Q. $1 \quad$ Assume the \mathbf{R} is a relation on a set A, aRb is partially ordered such that a and b are
A. reflexive
B. transitive
C. symmetric
D. reflexive and transitive

Explanation A partially ordered relation refers to one which is Reflexive, Transitive and Ant symmetric.
Q. 2

The non- Kleene Star operation accepts the following string of finite length over set $\mathbf{A}=\{0,1\}$ |
A. $01,0011,010101$
B. $\mathbf{0 0 1 1 , 1 1 0 0 1 1 0 0}$
C. $\varepsilon, 0011,11001100$
D. $\varepsilon, 0011,11001100$

Explanation
The Kleene star of A, denoted by A^{*}, is the set of all strings obtained by concatenating zero or more strings from A.
Q. 3 A regular language over an alphabet \sum is one that cannot be obtained from the basic
A. Union
B. Concatenation
C. Kleene*
D. All of the mentioned

Explanation

Union, Intersection, Concatenation, Kleene*, Reverse are all the closure properties of Regular Language.

Statement 1: A Finite automata can be represented graphically;
Statement 2: The nodes can be its states; Statement 3: The edges or arcs can be used for
Q. 4 transitions

Hint: Nodes and Edges are for trees and forests too.
Which of the following make the correct combination?
A. Statement 1 is false but Statement 2 and 3 are correct
B. \quad Statement 1 and 2 are correct while 3 is wrong
C. None of the mentioned statements are correct
D. All of the mentioned

Explanation
It is possible to represent a finite automaton graphically, with nodes for states, and arcs for transitions.

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
technical campus

Multiple Choice Questions Bank

Q. 5 The minimum number of states required to recognize an octal number divisible by 3 are/is A. $\quad 1$
B. 3
C. 5
D. 7

Explanation
According to the question, minimum of 3 states are required to recognize an octal number divisible by 3.
Q. 6 Which of the following is a not a part of 5-tuple finite automata?
A. Input alphabet
B. Transition function
C. Initial State
D. Output Alphabet

Explanation

A FA can be represented as $F A=(Q, \Sigma, \delta, q 0, F)$ where $Q=$ Finite Set of States, $\Sigma=$ Finite Input Alphabet, $\boldsymbol{\delta}=$ Transition Function, $\mathbf{q} 0=$ Initial State, $F=F i n a l / A c c e p t a n c e ~ S t a t e) . ~$
Q. 7

If an Infinite language is passed to Machine M, the subsidiary which gives a finite solution to the infinite input tape is
A. Compiler
B. Interpreter
C. Loader and Linkers
D. None of the mentioned

Explanation

A Compiler is used to give a finite solution to an infinite phenomenon. Example of an infinite phenomenon is Language \mathbf{C}, etc.
Q. 8

The number of elements in the set for the Language $L=\left\{\mathbf{x} \in\left(\sum \mathbf{r}\right) * \mid l e n g t h\right.$ if \mathbf{x} is at most 2$\}$ and
A. $\quad 7$
B. 6
C. 8
D. 5

Explanation $\begin{aligned} & \sum_{=7} r=\{1,0\} \text { and a Kleene* operation would lead to the following set=COUNT }\{\varepsilon, 0,1,00,11,01,10\}\end{aligned}$
Q. 9 For the following change of state in FA, which of the following codes is an incorrect option?
A. $\quad \delta(\mathrm{m}, 1)=\mathrm{n}$
B. $\boldsymbol{\delta}(\mathbf{0}, \mathbf{n})=\mathbf{m}$
C. $\quad \delta(\mathrm{m}, 0)=\varepsilon$

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank
D. s : accept $=$ false; cin \gg char;

Explanation

$\delta\left(\mathrm{QX} \sum\right)=\mathrm{Q} 1$ is the correct representation of change of state. Here, δ is called the Transition function.
Q. 10
A. $\{a \mathrm{a}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}$
B. $\{$ aaaa, abab, ε, abaa, aabb $\}$
C. $\quad\{\mathrm{aaa}, \mathrm{aab}, \mathrm{aba}, \mathrm{bbb}\}$
D. All of the mentioned
\sum^{*} represents any combination of the given set while $\sum \mathrm{x}$ represents the set of combinations with length x where $x \in I$.
Q. 11 Moore Machine is an application of:
A. Finite automata without input
B. Finite automata with output
C. Non- Finite automata with output
D. None of the mentioned

