable. So, after factoring, we replace 𝑎𝑎 back with 
(𝑥𝑥 + 3), and then simplify each factor.  

 

 
 

Note 2:  Some students may feel comfortable factoring polynomials quadratic in form 
directly, without using substitution.  

 

 
 

 Application of Factoring in Geometry Problems   
 
If the area of a trapezoid is 2𝑥𝑥2 + 5𝑥𝑥 + 2 square meters and the lengths 
of the two parallel sides are 𝑥𝑥 and 𝑥𝑥 +  1 meters, then what polynomial 
represents the height of the trapezoid? 
  

Using the formula for the area of a trapezoid, we write the equation 
1
2
ℎ(𝑎𝑎 + 𝑏𝑏) = 2𝑥𝑥2 + 5𝑥𝑥 + 2 

Since 𝑎𝑎 + 𝑏𝑏 = 𝑥𝑥 + (𝑥𝑥 + 1) = 2𝑥𝑥 + 1, then we have 
1
2
ℎ(2𝑥𝑥 + 1) = 2𝑥𝑥2 + 5𝑥𝑥 + 2, 

which after factoring the right-hand side gives us 
1
2
ℎ(2𝑥𝑥 + 1) = (2𝑥𝑥 + 1)(𝑥𝑥 + 2). 

To find ℎ, it is enough to divide the above equation by the common factor (2𝑥𝑥 + 1) and 
then multiply it by 2. So,  

ℎ = 2(𝑥𝑥 + 2) = 𝟐𝟐𝟐𝟐 + 𝟒𝟒. 

 
 

   

 F.2  Exercises  

 
Vocabulary Check  Complete each blank with the most appropriate term or phrase from the given list: 

decomposition, guessing, multiplication, prime, quadratic, sum, variable. 
 
1. Any factorization can be checked by using _________________.  

Solution           

  𝑥𝑥 

  𝑥𝑥 + 1 

  ℎ 
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2. To factor a quadratic trinomial with a leading coefficient equal to 1, we usually use the ______________ 
method. 

3. To factor 𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 using the guessing method, write the trinomial as (𝑥𝑥+ ? )(𝑥𝑥+ ? ), where the question 
marks are two factors of 𝑐𝑐 whose _______ is 𝑏𝑏. 

4. To factor a quadratic trinomial with a leading coefficient different than 1, we usually use the ______________ 
method. If one of the outside coefficients is a __________ number, we can still use the guessing method. 

5. To factor polynomials that are _____________ in form, it is convenient to substitute a single variable 
(different than the original one) for the expression that appears in the first and the second power. However, 
the final factorization must be expressed back in the original __________. 

 

Concept Check   

6. If 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 has no monomial factor, can either of the possible binomial factors have a monomial factor?  

7. Is (2𝑥𝑥 + 5)(2𝑥𝑥 − 4) a complete factorization of the polynomial 4𝑥𝑥2 + 2𝑥𝑥 − 20?  

8. When factoring the polynomial −2𝑥𝑥2 − 7𝑥𝑥 + 15, students obtained the following answers: 
(−2𝑥𝑥 + 3)(𝑥𝑥 + 5),  (2𝑥𝑥 − 3)(−𝑥𝑥 − 5),  or  −(2𝑥𝑥 − 3)(𝑥𝑥 + 5) 

  Which of the above factorizations are correct? 

9. Is the polynomial 𝑥𝑥2 − 𝑥𝑥 + 2 factorable or is it prime? 
 

Concept Check  Fill in the missing factor.  

10. 𝑥𝑥2 − 4𝑥𝑥 + 3 = (           )(𝑥𝑥 − 1)    11. 𝑥𝑥2 + 3𝑥𝑥 − 10 = (           )(𝑥𝑥 − 2)     

12. 𝑥𝑥2 − 𝑥𝑥𝑥𝑥 − 20𝑦𝑦2 = (𝑥𝑥 + 4𝑦𝑦)(           )   13. 𝑥𝑥2 + 12𝑥𝑥𝑥𝑥 + 35𝑦𝑦2 = (𝑥𝑥 + 5𝑦𝑦)(           )   

 
Factor, if possible. 

14. 𝑥𝑥2 + 7𝑥𝑥 + 12     15. 𝑥𝑥2 − 12𝑥𝑥 + 35    16.  𝑦𝑦2 + 2𝑦𝑦 − 48 

17. 𝑎𝑎2 − 𝑎𝑎 − 42     18. 𝑥𝑥2 + 2𝑥𝑥 + 3    19. 𝑝𝑝2 − 12𝑝𝑝 − 27 

20. 𝑚𝑚2 − 15𝑚𝑚 + 56     21. 𝑦𝑦2 + 3𝑦𝑦 − 28    22.  18 − 7𝑛𝑛 − 𝑛𝑛2  

23. 20 + 8𝑝𝑝 − 𝑝𝑝2     24. 𝑥𝑥2 − 5𝑥𝑥𝑥𝑥 + 6𝑦𝑦2   25. 𝑝𝑝2 + 9𝑝𝑝𝑝𝑝 + 20𝑞𝑞2 

 
Factor completely. 

26. −𝑥𝑥2 + 4𝑥𝑥 + 21     27. −𝑦𝑦2 + 14𝑦𝑦 + 32   28. 𝑛𝑛4 − 13𝑛𝑛3 − 30𝑛𝑛2  

29. 𝑦𝑦3 − 15𝑦𝑦2 + 54𝑦𝑦    30. −2𝑥𝑥2 + 28𝑥𝑥 − 80   31. −3𝑥𝑥2 − 33𝑥𝑥 − 72 

32. 𝑥𝑥4𝑦𝑦 + 7𝑥𝑥2𝑦𝑦 − 60𝑦𝑦    33. 24𝑎𝑎𝑎𝑎2 + 6𝑎𝑎2𝑏𝑏2 − 3𝑎𝑎3𝑏𝑏2  34. 40 − 35𝑡𝑡15 − 5𝑡𝑡30 

35. 𝑥𝑥4𝑦𝑦2 + 11𝑥𝑥2𝑦𝑦 + 30    36. 64𝑛𝑛 − 12𝑛𝑛5 − 𝑛𝑛9   37. 24 − 5𝑥𝑥𝑎𝑎 − 𝑥𝑥2𝑎𝑎 
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Discussion Point 

38. A polynomial 𝑥𝑥2 + 𝑏𝑏 𝑥𝑥 + 75 with an unknown coefficient 𝑏𝑏 by the middle term can be factored into two 
binomials with integral coefficients. What are the possible values of 𝑏𝑏? 

 

Concept Check  Fill in the missing factor.  

39. 2𝑥𝑥2 + 7𝑥𝑥 + 3 = (           )(𝑥𝑥 + 3)   40. 3𝑥𝑥2 − 10𝑥𝑥 + 8 = (           )(𝑥𝑥 − 2)     

41. 4𝑥𝑥2 + 8𝑥𝑥 − 5 = (2𝑥𝑥 − 1)(           )    42. 6𝑥𝑥2 − 𝑥𝑥 − 15 = (2𝑥𝑥 + 3)(           ) 
 

Factor completely.  

43. 2𝑥𝑥2 − 5𝑥𝑥 − 3     44. 6𝑦𝑦2 − 𝑦𝑦 − 2    45. 4𝑚𝑚2 + 17𝑚𝑚 + 4  

46. 6𝑡𝑡2 − 13𝑡𝑡 + 6     47. 10𝑥𝑥2 + 23𝑥𝑥 − 5   48. 42𝑛𝑛2 + 5𝑛𝑛 − 25 

49. 3𝑝𝑝2 − 27𝑝𝑝 + 24     50. −12𝑥𝑥2 − 2𝑥𝑥 + 30   51. 6𝑥𝑥2 + 41𝑥𝑥𝑥𝑥 − 7𝑦𝑦2 

52. 18𝑥𝑥2 + 27𝑥𝑥𝑥𝑥 + 10𝑦𝑦2    53. 8 − 13𝑎𝑎 + 6𝑎𝑎2    54. 15 − 14𝑛𝑛 − 8𝑛𝑛2 

55. 30𝑥𝑥4 + 3𝑥𝑥3 − 9𝑥𝑥2  56. 10𝑥𝑥3 − 6𝑥𝑥2 + 4𝑥𝑥4  57. 2𝑦𝑦6 + 7𝑥𝑥𝑦𝑦3 + 6𝑥𝑥2 

58. 9𝑥𝑥2𝑦𝑦2 − 4 + 5𝑥𝑥𝑥𝑥    59. 16𝑥𝑥2𝑦𝑦3 + 3𝑦𝑦 − 16𝑥𝑥𝑦𝑦2  60. 4𝑝𝑝4 − 28𝑝𝑝2𝑞𝑞 + 49𝑞𝑞2 

61. 4(𝑥𝑥 − 1)2 − 12(𝑥𝑥 − 1) + 9  62. 2(𝑎𝑎 + 2)2 + 11(𝑎𝑎 + 2) + 15 63. 4𝑥𝑥2𝑎𝑎 − 4𝑥𝑥𝑎𝑎 − 3 
 

Discussion Point 

64. A polynomial 2𝑥𝑥2 + 𝑏𝑏 𝑥𝑥 − 15 with an unknown coefficient 𝑏𝑏 by the middle term can be factored into two 
binomials with integral coefficients. What are the possible values of ? 