Explanation Finite automaton with an output is categorize din two parts: Moore M/C and Mealy M/C.
Q. 12 In Moore machine, output is produced over the change of:
A. transitions
B. states
C. Both
D. None of the mentioned

Explanation

Moore machine produces an output over the change of transition states while mealy machine does it so for transitions itself.
Q. 13 For a give Moore Machine, Given Input=' 101010 ', thus the output would be of length:
A. $\quad \mid$ Input $\mid+1$
B. |Input|
C. $\quad \mid$ Input-1|
D. Cannot be predicted

Explanation Initial state, from which the operations begin is also initialized with a value.

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank
Theory of Computation
3160704
Q. 14 Statement 1: Null string is accepted in Moore Machine.

Statement 2: There are more than 5-Tuples in the definition of Moore Machine.
A. Statement $\mathbf{1}$ is true and Statement $\mathbf{2}$ is true
B. Statement 1 is true while Statement 2 is false
C. Statement 1 is false while Statement 2 is true
D. Statement 1 and Statement 2, both are false

Explanation Even ε, when passed as an input to Moore machine produces an output.
What is the output for the given language?
Q. 15 Language: A set of strings over $\sum=\{a, b\}$ is taken as input and it prints 1 as an output "for every occurrence of a, b as its substring. (INPUT: abaaab)
A. 0010001
B. 0101010
C. 0111010
D. 0010000

Explanation The outputs are as per the input, produced.
Q. 16 The output alphabet can be represented as:
A. δ
B. Δ
C. $\quad \Sigma$
D. None of the mentioned

Explanation
Source-The tuple definition of Moore and mealy machine comprises one new member i.e. output alphabet as these are finite machines with output.
Q. 17 The O/P of Moore machine can be represented in the following format:
A. $\quad \mathbf{O p}(t)=\boldsymbol{\delta}(\mathbf{O p}(t))$
B. $\quad O p(t)=\delta(O p(t) i(t))$
C. $\quad \mathrm{Op}(\mathrm{t}): \sum$
D. None of the mentioned

Explanation
$O p(t)=\delta(O p(t))$ is the defined definition of how the output is received on giving a specific input to Moore machine.
Q. 18 Which of the following is a correct statement?
A. Moore machine has no accepting states
B. Mealy machine has accepting states
C. We can convert Mealy to Moore but not vice versa
D. All of the mentioned

Explanation
Statement a and b is correct while \mathbf{c} is false. Finite machines with output have no accepting states and can be converted within each other.

TECHNICAL CAMPUS

\section*{Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |}

Q. 19 In mealy machine, the O/P depends upon?
A. State
B. Previous State
C. State and Input
D. Only Input

Explanation Definition of Mealy Machine.
Q. 20 Which of the given are correct?
A. Moore machine has 6-tuples
B. Mealy machine has 6-tuples
C. Both Mealy and Moore has 6-tuples
D. None of the mentioned

Explanation Finite Automaton with Output has a common definition for both the categories.
Q. 21 The O/P of Mealy machine can be represented in the following format:
A. $\quad \mathrm{Op}(\mathrm{t})=\delta(\mathrm{Op}(\mathrm{t}))$
B. $\quad \mathbf{O p}(t)=\delta(\mathbf{O p}(t) \mathbf{i}(t))$
C. $\quad \mathrm{Op}(\mathrm{t}): \Sigma$
D. None of the mentioned
Q. 22 The ratio of number of input to the number of output in a mealy machine can be given as:
A. $\quad 1$
B. $n: n+1$
C. $\quad \mathrm{n}+1: \mathrm{n}$
D. None of the mentioned

Explanation The number of output here follows the transitions in place of states as in Moore machine.
Q. 23 Mealy and Moore machine can be categorized as:
A. Inducers
B. Transducers
C. Turing Machines
D. Linearly Bounder Automata