 

Analytic Skills    

65. If the volume of a case of apples is 𝑥𝑥3 + 𝑥𝑥2 − 2𝑥𝑥 cubic feet and the height of this 
box is (𝑥𝑥 − 1) feet, then what polynomial represents the area of the bottom of the 
case?     

66. A ceremonial red carpet is rectangular in shape and covers 
2𝑥𝑥2 + 11𝑥𝑥 + 12 square feet. If the width of the carpet is 
(𝑥𝑥 +  4) feet, express the length, in feet. 

 
 
 
 
 
 
 

𝑥𝑥
−

1 
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 Special Factoring and a General Strategy of Factoring 

F.3 Special Factoring and a General Strategy of Factoring 

Recall that in Section P2, we considered formulas that provide a shortcut for finding special 
products, such as a product of two conjugate binomials, 

(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏) = 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐, 

or the perfect square of a binomial,  

(𝑎𝑎 ± 𝑏𝑏)2 = 𝒂𝒂𝟐𝟐 ± 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐. 

Since factoring reverses the multiplication process, these formulas can be used as shortcuts 
in factoring binomials of the form 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐 (difference of squares), and trinomials of the 
form 𝒂𝒂𝟐𝟐 ± 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐 (perfect square).  In this section, we will also introduce a formula 
for factoring binomials of the form 𝒂𝒂𝟑𝟑 ± 𝒃𝒃𝟑𝟑 (sum or difference of cubes). These special 
product factoring techniques are very useful in simplifying expressions or solving 
equations, as they allow for more efficient algebraic manipulations. 

At the end of this section, we give a summary of all the factoring strategies shown in this 
chapter.  

 

 Difference of Squares 
 
Out of the special factoring formulas, the easiest one to use is the 
difference of squares,  
 

𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐 = (𝒂𝒂 + 𝒃𝒃)(𝒂𝒂 − 𝒃𝒃) 
 
Figure 3.1 shows a geometric interpretation of this formula. The area of 
the yellow square, 𝑎𝑎2, diminished by the area of the blue square, 𝑏𝑏2, can 
be rearranged to a rectangle with the length of (𝑎𝑎 + 𝑏𝑏) and the width of 
(𝑎𝑎 − 𝑏𝑏). 
 
To factor a difference of squares 𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐, first, identify 𝒂𝒂 and 𝒃𝒃, which 
are the expressions being squared, and then, form two factors, the sum 
(𝒂𝒂 + 𝒃𝒃), and the difference (𝒂𝒂 − 𝒃𝒃), as illustrated in the example below.  
 

 

 Factoring Differences of Squares 
   

Factor each polynomial completely. 

a. 25𝑥𝑥2 − 1 b. 3.6𝑥𝑥4 − 0.9𝑦𝑦6 
c. 𝑥𝑥4 − 81 d. 16 − (𝑎𝑎 − 2)2 
 
a. First, we rewrite each term of 25𝑥𝑥2 − 1 as a perfect square of an expression. 

                    𝑎𝑎         𝑏𝑏 

25𝑥𝑥2 − 1 = (5𝑥𝑥)2 − 12 

 Then, treating 5𝑥𝑥 as the 𝑎𝑎 and 1 as the 𝑏𝑏 in the difference of squares formula  
𝑎𝑎2 − 𝑏𝑏2 = (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏), we factor: 

 

Solution           

Figure 3.1 

 𝑎𝑎
    

 𝑏𝑏  
𝑎𝑎 − 𝑏𝑏   𝑏𝑏  

𝑎𝑎
−
𝑏𝑏 

 𝑎𝑎     𝑎𝑎   +   𝑏𝑏  

 𝑎𝑎2     𝑏𝑏2  
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                 𝑎𝑎2  −  𝑏𝑏2 =  (𝑎𝑎 +  𝑏𝑏)(𝑎𝑎 −  𝑏𝑏) 

25𝑥𝑥2 − 1 = (5𝑥𝑥)2 − 12 = (𝟓𝟓𝟓𝟓 + 𝟏𝟏)(𝟓𝟓𝟓𝟓 − 𝟏𝟏) 

 
b.  First, we factor out 0.9 to leave the coefficients in a perfect square form. So, 

3.6𝑥𝑥4 − 0.9𝑦𝑦6 = 0.9(4𝑥𝑥4 − 𝑦𝑦6) 

 Then, after writing the terms of 4𝑥𝑥4 − 𝑦𝑦6 as perfect squares of expressions that 
correspond to 𝑎𝑎 and 𝑏𝑏 in the difference of squares formula 𝑎𝑎2 − 𝑏𝑏2 = (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏), 
we factor 

         𝑎𝑎             𝑏𝑏 

0.9(4𝑥𝑥4 − 𝑦𝑦6) = 0.9[(2𝑥𝑥2)2 − (𝑦𝑦3)2] = 𝟎𝟎.𝟗𝟗�𝟐𝟐𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟑𝟑��𝟐𝟐𝒙𝒙𝟐𝟐 − 𝒚𝒚𝟑𝟑� 
 

c. Similarly as in the previous two examples, 𝑥𝑥4 − 81 can be factored by following the 
difference of squares pattern. So, 

𝑥𝑥4 − 81 = (𝑥𝑥2)2 − (9)2 = (𝑥𝑥2 + 9)(𝑥𝑥2 − 9) 

 However, this factorization is not complete yet. Notice that 𝑥𝑥2 − 9 is also a difference 
of squares, so the original polynomial can be factored further. Thus, 

𝑥𝑥4 − 81 = (𝑥𝑥2 + 9)(𝑥𝑥2 − 9) = �𝒙𝒙𝟐𝟐 + 𝟗𝟗�(𝒙𝒙 + 𝟑𝟑)(𝒙𝒙 − 𝟑𝟑) 
 
Attention: The sum of squares, 𝑥𝑥2 + 9, cannot be factored using real coefficients.  

Generally, except for a common factor, a quadratic binomial of the form 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 is not 
factorable over the real numbers.  
 

 

d. Following the difference of squares formula, we have 

    16 − (𝑎𝑎 − 2)2 = 42 − (𝑎𝑎 − 2)2 

    = [4 + (𝑎𝑎 − 2)][4 − (𝑎𝑎 − 2)]  

    = (4 + 𝑎𝑎 − 2)(4 − 𝑎𝑎 + 2) work out the inner brackets 

   = (𝟐𝟐 + 𝒂𝒂)(𝟔𝟔 − 𝒂𝒂) combine like terms 
 
 

 Perfect Squares 
 

Another frequently used special factoring formula is the perfect square of a sum or a 
difference. 

𝒂𝒂𝟐𝟐 + 𝟐𝟐𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐 = (𝒂𝒂 + 𝒃𝒃)𝟐𝟐 
or 

𝒂𝒂𝟐𝟐 − 𝟐𝟐𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐 = (𝒂𝒂 − 𝒃𝒃)𝟐𝟐 
 

Figure 3.2 shows the geometric interpretation of the perfect square of a sum. We encourage 
the reader to come up with a similar interpretation of the perfect square of a difference. 

 
Remember to use 
brackets after the 

negative sign! 
 

Figure 3.2 

𝑎𝑎   +   𝑏𝑏  

 𝑎𝑎   +
  𝑏𝑏 𝑏𝑏2       𝑎𝑎𝑏𝑏       

𝑎𝑎2       𝑎𝑎𝑏𝑏   
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To factor a perfect square trinomial 𝒂𝒂𝟐𝟐 ± 𝟐𝟐𝒂𝒂𝒃𝒃+ 𝒃𝒃𝟐𝟐, we find 𝒂𝒂 and 𝒃𝒃, which are the 
expressions being squared. Then, depending on the middle sign, we use 𝒂𝒂 and 𝒃𝒃 to form 
the perfect square of the sum (𝒂𝒂 + 𝒃𝒃)𝟐𝟐, or the perfect square of the difference (𝒂𝒂 − 𝒃𝒃)𝟐𝟐. 
 

 

 Identifying Perfect Square Trinomials   
 
Decide whether the given polynomial is a perfect square. 

a. 9𝑥𝑥2 + 6𝑥𝑥 + 4 b. 9𝑥𝑥2 + 4𝑦𝑦2 − 12𝑥𝑥𝑥𝑥 
c. 25𝑝𝑝4 + 40𝑝𝑝2 − 16 d. 49𝑦𝑦6 + 84𝑥𝑥𝑥𝑥3 + 36𝑥𝑥2 
  
a. Observe that the outside terms of the trinomial 9𝑥𝑥2 + 6𝑥𝑥 + 4 are perfect squares, as 

9𝑥𝑥2 = (3𝑥𝑥)2 and 4 = 22. So, the trinomial would be a perfect square if the middle 
terms would equal 2 ∙ 3𝑥𝑥 ∙ 2 = 12𝑥𝑥. Since this is not the case, our trinomial is not a 
perfect square. 

Attention: Except for a common factor, trinomials of the type 𝒂𝒂𝟐𝟐 ± 𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐 are not 
factorable over the real numbers! 
 

 
b. First, we arrange the trinomial in decreasing order of the powers of 𝑥𝑥. So, we obtain 

9𝑥𝑥2 − 12𝑥𝑥𝑥𝑥 + 4𝑦𝑦2. Then, since 9𝑥𝑥2 = (3𝑥𝑥)2, 4𝑦𝑦2 = (2𝑦𝑦)2, and the middle term 
(except for the sign) equals 2 ∙ 3𝑥𝑥 ∙ 2 = 12𝑥𝑥, we claim that the trinomial is a perfect 
square. Since the middle term is negative, this is the perfect square of a difference. 
So, the trinomial 9𝑥𝑥2 − 12𝑥𝑥𝑥𝑥 + 4𝑦𝑦2 can be seen as  

        𝑎𝑎2    −  2    𝑎𝑎     𝑏𝑏   +   𝑏𝑏2    = ( 𝑎𝑎 −  𝑏𝑏 )2 

(3𝑥𝑥)2 − 2 ∙ 3𝑥𝑥 ∙ 2𝑦𝑦 + (2𝑦𝑦)2 = (3𝑥𝑥 − 2𝑦𝑦)2 
 
c. Even though the coefficients of the trinomial 25𝑝𝑝4 + 40𝑝𝑝2 − 16 and the distribution 

of powers seem to follow the pattern of a perfect square, the last term is negative, 
which makes it not a perfect square. 

 
d. Since 49𝑦𝑦6 = (7𝑦𝑦3)2, 36𝑥𝑥2 = (6𝑥𝑥)2, and the middle term equals 2 ∙ 7𝑦𝑦3 ∙ 6𝑥𝑥 =

84𝑥𝑥𝑥𝑥3, we claim that the trinomial is a perfect square. Since the middle term is 
positive, this is the perfect square of a sum. So, the trinomial 9𝑥𝑥2 − 12𝑥𝑥𝑥𝑥 + 4𝑦𝑦2 can 
be seen as  

                  𝑎𝑎2     +  2     𝑎𝑎      𝑏𝑏  +    𝑏𝑏2    = ( 𝑎𝑎    −   𝑏𝑏 )2 

(7𝑦𝑦3)2 + 2 ∙ 7𝑦𝑦3 ∙ 6𝑥𝑥 + (6𝑥𝑥)2 = (7𝑦𝑦3 − 6𝑥𝑥)2 
 
 

 Factoring Perfect Square Trinomials   
 
Factor each polynomial completely. 

a. 25𝑥𝑥2 + 10𝑥𝑥 + 1 b. 𝑎𝑎2 − 12𝑎𝑎𝑎𝑎 + 36𝑏𝑏2 
c. 𝑚𝑚2 − 8𝑚𝑚 + 16 − 49𝑛𝑛2 d. −4𝑦𝑦2 − 144𝑦𝑦8 + 48𝑦𝑦5 

Solution           
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a. The outside terms of the trinomial 25𝑥𝑥2 + 10𝑥𝑥 + 1 are perfect squares of 5𝑎𝑎 and 1, 
and the middle term equals 2 ∙ 5𝑥𝑥 ∙ 1 = 10𝑥𝑥, so we can follow the perfect square 
formula. Therefore, 

25𝑥𝑥2 + 10𝑥𝑥 + 1 = (𝟓𝟓𝟓𝟓 + 𝟏𝟏)𝟐𝟐 
 
b.  The outside terms of the trinomial 𝑎𝑎2 − 12𝑎𝑎𝑎𝑎 + 36𝑏𝑏2 are perfect squares of 𝑎𝑎 and 6𝑏𝑏, 

and the middle term (disregarding the sign) equals 2 ∙ 𝑎𝑎 ∙ 6𝑏𝑏 = 12𝑎𝑎𝑎𝑎, so we can follow 
the perfect square formula. Therefore, 

𝑎𝑎2 − 12𝑎𝑎𝑎𝑎 + 36𝑏𝑏2 = (𝒂𝒂 − 𝟔𝟔𝟔𝟔)𝟐𝟐 
 
c. Observe that the first three terms of the polynomial 𝑚𝑚2 − 8𝑚𝑚 + 16 − 49𝑛𝑛2 form a 

perfect square of 𝑚𝑚− 6 and the last term is a perfect square of 7𝑛𝑛. So, we can write 

𝑚𝑚2 − 8𝑚𝑚 + 16 − 49𝑛𝑛2 = (𝑚𝑚 − 6)2 − (7𝑛𝑛)2 

 Notice that this way we have formed a difference of squares. So we can factor it by 
following the difference of squares formula 

(𝑚𝑚 − 6)2 − (7𝑛𝑛)2 = (𝒎𝒎− 𝟔𝟔− 𝟕𝟕𝟕𝟕)(𝒎𝒎− 𝟔𝟔 + 𝟕𝟕𝟕𝟕) 
  

d. As in any factoring problem, first we check the polynomial −4𝑦𝑦2 − 144𝑦𝑦8 + 48𝑦𝑦5 
for a common factor, which is 4𝑦𝑦2.  To leave the leading term of this polynomial 
positive, we factor out −4𝑦𝑦2. So, we obtain 

−4𝑦𝑦2 − 144𝑦𝑦8 + 48𝑦𝑦5 

= −4𝑦𝑦2 (1 + 36𝑦𝑦6 − 12𝑦𝑦3) 

                                              = −4𝑦𝑦2 (36𝑦𝑦6 − 12𝑦𝑦3 + 1) 

                                                     = −𝟒𝟒𝒚𝒚𝟐𝟐 �𝟔𝟔𝒚𝒚𝟑𝟑 − 𝟏𝟏�𝟐𝟐 

 
 

 Sum or Difference of Cubes 
 

The last special factoring formula to discuss in this section is the 
sum or difference of cubes.  
 

𝒂𝒂𝟑𝟑 + 𝒃𝒃𝟑𝟑 = (𝒂𝒂 + 𝒃𝒃)�𝒂𝒂𝟐𝟐 − 𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐� 
or 

𝒂𝒂𝟑𝟑 − 𝒃𝒃𝟑𝟑 = (𝒂𝒂 − 𝒃𝒃)�𝒂𝒂𝟐𝟐 + 𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐� 

 
The reader is encouraged to confirm these formulas by multiplying 
the factors in the right-hand side of each equation. In addition, we 
offer a geometric visualization of one of these formulas, the 
difference of cubes, as shown in Figure 3.3. 
 

Solution           

 fold to the perfect 
square form 

 arrange the polynomial in 
decreasing powers 

 This is not in 
factored form yet! 

Figure 3.3 

𝑎𝑎3 − 𝑏𝑏3 = 𝑎𝑎2(𝑎𝑎 − 𝑏𝑏)+𝑎𝑎𝑎𝑎(𝑎𝑎 − 𝑏𝑏) + 𝑏𝑏2(𝑎𝑎 − 𝑏𝑏) 

𝑎𝑎 

𝑎𝑎 − 𝑏𝑏 𝑎𝑎 

𝑏𝑏 

𝑏𝑏 

𝑎𝑎 − 𝑏𝑏 

𝑎𝑎 − 𝑏𝑏 

𝑏𝑏 

𝑎𝑎 

𝑏𝑏3 

= (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎2+𝑎𝑎𝑎𝑎 + 𝑏𝑏2) 

𝑎𝑎3 
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Hints for memorization of the sum or difference of cubes formulas:  
• The binomial factor is a copy of the sum or difference of the terms that were originally 

cubed. 
• The trinomial factor follows the pattern of a perfect square, except that the middle term 

is single, not doubled. 
• The signs in the factored form follow the pattern Same-Opposite-Positive (SOP). 
 

 

 Factoring Sums or Differences of Cubes   
 
Factor each polynomial completely. 

a. 8𝑥𝑥3 + 1 b. 27𝑥𝑥7𝑦𝑦 − 125𝑥𝑥𝑥𝑥4 
c. 2𝑛𝑛6 − 128 d. (𝑝𝑝 − 2)3 + 𝑞𝑞3 
  

a. First, we rewrite each term of 8𝑥𝑥3 + 1 as a perfect cube of an expression. 

                   𝑎𝑎         𝑏𝑏 

8𝑥𝑥3 + 1 = (2𝑥𝑥)2 + 12 

Then, treating 2𝑥𝑥 as the 𝑎𝑎 and 1 as the 𝑏𝑏 in the sum of cubes formula 𝑎𝑎3 + 𝑏𝑏3 =
(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎2 − 𝑎𝑎𝑎𝑎 + 𝑏𝑏2), we factor:  

                                                                     𝒂𝒂𝟑𝟑  + 𝒃𝒃𝟑𝟑 = (𝒂𝒂 +  𝒃𝒃) � 𝒂𝒂𝟐𝟐    −   𝒂𝒂    𝒃𝒃 + 𝒃𝒃𝟐𝟐� 

8𝑥𝑥3 + 1 = (2𝑥𝑥)2 + 12 = (2𝑥𝑥 + 1)((2𝑥𝑥)2 − 2𝑥𝑥 ∙ 1 + 12) 

       = (𝟐𝟐𝟐𝟐 + 𝟏𝟏)�𝟒𝟒𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐 + 𝟏𝟏� 

 Notice that the trinomial 4𝑥𝑥2 − 2𝑥𝑥 + 1 in not factorable anymore. 
 
b.  Since the two terms of the polynomial 27𝑥𝑥7𝑦𝑦 − 125𝑥𝑥𝑥𝑥4 contain the common factor 

𝑥𝑥𝑥𝑥, we factor it out and obtain 

27𝑥𝑥7𝑦𝑦 − 125𝑥𝑥𝑥𝑥4 = 𝑥𝑥𝑥𝑥(27𝑥𝑥6 − 125𝑦𝑦3) 

 Observe that the remaining polynomial is a difference of cubes, (3𝑥𝑥2)3 − (5𝑦𝑦)3. So, 
we factor,  

   27𝑥𝑥7𝑦𝑦 − 125𝑥𝑥𝑥𝑥4 = 𝑥𝑥𝑥𝑥[(3𝑥𝑥2)3 − (5𝑦𝑦)3]  

                  ( 𝒂𝒂  +   𝒃𝒃 ) � 𝒂𝒂𝟐𝟐     −     𝒂𝒂     𝒃𝒃   +    𝒃𝒃𝟐𝟐� 

         = 𝑥𝑥𝑥𝑥(3𝑥𝑥2 − 5𝑦𝑦)[(3𝑥𝑥2)2 + 3𝑥𝑥2 ∙ 5𝑦𝑦 + (5𝑦𝑦)2] 

         = 𝒙𝒙𝒙𝒙�𝟑𝟑𝒙𝒙𝟐𝟐 − 𝟓𝟓𝟓𝟓��𝟗𝟗𝒙𝒙𝟒𝟒 + 𝟏𝟏𝟏𝟏𝒙𝒙𝟐𝟐𝒚𝒚+ 𝟐𝟐𝟐𝟐𝒚𝒚𝟐𝟐� 
 
c. After factoring out the common factor 2, we obtain 

2𝑛𝑛6 − 128 = 2(𝑛𝑛6 − 64) 

 

Solution           

 Difference of squares or 
difference of cubes? 