Explanation They are collectively known as Transducers.
Q. 24 The major difference between Mealy and Moore machine is about:
A. Output Variations
B. Input Variations
C. Both
D. None of the mentioned

Explanation
Mealy and Moore machine vary over how the outputs depends on prior one (transitions) and on the latter one(states).
technical campus

\section*{Faculty of Department of CE/IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |}

25 Statement 1: Mealy machine reacts faster to inputs.
Q.25 Statement 2. Moore machine has more circuit delays. Choose the correct option:
A. Statement 1 is true and Statement 2 is true
B. Statement 1 is true but Statement 2 is false
C. Statement 1 is false and Statement 2 is true
D. None of the mentioned is true

Explanation Being an input dependent and output capable FSM, Mealy machine reacts faster to inputs.
Q. 26
A. produces a language
B. produces a grammar
C. can be converted to NFA
D. has less circuit delays

Explanation It does not produce a language or a grammar or can be converted to a NFA.
Q. 27 Which of the following does not belong to input alphabet if $S=\{a, b\}^{*}$ for any language?
A. a
B. b
C. e
D. none of the mentioned

The automaton may be allowed to change its state without reading the input symbol using Explanation epsilon but this does not mean that epsilon has become an input symbol. On the contrary, one assumes that the symbol epsilon does not belong to any alphabet.
Q. 28 An e-NFA is \qquad in representation.
A. Quadruple
B. Quintuple
C. Triple
D. None of the mentioned

Explanation

An e-NFA consist of 5 tuples: $A=(Q, S, d, q 0 . F)$
Note: e is never a member of S.
Q. 29 State true or false:
A. true
B. false

Explanation

 languages that can be represented.technical campus

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank
 Theory of Computation 3160704

Design a NFA for the language:
Q. $30 \quad L:\{a n \mid n$ is even or divisible by 3$\}$

Which of the following methods can be used to simulate the same.
A. e-NFA
B. Power Construction Method
C. Both (a) and (b)
D. None of the mentioned

Explanation

It is more convenient to simulate a machine using e-NFA else the method of Power Construction is used from the union-closure of DFA's.
Q. 31 Which of the following not an example Bounded Information?
A. fan switch outputs \{on, off \}
B. electricity meter reading
C. colour of the traffic light at the moment
D. none of the mentioned

Explanation

Bounded information refers to one whose output is limited and it cannot be said what were the recorded outputs previously until memorized.
Q. 32 A Language for which no DFA exist is a \qquad
A. Regular Language
B. Non-Regular Language
C. May be Regular
D. Cannot be said

Explanation

A language for which there is no existence of a deterministic finite automata is always Non Regular and methods like Pumping Lemma can be used to prove the same.
Q. 33 A DFA cannot be represented in the following format
A. Transition graph
B. Transition Table
C. C code
D. None of the mentioned

Explanation $\begin{aligned} & \text { A DFA can be represented in the following forma } \\ & \text { Transition tree/forest/Any programming Language. }\end{aligned}$
Q. 34 What the following DFA accepts?

\section*{Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank
 | Theory of Computation | 3160704 |
| :--- | :--- |}

1
A. $\quad \mathrm{x}$ is a string such that it ends with ' 101 '
B. $\quad \mathrm{x}$ is a string such that it ends with ' 01 '
C. $\quad \mathrm{x}$ is a string such that it has odd 1 's and even 0 's
D. $\quad x$ is a strings such that it has starting and ending character as 1

Explanation

Q. 35 When are 2 finite states equivalent?
A. Same number of transitions
B. Same number of states
C. Same number of states as well as transitions
D. Both are final states

Explanation

Two states are said to be equivalent if and only if they have same number of states as well as transitions.
Q. 36 What does the following figure most correctly represents?