Quadratic trinomials of 
the form 𝒂𝒂𝟐𝟐 ± 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝟐𝟐 

are not factorable! 
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Factoring  

 Notice that 𝑛𝑛6 − 64 can be seen either as a difference of squares, (𝑛𝑛3)2 − 82, or as a 
difference of cubes, (𝑛𝑛2)3 − 43. It turns out that applying the difference of squares 
formula first leads us to a complete factorization while starting with the difference 
of cubes does not work so well here. See the two approaches below. 

(𝑛𝑛3)2 − 82  (𝑛𝑛2)3 − 43 

= (𝑛𝑛3 + 8)(𝑛𝑛3 − 8)  = (𝑛𝑛2 − 4)(𝑛𝑛4 + 4𝑛𝑛2 + 16) 
 
= (𝑛𝑛 + 2)(𝑛𝑛2 − 2𝑛𝑛 + 4)(𝑛𝑛 − 2)(𝑛𝑛2 + 2𝑛𝑛 + 4) = (𝑛𝑛 + 2)(𝑛𝑛 − 2)(𝑛𝑛4 + 4𝑛𝑛2 + 16) 

 
 
 
 
Therefore, the original polynomial should be factored as follows: 

2𝑛𝑛6 − 128 = 2(𝑛𝑛6 − 64) = 2[(𝑛𝑛3)2 − 82] = 2(𝑛𝑛3 + 8)(𝑛𝑛3 − 8) 

                                  = 𝟐𝟐(𝒏𝒏 + 𝟐𝟐)�𝒏𝒏𝟐𝟐 − 𝟐𝟐𝟐𝟐 + 𝟒𝟒�(𝒏𝒏 − 𝟐𝟐)�𝒏𝒏𝟐𝟐 + 𝟐𝟐𝟐𝟐 + 𝟒𝟒� 
 

d. To factor (𝑝𝑝 − 2)3 + 𝑞𝑞3, we follow the sum of cubes formula (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎2 − 𝑎𝑎𝑎𝑎 + 𝑏𝑏2) 
by assuming 𝑎𝑎 = 𝑝𝑝 − 2 and 𝑏𝑏 = 𝑞𝑞. So, we have 

                       (𝑝𝑝 − 2)3 + 𝑞𝑞3 = (𝑝𝑝 − 2 + 𝑞𝑞) [(𝑝𝑝 − 2)2 − (𝑝𝑝 − 2)𝑞𝑞 + 𝑞𝑞2] 

                                              = (𝑝𝑝 − 2 + 𝑞𝑞) [𝑝𝑝2 − 2𝑝𝑝𝑝𝑝 + 4 − 𝑝𝑝𝑝𝑝 + 2𝑞𝑞 + 𝑞𝑞2] 

                                                      = (𝒑𝒑 − 𝟐𝟐 + 𝒒𝒒) �𝒑𝒑𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑 + 𝟒𝟒 + 𝟐𝟐𝟐𝟐 + 𝒒𝒒𝟐𝟐� 

 
 

 General Strategy of Factoring 
 

Recall that a polynomial with integral coefficients is factored completely if all of its factors 
are prime over the integers. 

 

How to Factorize Polynomials Completely? 
 

1.  Factor out all common factors. Leave the remaining polynomial with a positive 
leading term and integral coefficients, if possible. 

 
2. Check the number of terms. If the polynomial has  

 - more than three terms, try to factor by grouping; a four term polynomial may 
require 2-2, 3-1, or 1-3 types of grouping. 

 - three terms, factor by guessing, decomposition, or follow the perfect square 
formula, if applicable. 

 - two terms, follow the difference of squares, or sum or difference of cubes 
formula, if applicable. Remember that sum of squares, 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐, is not factorable 
over the real numbers, except for possibly a common factor.   
   

There is no easy way of 
factoring this trinomial! 

4 prime factors, so the 
factorization is complete 
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 Special Factoring and a General Strategy of Factoring 

3.  Keep in mind the special factoring formulas: 
 

        Difference of Squares   𝒂𝒂𝟐𝟐 − 𝒃𝒃𝟐𝟐 = (𝒂𝒂 + 𝒃𝒃)(𝒂𝒂 − 𝒃𝒃) 
 Perfect Square of a Sum  𝒂𝒂𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐 = (𝒂𝒂 + 𝒃𝒃)𝟐𝟐 
  Perfect Square of a Difference 𝒂𝒂𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒃𝒃𝟐𝟐 = (𝒂𝒂 − 𝒃𝒃)𝟐𝟐 
 Sum of Cubes    𝒂𝒂𝟑𝟑 + 𝒃𝒃𝟑𝟑 = (𝒂𝒂 + 𝒃𝒃)�𝒂𝒂𝟐𝟐 − 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝟐𝟐� 
 Difference of Cubes  𝒂𝒂𝟑𝟑 − 𝒃𝒃𝟑𝟑 = (𝒂𝒂 − 𝒃𝒃)�𝒂𝒂𝟐𝟐 + 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝟐𝟐� 
 
4.  Keep factoring each of the obtained factors until all of them are prime over the 

integers. 
 

 

 Multiple-step Factorization   
 
Factor each polynomial completely. 

a. 80𝑥𝑥5 − 5𝑥𝑥 b. 4𝑎𝑎2 − 4𝑎𝑎 + 1 − 𝑏𝑏2 
c. (5𝑟𝑟 + 8)2 − 6(5𝑟𝑟 + 8) + 9 d. (𝑝𝑝 − 2𝑞𝑞)3 + (𝑝𝑝 + 2𝑞𝑞)3 
  

a. First, we factor out the GCF of 80𝑥𝑥5 and −5𝑥𝑥, which equals to 5𝑥𝑥. So, we obtain 

  80𝑥𝑥5 − 5𝑥𝑥 = 5𝑥𝑥(16𝑥𝑥4 − 1) 

 Then, we notice that 16𝑥𝑥4 − 1 can be seen as the difference of squares (4𝑥𝑥2)2 − 12. 
So, we factor further       

  80𝑥𝑥5 − 5𝑥𝑥 = 5𝑥𝑥(4𝑥𝑥2 + 1)(4𝑥𝑥2 − 1) 

The first binomial factor, 4𝑥𝑥2 + 1, cannot be factored any further using integral 
coefficients as it is the sum of squares, (2𝑥𝑥)2 + 12. However, the second binomial 
factor, 4𝑥𝑥2 − 1, is still factorable as a difference of squares, (2𝑥𝑥)2 − 12. Therefore, 

  80𝑥𝑥5 − 5𝑥𝑥 = 𝟓𝟓𝟓𝟓�𝟒𝟒𝒙𝒙𝟐𝟐 + 𝟏𝟏�(𝟐𝟐𝟐𝟐 + 𝟏𝟏)(𝟐𝟐𝟐𝟐 − 𝟏𝟏) 

 This is a complete factorization as all the factors are prime over the integers. 
 
b.  The polynomial 4𝑎𝑎2 − 4𝑎𝑎 + 1 − 𝑏𝑏2 consists of four terms, so we might be able to 

factor it by grouping. Observe that the 2-2 type of grouping has no chance to succeed, 
as the first two terms involve only the variable 𝑎𝑎 while the second two terms involve 
only the variable 𝑏𝑏. This means that after factoring out the common factor in each 
group, the remaining binomials would not be the same. So, the 2-2 grouping would 
not lead us to a factorization. However, the 3-1 type of grouping should help. This is 
because the first three terms form the perfect square, (2𝑎𝑎 − 1)2, and there is a 
subtraction before the last term 𝑏𝑏2, which is also a perfect square. So, in the end, we 
can follow the difference of squares formula to complete the factoring process. 