Faculty of Department of CE / IT - 07 / 16 Degree Engineering - 083

Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

A. Final state with loop x
B. Transitional state with loop x
C. Initial state as well as final state with loop \mathbf{x}
D. Insufficient Data

Explanation The figure represents the initial as well as the final state with an iteration of \mathbf{x}.
hich of the following will not be accepted by the following DFA?
Q. 37

A. ababaabaa
B. abbbaa
C. abbbaabb
D. abbaabbaa
Q. 38 Which of the following will the given DFA won't accept?

\section*{Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |}

A. $\quad \varepsilon$
B. 11010
C. 10001010
D. String of letter count 11

As the initial state is not made an acceptance state, thus ε will not be accepted by the given
Explanation DFA. For the automata to accept ε as an entity, one should make the initial state as also the final state.
Q. 39 Can a DFA recognize a palindrome number?
A. Yes
B. No
C. Yes, with input alphabet as \sum^{*}
D. Can't be determined

Explanation
 Language to accept a palindrome number or string will be non-regular and thus, its DFA cannot be obtained. Though, PDA is possible.

Q. 40 Which of the following is not an example of finite state machine system?
A. Control Mechanism of an elevator
B. Combinational Locks
C. Traffic Lights

\section*{Faculty of Department of CE/IT -07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |}

D. Digital Watches

Proper and sequential combination of events leads the machines to work in hand which

Explanation

 includes The elevator, Combinational Locks, Traffic Lights, vending machine, etc. Other applications of Finite machine state system are Communication Protocol Design, Artificial Intelligence Research, A Turnstile, etc.Q. 41
A. $\quad 14$ states
B. 13 states
C. 12 states
D. A password pass system cannot be created using DFA

Explanation

For a string of \mathbf{n} characters with no repetitive substrings, the number of states required to pass the string is $\mathbf{n + 1}$.

Which of the following is the corresponding Language to the given DFA?
Q. 42

The password to the admins account="administrator". The total number of states required to make a password-pass system using DFA would be \qquad

A. $\quad \mathrm{L}=\{\mathrm{x} \in\{0,1\} * \mid \mathrm{x}$ ends in 1 and does not contain substring 01$\}$
B. $\quad L=\{x \in\{0,1\} * \mid x$ ends in 1 and does not contain substring 00$\}$
C. $\quad \mathrm{L}=\{\mathrm{x} \in\{0,1\} \mid \mathrm{x}$ ends in 1 and does not contain substring 00$\}$

Faculty of Department of CE / IT - 07 / 16
 Degree Engineering - 083
 Multiple Choice Questions Bank
 Theory of Computation

D. $\quad L=\{x \in\{0,1\} * \mid x$ ends in 1 and does not contain substring 11\}

The Language can be anonymously checked and thus the answer can be predicted. The Explanation language needs to be accepted by the automata (acceptance state) in order to prove its regularity.
Q. 43
A.
B.
C.
D.

Explanation

Union operation creates the universal set by combining all the elements of first and second set while intersection operation creates a set of common elements of the first and the second state.

Let the given DFA consist of x states. Find $x-y$ such that y is the number of states on minimization of DFA?

1
A.
B. 2
C. 1
D. 4

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank

Q. 45
A. $\quad \mathrm{u}^{-1}$
B. $\quad \mathrm{v}^{-1}$
C. $\quad u^{-1} v^{-1}$
D. ε

Explanation
Identity relation: $\varepsilon w=\mathrm{w} \varepsilon=\mathrm{w}$, thus the one satisfying the given relation will be the identity
element.
Which of the following substring will the following notation result?
Q. 46

8	0	1
Q0	Q1	Q4
Q1	Q4	Q2
Q2	Q3	Q3
Q3	Q2	Q2
Q4	Q4	Q4

A. 0101011
B. 0101010
C. 010100
D. 100001

Explanation The given DFA notation accepts the string of even length and prefix ' 01 '.
Predict the following step in the given bunch of steps which accepts a strings which is of even
Q. 47 length and has a prefix $=>01$,
$\delta(q 0, \varepsilon)=q 0<\delta(q 0,0)=\delta(\boldsymbol{q}(\mathbf{q} 0, \varepsilon), 0)=\delta(q 0,0)=q 1<$ \qquad
A. $\quad \delta(q 0,011)=\delta(\delta(q 0,1), 1)=\delta(q 2,1)=q 3$
B. $\quad \delta(\mathbf{q} 0,01)=\delta(\boldsymbol{(q 0 , 0}), \mathbf{1})=\delta(\mathbf{q} 1,1)=\mathbf{q} \mathbf{2}$
C. $\quad \delta(\mathrm{q} 0,011)=\delta(\delta(\mathrm{q} 01,1), 1)=\delta(\mathrm{q} 2,0)=\mathrm{q} 3$
D. $\delta(\mathrm{q} 0,0111)=\delta(\delta(\mathrm{q} 0,011), 0)=\delta(\mathrm{q} 3,1)=\mathrm{q} 2$

Explanation

Here, δ refers to transition function and results into new state or function when an transition is performed over its state.
Q. 48 Fill the missing blank in the given Transition Table:

Language $L=\left\{x \in \sum=\{0,1\} \mid x\right.$ accepts all the binary strings not divisible by 3$\}$

Faculty of Department of CE/IT-07/16
Degree Engineering - 083
Multiple Choice Questions Bank
A.

	0	1
Q0	Q0	Q1
Q1	Q2	Q0
Q2		Q2
Q0		

B. $\quad \mathrm{Q} 1$
C. \quad Q2
D. No Transition

Explanation

The tabular representation of DFA is quite readable and can be used to some ore complex problems. Here, we need to form the transition graph and fill up the given blank.

Which among the following is the missing transition in the given DFA? $L=\left\{\mathbf{x} \in \sum=\{\mathbf{a}, \mathbf{b}\} \mid \mathbf{x}\right.$ starts with a and ends with $\left.\mathbf{b}\right\}$
Q. 49

A. $\quad \delta(q 0, a)=q 0^{a, b}$
B. $\quad \delta(\mathbf{F}, \mathbf{a})=\mathbf{q} \mathbf{1}$
C. $\quad \delta(\mathrm{F}, \mathrm{a})=\mathrm{D}$
D. $\quad \delta(\mathrm{q} 1, \mathrm{a})=\mathrm{D}$

Explanation For the given Language, the transition missing is $\boldsymbol{\delta}(\mathbf{F}, \mathbf{a})=\mathbf{q} 1$.

Faculty of Department of CE/IT -07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Theory of Computation</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">3160704</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Theory of Computation | 3160704 |
| :--- | :--- |</table-markdown></div>

Q. 50 The complement of a language will only be defined when and only when the \qquad over the language is defined.
A. String
B. Word
C. Alphabet
D. Grammar

It is not possible to define the complement of a language without defining the input alphabets.
Explanation Example: A language which does not consist of substring 'ab' while the complement would be the language which does contain a substring 'ab'.
Q. 51 Which among the following is not notated as infinite language?
A. Palindrome
B. Reverse
C. Factorial
D. $\mathrm{L}=\{\mathrm{ab}\}^{*}$

Explanation

Factorial, here is the most appropriate non-infinite domain. Otherwise, palindrome and reverse have infinite domains.

Which among the following states would be notated as the final state/acceptance state? $L=\left\{\mathbf{x} \in \sum=\{a, b\} \mid\right.$ length of x is 2$\}$

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank Theory of Computation 3160704

B. $\quad \mathbf{q} 2$
C. $\quad \mathrm{q} 1, \mathrm{q} 2$
D. q3

Explanation According to the given language, q2 Is to become the final/acceptance state in order to satisfy.
Which of the following are the final states in the given DFA according to the Language given.?
$\mathrm{L}=\left\{\mathbf{x} \in \sum=\{\mathrm{a}, \mathrm{b}\} \mid\right.$ length of x is at most 2$\}$

a, b
A. $\quad \mathrm{q} 0, \mathrm{q} 1$
B. $\mathrm{q} 0, \mathrm{q} 2$
C. $\quad \mathrm{q} 1, \mathrm{q} 2$
D. $\quad q \mathbf{0}, \mathbf{q 1}, q 2$

Explanation According to the given language, the length is at most 2, thus the answer is found accordingly.
Q. 54 There are \qquad tuples in finite state machine.
A. $\quad 4$
B. 5
C. 6
D. unlimited

Explanation States, input symbols,initial state,accepting state and transition function.
Q. 55 Transition function maps.
A. $\quad \Sigma * \mathrm{Q}->\Sigma$
B. $\quad \mathrm{Q}^{*} \mathrm{Q}->\Sigma$
C. $\quad \Sigma * \Sigma->\mathrm{Q}$
D. $\quad \mathbf{Q}^{*} \boldsymbol{\Sigma}->\mathbf{Q}$

Explanation Inputs are state and input string output is states.
Q. 56 Number of states require to accept string ends with 10.
A. 3
B. 2
C. $\quad 1$
D. can't be represented.