4𝑎𝑎2 − 4𝑎𝑎 + 1���������− 𝑏𝑏2� = (2𝑎𝑎 − 1)2 − 𝑏𝑏2 
  = (𝟐𝟐𝟐𝟐 − 𝟏𝟏 − 𝒃𝒃)(𝟐𝟐𝟐𝟐 − 𝟏𝟏 + 𝒃𝒃) 

 

Solution           

3-1 type of 
grouping 

repeated 
difference of 
squares 
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c. To factor (5𝑟𝑟 + 8)2 − 6(5𝑟𝑟 + 8) + 9, it is convenient to substitute a new variable, say 
𝒂𝒂, for the expression 5𝑟𝑟 + 8. Then,  

(5𝑟𝑟 + 8)2 − 6(5𝑟𝑟 + 8) + 9 = 𝒂𝒂2 − 6𝒂𝒂 + 9 

  = (𝒂𝒂 − 3)2 

  = (5𝑟𝑟 + 8 − 3)2 

  = (5𝑟𝑟 + 5)2 

 Notice that 5𝑟𝑟 + 5 can still be factored by taking the 5 out. So, for a complete 
factorization, we factor further  

(5𝑟𝑟 + 5)2 = �5(𝑟𝑟 + 1)�2 = 𝟐𝟐𝟐𝟐(𝒓𝒓 + 𝟏𝟏)𝟐𝟐 

 
d. To factor (𝑝𝑝 − 2𝑞𝑞)3 + (𝑝𝑝 + 2𝑞𝑞)3, we follow the sum of cubes formula (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎2 −

𝑎𝑎𝑎𝑎 + 𝑏𝑏2) by assuming 𝑎𝑎 = 𝑝𝑝 − 2𝑞𝑞 and 𝑏𝑏 = 𝑝𝑝 + 2𝑞𝑞. So, we have 

 (𝑝𝑝 − 2𝑞𝑞)3 + (𝑝𝑝 + 2𝑞𝑞)3 

 = (𝑝𝑝 − 2𝑞𝑞 + 𝑝𝑝 + 2𝑞𝑞) [(𝑝𝑝 − 2𝑞𝑞)2 − (𝑝𝑝 − 2𝑞𝑞)(𝑝𝑝 + 2𝑞𝑞) + (𝑝𝑝 + 2𝑞𝑞)2] 

 = 2𝑝𝑝 [𝑝𝑝2 − 4𝑝𝑝𝑝𝑝 + 4𝑞𝑞2 − (𝑝𝑝2 − 4𝑞𝑞2) + 𝑝𝑝2 + 4𝑝𝑝𝑝𝑝 + 4𝑞𝑞2] 

= 2𝑝𝑝 (2𝑝𝑝2 + 8𝑞𝑞2 − 𝑝𝑝2 + 4𝑞𝑞2) = 𝟐𝟐𝟐𝟐�𝒑𝒑𝟐𝟐 + 𝟏𝟏𝟏𝟏𝒒𝒒𝟐𝟐� 

 
 

 

 

   

 F.3  Exercises  

 
Vocabulary Check  Complete each blank with one of the suggested words, or the most appropriate term or 

phrase from the given list: difference of cubes, difference of squares, perfect square, sum 
of cubes, sum of squares. 

 
1. If a binomial is a ________________________________ its factorization has the form (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏).  

2. Trinomials of the form 𝑎𝑎2 ± 2𝑎𝑎𝑎𝑎 + 𝑏𝑏2 are ____________________________ trinomials. 

3. The product (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎2 − 𝑎𝑎𝑎𝑎 + 𝑏𝑏2) is the factorization of the __________________________.  

4. The product (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎2 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏2) is the factorization of the __________________________. 

5. A ________________________ is not factorable.  

6. Quadratic trinomials of the form 𝑎𝑎2 ± 𝑎𝑎𝑎𝑎 + 𝑏𝑏2  _________________
𝑎𝑎𝑎𝑎𝑎𝑎 /𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛

 factorable. 

 

 go back to the 
original variable 

perfect square! 
factoring by 
substitution 

multiple special 
formulas and 
simplifying 

   Remember to represent 
the new variable by a 

different letter than the 
original variable! 
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 Special Factoring and a General Strategy of Factoring 

Concept Check  Determine whether each polynomial is a perfect square, a difference of squares, a sum or 
difference of cubes, or neither. 

7. 0.25𝑥𝑥2 − 0.16𝑦𝑦2    8. 𝑥𝑥2 − 14𝑥𝑥 + 49 

9. 9𝑥𝑥4 + 4𝑥𝑥2 + 1    10. 4𝑥𝑥2 − (𝑥𝑥 + 4)2 

11. 125𝑥𝑥3 − 64     12. 𝑦𝑦12 + 0.008𝑥𝑥3 

13. −𝑦𝑦4 + 16𝑥𝑥4    14. 64 + 48𝑥𝑥3 + 9𝑥𝑥6 

15. 25𝑥𝑥6 − 10𝑥𝑥3𝑦𝑦2 + 𝑦𝑦4    16. −4𝑥𝑥6 − 𝑦𝑦6 

17. −8𝑥𝑥3 + 27𝑦𝑦6    18. 81𝑥𝑥2 − 16𝑥𝑥 
 

Concept Check    

19. The binomial 4𝑥𝑥2 + 64 is an example of a sum of two squares that can be factored. Under what conditions 
can the sum of two squares be factored?       

20. Insert the correct signs into the blanks.   
 a. 8 + 𝑎𝑎3 = (2 ___ 𝑎𝑎)(4 ___ 2𝑎𝑎 ___ 𝑎𝑎2)  b. 𝑏𝑏3 − 1 = (𝑏𝑏 ___ 1)(𝑏𝑏2 ___ 𝑏𝑏 ___ 1) 
 
Factor each polynomial completely, if possible. 

21. 𝑥𝑥2 − 𝑦𝑦2      22. 𝑥𝑥2 + 2𝑥𝑥𝑥𝑥 + 𝑦𝑦2     23. 𝑥𝑥3 − 𝑦𝑦3  

24. 16𝑥𝑥2 − 100     25. 4𝑧𝑧2 − 4𝑧𝑧 + 1       26. 𝑥𝑥3 + 27 

27. 4𝑧𝑧2 + 25      28. 𝑦𝑦2 + 18𝑦𝑦 + 81     29. 125− 𝑦𝑦3  

30. 144𝑥𝑥2 − 64𝑦𝑦2     31. 𝑛𝑛2 + 20𝑛𝑛𝑛𝑛 + 100𝑚𝑚2     32. 27𝑎𝑎3𝑏𝑏6 + 1 

33. 9𝑎𝑎4 − 25𝑏𝑏6     34. 25 − 40𝑥𝑥 + 16𝑥𝑥2    35. 𝑝𝑝6 − 64𝑞𝑞3  

36. 16𝑥𝑥2𝑧𝑧2 − 100𝑦𝑦2     37. 4 + 49𝑝𝑝2 + 28𝑝𝑝      38. 𝑥𝑥12 + 0.008𝑦𝑦3 

39. 𝑟𝑟4 − 9𝑟𝑟2      40. 9𝑎𝑎2 − 12𝑎𝑎𝑎𝑎 − 4𝑏𝑏2    41. 1
8
− 𝑎𝑎3  

42. 0.04𝑥𝑥2 − 0.09𝑦𝑦2     43. 𝑥𝑥4 + 8𝑥𝑥2 + 1       44. − 1
27

+ 𝑡𝑡3 

45. 16𝑥𝑥6 − 121𝑥𝑥2𝑦𝑦4    46. 9 + 60𝑝𝑝𝑝𝑝 + 100𝑝𝑝2𝑞𝑞2    47. −𝑎𝑎3𝑏𝑏3 − 125𝑐𝑐6  

48. 36𝑛𝑛2𝑡𝑡 − 1      49. 9𝑎𝑎8 − 48𝑎𝑎4𝑏𝑏 + 64𝑏𝑏2     50. 9𝑥𝑥3 + 8 

51. (𝑥𝑥 + 1)2 − 49     52. 1
4
𝑢𝑢2 − 𝑢𝑢𝑢𝑢 + 𝑣𝑣2     53. 2𝑡𝑡4 − 128𝑡𝑡  

54. 81 − (𝑛𝑛 + 3)2     55. 𝑥𝑥2𝑛𝑛 + 6𝑥𝑥𝑛𝑛 + 9      56. 8 − (𝑎𝑎 + 2)3 

57. 16𝑧𝑧4 − 1      58. 5𝑐𝑐3 + 20𝑐𝑐2 + 20𝑐𝑐    59. (𝑥𝑥 + 5)3 − 𝑥𝑥3  

60. 𝑎𝑎4 − 81𝑏𝑏4      61. 0.25𝑧𝑧2 − 0.7𝑧𝑧 + 0.49     62. (𝑥𝑥 − 1)3 + (𝑥𝑥 + 1)3 

63. (𝑥𝑥 − 2𝑦𝑦)2 − (𝑥𝑥 + 𝑦𝑦)2    64. 0.81𝑝𝑝8 + 9𝑝𝑝4 + 25  65. (𝑥𝑥 + 2)3 − (𝑥𝑥 − 2)3 
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Factoring  

 
Factor each polynomial completely. 