Explanation This is minimal finite automata.
Q. 57 Extended transition function is .
A. $\quad Q^{*} \Sigma^{*}->$ Q
B. $\quad \mathrm{Q}^{*} \Sigma->\mathrm{Q}$
C. $\quad \mathrm{Q}^{*} * \Sigma^{*}->\Sigma$
D. $\quad \mathrm{Q}^{*} \Sigma->\Sigma$

Explanation This takes single state and string of input to produce a state.
Q. $58 \quad \delta^{*}(\mathrm{q}, \mathrm{ya})$ is equivalent to .
A. $\quad \delta((\mathrm{q}, \mathrm{y}), \mathrm{a})$
B. $\quad \delta\left(\delta^{*}(\mathbf{q}, \mathbf{y}), \mathbf{a}\right)$
C. $\quad \delta(\mathrm{q}, \mathrm{ya})$
D. independent from δ notation

Explanation First it parse y string after that it parse a.
Q. 59 String X is accepted by finite automata if .
A. $\delta^{*}(\mathrm{q}, \mathrm{x}) \mathrm{E}$ A
B. $\quad \delta(q, x)$ E A
C. $\delta^{*}(\mathbf{Q} 0, \mathbf{x}) \mathbf{E} \mathbf{A}$
D. $\delta(\mathrm{Q} 0, \mathrm{x}) \mathrm{E} \mathrm{A}$

Explanation

If automata starts with starting state and after finite moves if reaches to final step then it called accepted.
Q. 60

Languages of a automata is

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank Theory of Computation

A. If it is accepted by automata
B. If it halts
C. If automata touch final state in its life time
D. All language are language of automata

Explanation If a string accepted by automata it is called language of automata.
Q. 61 Language of finite automata is.
A. Type 0
B. Type 1
C. Type 2
D. Type 3

Explanation According to Chomsky classification.
Q. 62 Finite automata requires minimum \qquad number of stacks.
A. 1
B. 0
C. 2
D. None of the mentioned

Explanation Finite automata doesn't require any stack operation .
Q. 63 Number of final state require to accept Φ in minimal finite automata.
A. 1
B. 2
C. 3
D. None of the mentioned

Explanation No final state requires.
Q. 64 Regular expression for all strings starts with ab and ends with bba is.
A. aba*b*bba
B. $\quad a b(a b) * b b a$
C. $\quad \mathbf{a b}(\mathbf{a}+\mathbf{b}) * \mathbf{b b a}$
D. All of the mentioned

Explanation Starts with ab then any number of a or b and ends with bba.
Q. 65 How many DFA's exits with two states over input alphabet $\{0,1\}$?
A. 16
B. 26

\author{

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

}
C. 32
D. 64

Explanation Number of DFA's $=2^{\mathrm{n}} * \mathbf{n}^{\left(2^{*}{ }^{\text {n }}\right)}$.
Q. 66 The basic limitation of finite automata is that
A. It can't remember arbitrary large amount of information.
B. It sometimes recognize grammar that are not regular.
C. It sometimes fails to recognize regular grammar.
D. All of the mentioned

Explanation Because there is no memory associated with automata.
Q. 67
A. $\quad 3 * 2^{8}$
B. $\quad 2^{\left({ }^{(*)} 8\right)}$
C. $\quad 2^{(3+8)}$
D. None of the mentioned

Explanation $2^{\left(\mathrm{m}^{* n}\right)}$ states requires .
Q. 68

FSM with output capability can be used to add two given integer in binary representation.
This is
A. True
B. False
C. May be true
D. None of the mentioned

Explanation Use them as a flip flop output .
Which of the following options is correct?
Q. 69 Statement 1: Initial State of NFA is Initial State of DFA.

Statement 2: The final state of DFA will be every combination of final state of NFA.
A. \quad Statement $\mathbf{1}$ is true and Statement 2 is true
B. Statement 1 is true and Statement 2 is false
C. \quad Statement 1 can be true and Statement 2 is true
D. Statement 1 is false and Statement 2 is also false

Explanation Statement 1 and 2 always true for a given Language.
Q. 70 Given Language: $\mathrm{L}=\{\mathrm{ab} \mathrm{U} \text { aba }\}^{*}$

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank
Theory of Computation 3160704

If X is the minimum number of states for a DFA and Y is the number of states to construct the NFA, $|\mathbf{X}-\mathrm{Y}|=$?
A. 2
B. 3
C. 4
D. $\quad 1$

Explanation Construct the DFA and NFA individually, and the attain the difference of states.
Q. 71 An automaton that presents output based on previous state or current input:
A. Acceptor
B. Classifier
C. Transducer
D. None of the mentioned.

Explanation

A transducer is an automaton that produces an output on the basis of what input has been given currently or previous state.
Q. 72
A. 64
B. 32
C. 128
D. 127

Explanation The maximum number of sets for DFA converted from NFA would be not greater than 2n.
Q. 73 NFA, in its name has 'non-deterministic' because of :
A. The result is undetermined
B. The choice of path is non-deterministic
C. The state to be transited next is non-deterministic
D. All of the mentioned

Explanation

Non deterministic or deterministic depends upon the definite path defined for the transition from one state to another or undefined(multiple paths).

Which of the following is correct proposition?
Q. 74 Statement 1: Non determinism is a generalization of Determinism.

Statement 2: Every DFA is automatically an NFA
A. Statement 1 is correct because Statement 2 is correct
B. Statement 2 is correct because Statement 2 is correct

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank Theory of Computation 3160704
C. \quad Statement 2 is false and Statement 1 is false
D. Statement 1 is false because Statement 2 is false

Explanation DFA is a specific case of NFA.
Q. 75 Given Language $\mathrm{L}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{x}\right.$ contains aba as its substring $\}$
A. $\quad 2$
B. 3
C. 4
D. Cannot be determined.

Explanation

The individual Transition graphs can be made and the difference of transitions can be determined.
Q. 76 The construction time for DFA from an equivalent NFA (m number of node)is:
A. $\quad \mathrm{O}\left(\mathrm{m}^{2}\right)$
B. $\quad \mathbf{O}\left(2^{\mathrm{m}}\right)$
C. $\quad \mathrm{O}(\mathrm{m})$
D. $\quad \mathrm{O}(\log \mathrm{m})$

Explanation From the coded NFA-DFA conversion.
Q. 77

If \mathbf{n} is the length of Input string and m is the number of nodes, the running time of DFA is \mathbf{x} that of NFA.Find x ?
A. $\quad 1 / \mathrm{m}^{2}$
B. $\quad 2^{\mathrm{m}}$
C. $\quad 1 / \mathrm{m}$
D. $\quad \log m$

Explanation Running time of DFA: $\mathrm{O}(\mathrm{n})$ and Running time of NFA $=\mathbf{O}\left(\mathrm{m}^{2} \mathbf{n}\right)$.
Q. 78 Which of the following option is correct?
A. NFA is slower to process and its representation uses more memory than DFA
B. DFA is faster to process and its representation uses less memory than NFA
C. NFA is slower to process and its representation uses less memory than DFA
D. DFA is slower to process and its representation uses less memory than NFA

NFA, while computing strings, take parallel paths, make different copies of input and goes
Explanation along different paths in order to search for the result. This creates the difference in processing speed of DFA and NFA.

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank Theory of Computation 3160704

Q. 79 The number of tuples in an extended Non Deterministic Finite Automaton:
A. 5
B. 6
C. $\quad 7$
D. 4

Explanation For NFA or extended transition function on NFA, the tuple elements remains same i.e. 5.
Choose the correct option for the given statement:
Q. 80

Statement: The DFA shown represents all strings which has 1 at second last position.