66. 3𝑦𝑦3 − 12𝑥𝑥2𝑦𝑦     67. 2𝑥𝑥2 + 50𝑎𝑎2 − 20𝑎𝑎𝑎𝑎     68. 𝑥𝑥3 − 𝑥𝑥𝑦𝑦2 + 𝑥𝑥2𝑦𝑦 − 𝑦𝑦3 

69. 𝑦𝑦2 − 9𝑎𝑎2 + 12𝑦𝑦 + 36    70. 64𝑢𝑢6 − 1       71. 7𝑚𝑚3 + 𝑚𝑚6 − 8  

72. −7𝑛𝑛2 + 2𝑛𝑛3 + 4𝑛𝑛 − 14   73. 𝑎𝑎8 − 𝑏𝑏8        74. 𝑦𝑦9 − 𝑦𝑦 

75. (𝑥𝑥2 − 2)2 − 4(𝑥𝑥2 − 2) − 21  76. 8(𝑝𝑝 − 3)2 − 64(𝑝𝑝 − 3) + 128 77. 𝑎𝑎2 − 𝑏𝑏2 − 6𝑏𝑏 − 9  

78. 25(2𝑎𝑎 − 𝑏𝑏)2 − 9     79. 3𝑥𝑥2𝑦𝑦2𝑧𝑧 + 25𝑥𝑥𝑥𝑥𝑧𝑧2 + 28𝑧𝑧3   80. 𝑥𝑥8𝑎𝑎 − 𝑦𝑦2  

81. 𝑥𝑥6 − 2𝑥𝑥5 + 𝑥𝑥4 − 𝑥𝑥2 + 2𝑥𝑥 − 1  82. 4𝑥𝑥2𝑦𝑦4 − 9𝑦𝑦4 − 4𝑥𝑥2𝑧𝑧4 +  9𝑧𝑧4   83. 𝑐𝑐2𝑤𝑤+1 + 2𝑐𝑐𝑤𝑤+1 + 𝑐𝑐 
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 Solving Polynomial Equations and Applications of Factoring 

F.4 Solving Polynomial Equations and Applications of Factoring 

Many application problems involve solving polynomial equations. In Chapter L, we studied 
methods for solving linear, or first-degree, equations. Solving higher degree polynomial 
equations requires other methods, which often involve factoring. In this chapter, we study 
solving polynomial equations using the zero-product property, graphical connections 
between roots of an equation and zeros of the corresponding function, and some application 
problems involving polynomial equations or formulas that can be solved by factoring. 

 

 Zero-Product Property 
 

Recall that to solve a linear equation, for example 2𝑥𝑥 + 1 = 0, it is enough to isolate the 
variable on one side of the equation by applying reverse operations. Unfortunately, this 
method usually does not work when solving higher degree polynomial equations. For 
example, we would not be able to solve the equation 𝑥𝑥2 − 𝑥𝑥 = 0 through the reverse 
operation process, because the variable 𝑥𝑥 appears in different powers.  

So … how else can we solve it?  

In this particular example, it is possible to guess the solutions. They are 𝑥𝑥 = 0 and 𝑥𝑥 = 1. 

But how can we solve it algebraically?  

It turns out that factoring the left-hand side of the equation 𝑥𝑥2 − 𝑥𝑥 = 0 helps. Indeed, 
𝑥𝑥(𝑥𝑥 − 1) = 0 tells us that the product of 𝑥𝑥 and 𝑥𝑥 − 1 is 0. Since the product of two 
quantities is 0, at least one of them must be 0. So, either 𝑥𝑥 = 0 or 𝑥𝑥 − 1 = 0, which solves 
to 𝑥𝑥 = 1. 

The equation discussed above is an example of a second degree polynomial equation, more 
commonly known as a quadratic equation.  
   

 Definition 4.1 A quadratic equation is a second degree polynomial equation in one variable that can be 
written in the form,  

𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄 = 𝟎𝟎, 

  where 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 are real numbers and 𝑎𝑎 ≠ 0. This form is called standard form. 
 

 
One of the methods of solving such equations involves factoring and the zero-product 
property that is stated below. 

 
  

  For any real numbers 𝒂𝒂 and 𝒃𝒃,  

                               𝒂𝒂𝒂𝒂 = 𝟎𝟎  if and only if 𝒂𝒂 = 𝟎𝟎 or 𝒃𝒃 = 𝟎𝟎 

  This means that any product containing a factor of 0 is equal to 0, and conversely, if a 
product is equal to 0, then at least one of its factors is equal to 0.  

 

 
The implication “if 𝒂𝒂 = 𝟎𝟎 or 𝒃𝒃 = 𝟎𝟎, then 𝒂𝒂𝒂𝒂 = 𝟎𝟎” is true by the multiplicative property of 
zero. 

To prove the implication “if 𝒂𝒂𝒂𝒂 = 𝟎𝟎, then 𝒂𝒂 = 𝟎𝟎 or 𝒃𝒃 = 𝟎𝟎”, let us assume first that 𝑎𝑎 ≠ 0. 
(As, if 𝑎𝑎 = 0, then the implication is already proven.) 

Zero-Product 
Theorem 

Proof           
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Factoring  

Since 𝑎𝑎 ≠ 0, then 1
𝑎𝑎
 exists. Therefore, both sides of 𝑎𝑎𝑎𝑎 = 0 can be multiplied by 1

𝑎𝑎
 and we 

obtain 

 
1
𝑎𝑎
∙ 𝑎𝑎𝑎𝑎 =  

1
𝑎𝑎
∙ 0 

𝑏𝑏 =  0, 

which concludes the proof. 

 
 

Attention: The zero-product property works only for a product equal to 0. For example, 
the fact that 𝒂𝒂𝒂𝒂 = 𝟏𝟏 does not mean that either 𝑎𝑎 or 𝑏𝑏 equals to 1. 
 

 
 

Using the Zero-Product Property to Solve Polynomial Equations 
   

Solve each equation. 

a. (𝑥𝑥 − 3)(2𝑥𝑥 + 5) = 0 b. 2𝑥𝑥(𝑥𝑥 − 5)2 = 0 
 
a. Since the product of 𝑥𝑥 − 3 and 2𝑥𝑥 + 5 is equal to zero, then by the zero-product 

property at least one of these expressions must equal to zero. So,  

𝑥𝑥 − 3 = 0   or   2𝑥𝑥 + 5 = 0 

 which results in 𝑥𝑥 = 3   or   2𝑥𝑥 = −5 
      𝑥𝑥 = −5

2
 

 Thus, �− 𝟓𝟓
𝟐𝟐

,𝟑𝟑� is the solution set of the given equation.  

b.  Since the product 2𝑥𝑥(𝑥𝑥 − 5)2 is zero, then either 𝑥𝑥 = 0 or 𝑥𝑥 − 5 = 0, which solves to 
𝑥𝑥 = 5. Thus, the solution set is equal to {𝟎𝟎,𝟓𝟓}. 
 

Note 1: The factor of 2 does not produce any solution, as 2 is never equal to 0.  
 

Note 2: The perfect square (𝑥𝑥 − 5)2 equals to 0 if and only if the base 𝑥𝑥 − 5 equals 
to 0.   

 
 

 Solving Polynomial Equations by Factoring 
 
 

To solve polynomial equations of second or higher degree by factoring, we 
 

• arrange the polynomial in decreasing order of powers on one side of the equation, 
• keep the other side of the equation equal to 0, 
• factor the polynomial completely, 
• use the zero-product property to form linear equations for each factor, 
• solve the linear equations to find the roots (solutions) to the original equation. 
 

     

Solution           
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Solving Quadratic Equations by Factoring   
 
Solve each equation by factoring. 

a. 𝑥𝑥2 + 9 = 6𝑥𝑥 b. 15𝑥𝑥2 − 12𝑥𝑥 = 0  

c. (𝑥𝑥 + 2)(𝑥𝑥 − 1) = 4(3 − 𝑥𝑥) − 8 d. (𝑥𝑥 − 3)2 = 36𝑥𝑥2 
  

a. To solve 𝑥𝑥2 + 9 = 6𝑥𝑥 by factoring we need one side of this equation equal to 0. So, 
first, we move the 6𝑥𝑥 term to the left side of the equation,  

𝑥𝑥2 + 9 − 6𝑥𝑥 = 0, 

  and arrange the terms in decreasing order of powers of 𝑥𝑥, 

𝑥𝑥2 − 6𝑥𝑥 + 9 = 0. 

  Then, by observing that the resulting trinomial forms a perfect square of 𝑥𝑥 − 3, we 
factor 

(𝑥𝑥 − 3)2 = 0, 
 which is equivalent to  

𝑥𝑥 − 3 = 0, 
 and finally 

𝑥𝑥 = 3. 

 So, the solution is 𝑥𝑥 = 𝟑𝟑. 
  

b.  After factoring the left side of the equation 15𝑥𝑥2 − 12𝑥𝑥 = 0, 

3𝑥𝑥(5𝑥𝑥 − 4) = 0, 

 we use the zero-product property. Since 3 is never zero, the solutions come from the 
equations 

𝑥𝑥 = 𝟎𝟎   or   5𝑥𝑥 − 4 = 0. 

Solving the second equation for 𝑥𝑥, we obtain  

5𝑥𝑥 = 4, 
and finally 

𝑥𝑥 = 𝟒𝟒
𝟓𝟓
. 

So, the solution set consists of 0 and 𝟒𝟒
𝟓𝟓
. 

 

c. To solve (𝑥𝑥 + 2)(𝑥𝑥 − 1) = 4(3 − 𝑥𝑥) − 8 by factoring, first, we work out the brackets 
and arrange the polynomial in decreasing order of exponents on the left side of the 
equation. So, we obtain 

𝑥𝑥2 + 𝑥𝑥 − 2 = 12− 4𝑥𝑥 − 8 

𝑥𝑥2 + 5𝑥𝑥 − 6 = 0 

(𝑥𝑥 + 6)(𝑥𝑥 − 1) = 0 

Solution           
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 Now, we can read the solutions from each bracket, that is, 𝑥𝑥 = −𝟔𝟔 and 𝑥𝑥 = 𝟏𝟏. 
  

Observation: In the process of solving a linear equation of the form 𝑎𝑎𝑎𝑎 + 𝑏𝑏 = 0, first 
we subtract 𝑏𝑏 and then we divide by 𝑎𝑎. So the solution, sometimes 

referred to as the root, is 𝑥𝑥 = −𝒃𝒃
𝒂𝒂
. This allows us to read the solution 

directly from the equation. For example, the solution to 𝑥𝑥 − 1 = 0 is 
𝑥𝑥 = 1 and the solution to 2𝑥𝑥 − 1 = 0 is 𝑥𝑥 = 1

2
. 

 

d. To solve (𝑥𝑥 − 3)2 = 36𝑥𝑥2, we bring all the terms to one side and factor the obtained 
difference of squares, following the formula 𝑎𝑎2 − 𝑏𝑏2 = (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏). So, we have 

(𝑥𝑥 − 3)2 − 36𝑥𝑥2 = 0 

 (𝑥𝑥 − 3 + 6𝑥𝑥)(𝑥𝑥 − 3 − 6𝑥𝑥) = 0 

(7𝑥𝑥 − 3)(−5𝑥𝑥 − 3) = 0 

 Then, by the zero-product property, 

 7𝑥𝑥 − 3 = 0  or  −5𝑥𝑥 − 3, 
 which results in 

𝑥𝑥 = 𝟑𝟑
𝟕𝟕
  or  𝑥𝑥 = −𝟑𝟑

𝟓𝟓
. 

 
 

 Solving Polynomial Equations by Factoring 
   

Solve each equation by factoring. 

a. 2𝑥𝑥3 − 2𝑥𝑥2 = 12𝑥𝑥 b. 𝑥𝑥4 + 36 = 13𝑥𝑥2 
 

a. First, we bring all the terms to one side of the equation and then factor the resulting 
polynomial.  

2𝑥𝑥3 − 2𝑥𝑥2 = 12𝑥𝑥 

2𝑥𝑥3 − 2𝑥𝑥2 − 12𝑥𝑥 = 0 

2𝑥𝑥(𝑥𝑥2 − 𝑥𝑥 − 6) = 0 

2𝑥𝑥(𝑥𝑥 − 3)(𝑥𝑥 + 2) = 0 

 By the zero-product property, the factors 𝑥𝑥, (𝑥𝑥 − 3) and (𝑥𝑥 + 2), give us the 
corresponding solutions, 0, 3, and – 2. So, the solution set of the given equation is 
{𝟎𝟎,𝟑𝟑,−𝟐𝟐}. 

  
b.  Similarly as in the previous examples, we solve 𝑥𝑥4 + 36 = 13𝑥𝑥2 by factoring and 

using the zero-product property. Since 

𝑥𝑥4 − 13𝑥𝑥2 + 36 = 0 

Solution           
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(𝑥𝑥2 − 4)(𝑥𝑥2 − 9) = 0 

(𝑥𝑥 + 2)(𝑥𝑥 − 2)(𝑥𝑥 + 3)(𝑥𝑥 − 3) = 0, 

 then, the solution set of the original equation is {−𝟐𝟐,𝟐𝟐,−𝟑𝟑,𝟑𝟑} 
 

Observation: 𝑛𝑛-th degree polynomial equations may have up to 𝑛𝑛 roots (solutions).  
 

 
 
 

 Factoring in Applied Problems 
 

Factoring is a useful strategy when solving applied problems. For example, factoring is 
often used in solving formulas for a variable, in finding roots of a polynomial function, 
and generally, in any problem involving polynomial equations that can be solved by 
factoring. 

 

 Solving Formulas with the Use of Factoring 
   

Solve each formula for the specified variable. 

a. 𝐴𝐴 = 2𝒉𝒉𝑤𝑤 + 2𝑤𝑤𝑤𝑤 + 2𝑙𝑙𝒉𝒉,   for 𝒉𝒉 b. 𝑠𝑠 = 2𝒕𝒕+3
𝒕𝒕

,   for 𝒕𝒕 
 
a. To solve 𝐴𝐴 = 2𝒉𝒉𝑤𝑤 + 2𝑤𝑤𝑤𝑤 + 2𝑙𝑙𝒉𝒉 for 𝒉𝒉, we want to keep both terms containing 𝒉𝒉 on 

the same side of the equation and bring the remaining terms to the other side. Here is 
an equivalent equation, 

𝐴𝐴 − 2𝑤𝑤𝑤𝑤 = 2𝒉𝒉𝑤𝑤 + 2𝑙𝑙𝒉𝒉, 

 which, for convenience, could be written starting with ℎ-terms: 

2𝒉𝒉𝑤𝑤 + 2𝑙𝑙𝒉𝒉 = 𝐴𝐴 − 2𝑤𝑤𝑤𝑤 

 Now, factoring 𝒉𝒉 out causes that 𝒉𝒉 appears in only one place, which is what we need 
to isolate it. So,   

(2𝑤𝑤 + 2𝑙𝑙)𝒉𝒉 = 𝐴𝐴 − 2𝑤𝑤𝑤𝑤 

𝒉𝒉 =
𝑨𝑨 − 𝟐𝟐𝟐𝟐𝟐𝟐
𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐

 

 

Notice: In the above formula, there is nothing that can be simplified. Trying to reduce 
2 or 2𝑤𝑤 or 𝑙𝑙 would be an error, as there is no essential common factor that can be 
carried out of the numerator.  
 

 

b.  When solving 𝑠𝑠 = 2𝒕𝒕+3
𝒕𝒕

 for 𝒕𝒕, our goal is to, firstly, keep the variable 𝒕𝒕 in the numerator 
and secondly, to keep it in a single place. So, we have  

𝑠𝑠 =
2𝒕𝒕 + 3
𝒕𝒕

 

𝑠𝑠𝒕𝒕 = 2𝒕𝒕 + 3 

Solution           

/ ÷ (2𝑤𝑤 + 2𝑙𝑙) 

 

/ ∙ 𝑡𝑡 

 / −2𝑡𝑡 
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𝑠𝑠𝒕𝒕 − 2𝒕𝒕 = 3 

𝒕𝒕(𝑠𝑠 − 2) = 3 

𝒕𝒕 =
𝟑𝟑

𝒔𝒔 − 𝟐𝟐
. 

 
 

 Finding Roots of a Polynomial Function 
  

A small rocket is launched from the ground vertically upwards with an initial velocity of 
128 feet per second. Its height in feet after 𝑡𝑡 seconds is a function defined by  

ℎ(𝑡𝑡) = −16𝑡𝑡2 + 128𝑡𝑡. 

After how many seconds will the rocket hit the ground? 
 
The rocket hits the ground when its height is 0. So, we need to find the time 𝑡𝑡 for which 
ℎ(𝑡𝑡) = 0. Therefore, we solve the equation 

−16𝑡𝑡2 + 128𝑡𝑡 = 0 
for 𝑡𝑡. From the factored form 

−16𝑡𝑡(𝑡𝑡 − 8) = 0 

we conclude that the rocket is on the ground at times 0 and 8 seconds. So the rocket hits the 
ground after 8 seconds from its launch. 
   

 

 Solving an Application Problem with the Use of Factoring 
   

The height of a triangle is 1 meter less than twice the length of the base. The area is 14 m2. 
What are the measures of the base and the height? 
 
Let 𝑏𝑏 and ℎ represent the base and the height of the triangle, correspondingly. The first 
sentence states that ℎ is 1 less than 2 times 𝑏𝑏. So, we record 

ℎ = 2𝑏𝑏 − 1. 

Using the formula for area of a triangle, 𝐴𝐴 = 1
2
𝑏𝑏ℎ, and the fact that 𝐴𝐴 = 14, we obtain 

14 =
1
2
𝑏𝑏(2𝑏𝑏 − 1). 

Since this is a one-variable quadratic equation, we will attempt to solve it by factoring, after 
bringing all the terms to one side of the equation. So, we have 

0 =
1
2
𝑏𝑏(2𝑏𝑏 − 1) − 14 

0 = 𝑏𝑏(2𝑏𝑏 − 1) − 28 

0 = 2𝑏𝑏2 − 𝑏𝑏 − 28 

Solution           

Solution           

/  ∙ 2 

 

 to clear the fraction, multiply each term 
by 2 before working out the bracket 

 factor 𝑡𝑡 

/ ÷ (𝑠𝑠 − 2) 

 

https://upload.wikimedia.org/wikipedia/commons/a/ab/Epic_Cluster_rocket_launch.jpg
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0 = (2𝑏𝑏 + 7)(𝑏𝑏 − 4), 

which by the zero-product property gives us 𝑏𝑏 = −7
2
 or 𝑏𝑏 = 4. Since 𝑏𝑏 represents the length 

of the base, it must be positive. So, the base is 4 meters long and the height is ℎ = 2𝑏𝑏 −
1 = 2 ∙ 4 − 1 = 𝟕𝟕 meters long. 

 
 
 
   

 F.4  Exercises  

 
Vocabulary Check  Complete each blank with the most appropriate term from the given list: factored, linear, 

n, zero, zero-product. 

1. The ________________________ property states that if 𝑎𝑎𝑎𝑎 = 0 then either 𝑎𝑎 = 0 or 𝑏𝑏 = 0. 

2. When a quadratic equation is solved by factoring, the zero-product property is used to form two 
______________ equations. 

3. The zero-product property can be applied only when one side of the equation is equal to __________ and the 
other side is in a ________________ form.  

4. An 𝑛𝑛-th degree polynomial equation may have up to _____ solutions.  
 
Concept Check  True or false. 

5. If 𝑥𝑥𝑥𝑥 = 0 then 𝑥𝑥 = 0 or 𝑦𝑦 = 0.  

6. If 𝑎𝑎𝑎𝑎 = 1 then 𝑎𝑎 = 1 or 𝑏𝑏 = 1. 

7. If 𝑥𝑥 + 𝑦𝑦 = 0 then 𝑥𝑥 = 0 or 𝑦𝑦 = 0. 

8. If 𝑎𝑎2 = 0 then 𝑎𝑎 = 0. 

9. If 𝑥𝑥2 = 1 then 𝑥𝑥 = 1. 
 
Concept Check   

10. Which of the following equations is not in proper form for using the zero-product property. 

a. 𝑥𝑥(𝑥𝑥 − 1) + 3(𝑥𝑥 − 1) = 0    b. (𝑥𝑥 + 3)(𝑥𝑥 − 1) = 0 

c. 𝑥𝑥(𝑥𝑥 − 1) = 3(𝑥𝑥 − 1)    d. (𝑥𝑥 + 3)(𝑥𝑥 − 1) = −3 
 
Solve each equation.    

11. 3(𝑥𝑥 − 1)(𝑥𝑥 + 4) = 0       12. 2(𝑥𝑥 + 5)(𝑥𝑥 − 7) = 0   

13. (3𝑥𝑥 + 1)(5𝑥𝑥 + 4) = 0      14. (2𝑥𝑥 − 3)(4𝑥𝑥 − 1) = 0   

15. 𝑥𝑥2 + 9𝑥𝑥 + 18 = 0      16. 𝑥𝑥2 − 18𝑥𝑥 + 80 = 0 
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17. 2𝑥𝑥2 = 7 − 5𝑥𝑥       18. 3𝑘𝑘2 = 14𝑘𝑘 − 8      

19. 𝑥𝑥2 + 6𝑥𝑥 = 0       20. 6𝑦𝑦2 − 3𝑦𝑦 = 0     

21. (4 − 𝑎𝑎)2 = 0       22. (2𝑏𝑏 + 5)2 = 0  

23. 0 = 4𝑛𝑛2 − 20𝑛𝑛 + 25      24. 0 = 16𝑥𝑥2 + 8𝑥𝑥 + 1     

25. 𝑝𝑝2 − 32 = −4𝑝𝑝       26. 19𝑎𝑎 + 36 = 6𝑎𝑎2   

27. 𝑥𝑥2 + 3 = 10𝑥𝑥 − 2𝑥𝑥2      28. 3𝑥𝑥2 + 9𝑥𝑥 + 30 = 2𝑥𝑥2 − 2𝑥𝑥 

29. (3𝑥𝑥 + 4)(3𝑥𝑥 − 4) = −10𝑥𝑥     30. (5𝑥𝑥 + 1)(𝑥𝑥 + 3) = −2(5𝑥𝑥 + 1) 

31. 4(𝑦𝑦 − 3)2 − 36 = 0      32. 3(𝑎𝑎 + 5)2 − 27 = 0     

33. (𝑥𝑥 − 3)(𝑥𝑥 + 5) = −7      34. (𝑥𝑥 + 8)(𝑥𝑥 − 2) = −21     

35. (2𝑥𝑥 − 1)(𝑥𝑥 − 3) = 𝑥𝑥2 − 𝑥𝑥 − 2    36. 4𝑥𝑥2 + 𝑥𝑥 − 10 = (𝑥𝑥 − 2)(𝑥𝑥 + 1) 

37. 4(2𝑥𝑥 + 3)2 − (2𝑥𝑥 + 3) − 3 = 0   38. 5(3𝑥𝑥 − 1)2 + 3 = −16(3𝑥𝑥 − 1) 

39. 𝑥𝑥3 + 2𝑥𝑥2 − 15𝑥𝑥 = 0      40. 6𝑥𝑥3 − 13𝑥𝑥2 − 5𝑥𝑥 = 0   

41. 25𝑥𝑥3 = 64𝑥𝑥       42. 9𝑥𝑥3 = 49𝑥𝑥    

43. 𝑦𝑦4 − 26𝑦𝑦2 + 25 = 0      44. 𝑛𝑛4 − 50𝑛𝑛2 + 49 = 0 

45. 𝑥𝑥3 − 6𝑥𝑥2 = −8𝑥𝑥       46. 𝑥𝑥3 − 2𝑥𝑥2 = 3𝑥𝑥   

47. 𝑎𝑎3 + 𝑎𝑎2 − 9𝑎𝑎 − 9 = 0      48. 2𝑥𝑥3 − 𝑥𝑥2 − 2𝑥𝑥 + 1 = 0    

49. 5𝑥𝑥3 + 2𝑥𝑥2 − 20𝑥𝑥 − 8 = 0     50. 2𝑥𝑥3 + 3𝑥𝑥2 − 18𝑥𝑥 − 27 = 0 
 
Discussion Point 

51.  A student tried to solve the equation 𝑥𝑥3 = 9𝑥𝑥 by first dividing each side by 𝑥𝑥, obtaining 𝑥𝑥2 = 9. She then 
solved the resulting equation by the zero-product property and obtained the solution set {−3,3}. Is this a 
complete solution? Explain your reasoning. 

 
Analytic Skills 

52. Given that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 14𝑥𝑥 + 50, find all values of 𝑥𝑥 such that 𝑓𝑓(𝑥𝑥) = 5.     

53. Given that 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥2 − 15𝑥𝑥, find all values of 𝑥𝑥 such that 𝑔𝑔(𝑥𝑥) = −7.    

54. Given that 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 3𝑥𝑥 and 𝑔𝑔(𝑥𝑥) = −6𝑥𝑥 + 5, find all values of 𝑥𝑥 such that 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥). 

55. Given that 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥2 + 11𝑥𝑥 − 16 and ℎ(𝑥𝑥) = 5 + 2𝑥𝑥 − 𝑥𝑥2, find all values of 𝑥𝑥 such that 𝑔𝑔(𝑥𝑥) = ℎ(𝑥𝑥). 
 

Solve each equation for the specified variable. 

56. 𝑷𝑷𝑟𝑟𝑟𝑟 = 𝐴𝐴 − 𝑷𝑷,  for 𝑷𝑷    57. 3𝒔𝒔 + 2𝑝𝑝 = 5 − 𝑟𝑟𝒔𝒔,  for 𝒔𝒔   

58. 5𝑎𝑎 + 𝑏𝑏𝒓𝒓 = 𝒓𝒓 − 2𝑐𝑐,  for 𝒓𝒓    59. 𝐸𝐸 = 𝑅𝑅+𝒓𝒓
𝒓𝒓

,  for 𝒓𝒓   
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60. 𝑧𝑧 = 𝑥𝑥+2𝒚𝒚

𝒚𝒚
,  for 𝒚𝒚      61. 𝑐𝑐 = −2𝒕𝒕+4

𝒕𝒕
,  for 𝒕𝒕 

 
Analytic Skills 

Use factoring the GCF out to solve each formula for the indicated variable. 

62. An object is thrown downwards, with an initial speed of 16 ft/s, from the top of a building 480 ft high. If the 
distance travelled by the object, in ft, is given by the function 𝑑𝑑(𝑡𝑡) = 𝑣𝑣𝑣𝑣 + 16𝑡𝑡2, where 𝑣𝑣 is the initial speed 
in ft/s, and 𝑡𝑡 is the time in seconds, then how many seconds later will the object hit the ground?   

63. A sandbag is dropped from a hot-air balloon 900 ft above the ground. The height, ℎ, of the sandbag above 
the ground, in feet, after 𝑡𝑡 seconds is given by the function ℎ(𝑡𝑡) = 900 − 16𝑡𝑡2. When will the sandbag hit 
the ground? 

64. The sum of a number and its square is 72. Find the number.  

65. The sum of a number and its square is 210. Find the number. 

66. The length of a rectangle is 2 meters more than twice the width. The area of the 
rectangle is 84 m2. Find the length and width of the rectangle. 

67. An envelope is 4 cm longer than it is wide. The area is 96 cm2. Find its length and width.  

68. The height of a triangle is 8 cm more than the length of the base. The area of the triangle is 
64 cm2. Find the base and height of the triangle.  

69. A triangular sail is 9 m taller than it is wide. The area is 56 m2. Find the height and the base 
of the sail.  

70. A gardener decides to build a stone pathway of uniform width around her flower bed. 
The flower bed measures 10 ft by 12 ft. If she wants the area of the bed and the 
pathway together to be 224 ft2, how wide should she make the pathway?  

71. Suppose a rectangular flower bed is 3 m longer than it is wide. What are the 
dimensions of the flower bed if its area is 108 m2 ? 

72. A picture frame measures 12 cm by 20 cm, and 84 cm2 of picture shows. Find 
the width of the frame.  

73. A picture frame measures 14 cm by 20 cm, and 160 cm2 of picture shows. Find 
the width of the frame.  

74. If each of the sides of a square is lengthened by 6 cm, the area becomes 144 
cm2. Find the length of a side of the original square.  

75. If each of the sides of a square is lengthened by 4 m, the area becomes 49 m2. Find the length of a side of the 
original square.  

 

 

𝑏𝑏 

𝑏𝑏 + 8 

2𝑤𝑤 + 2 

𝑤𝑤
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