A. Correct
B. Incorrect, Incomplete DFA
C. Wrong proposition
D. May be correct

Explanation The given figure is an NFA. The statement contradicts itself.
Q. 81 What is wrong in the given definition?
A. The definition does not satisfy 5 Tuple definition of NFA
B. There are no transition definition
C. Initial and Final states do not belong to the Graph
D. Initial and final states can't be same

Explanation q3 does not belong to \mathbf{Q} where $\mathbf{Q}=$ set of finite states.
If δ is the transition function for a given NFA, then we define the δ ' for the DFA accepting the
Q. 82 same language would be:

Note: S is a subset of Q and a is a symbol.
A. $\boldsymbol{\delta}^{\prime}(\mathbf{S}, \mathbf{a})=\mathbf{U}_{\mathrm{pes}} \boldsymbol{\delta}(\mathbf{p}, \mathbf{a})$
B. $\quad \delta^{\prime}(\mathrm{S}, \mathrm{a})=\mathrm{U}_{\mathrm{p} \neq \mathrm{s}} \delta(\mathrm{p}, \mathrm{a})$
C. $\delta^{\prime}(\mathrm{S}, \mathrm{a})=\mathrm{U}_{\mathrm{pGS}} \delta(\mathrm{p})$
D. $\quad \delta^{\prime}(\mathrm{S})=\mathrm{U}_{\mathrm{p} \neq \mathrm{s}} \delta(\mathrm{p})$

Explanation According to subset construction, equation 1 holds true.
Q. 83 What is the relation between DFA and NFA on the basis of computational power?

Multiple Choice Questions Bank

A. $\quad \mathrm{DFA}>\mathrm{NFA}$
B. $\quad \mathrm{NFA}>\mathrm{DFA}$
C. Equal
D. Can't be said

Explanation

DFA is said to be a specific case of NFA and for every NFA that exists for a given language, an equivalent DFA also exists.

If a string S is accepted by a finite state automaton, $S=S_{1} S_{2} S_{3} \ldots \ldots s_{n}$ where $s_{i} \sum \sum$ and there exists
Q. $84 \quad$ a sequence of states $r 0, r 1, r 2 \ldots$. rn such that $\delta\left(r(i), s_{i+1}\right)=r_{i+1}$ for each $0,1, \ldots n-1$, then $r(n)$ is:
A. initial state
B. transition symbol
C. accepting state
D. intermediate state

Explanation

$\mathbf{r}(\mathbf{n})$ is the final state and accepts the string S after the string being traversed through $\mathbf{r}(\mathbf{i})$ other states where I $\in \mathbf{0 1 , 2} \ldots(\mathrm{n}-2)$.

According to the given table, compute the number of transitions with 1 as its symbol but not 0 :
Q. 85

Q	$\Delta(q, 0)$	$\delta(q, 1)$
$q 0$	$\{q 0\}$	$\{q 0, q 1\}$
$q 1$	$\{q 2\}$	$\{q 2\}$
$q 2$	$\{q 3\}$	$\{q 3\}$
$q 3$	Φ	Φ

A. $\quad 4$
B. 3
C. 2
D. $\quad 1$

Explanation The transition graph is made and thus the answer can be found.
From the given table, $\delta^{*}(q 0,011)=$?
Q. 86

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083

Multiple Choice Questions Bank

Theory of Computation	3160704

C. $\quad\{q 2, q 1\}$
D. $\quad\{q 3, q 1, q 2, q 0\}$

Explanation $\delta^{*}(q \mathbf{0}, 011)=\mathrm{U}_{\mathrm{r}} \delta^{*}(\mathrm{q} 0,01) \delta(\mathrm{r}, 1)=\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2\}$.
Number of times the state $\mathbf{q} 3$ or q2 is being a part of extended 6 transition state is
Q. 87

A. 6
B. 5
C. 4
D. 7

Explanation

According to the question, presence of $q 2$ or q1 would count so it does and the answer according to the diagram is 6 .
Q. 88 Predict the missing procedure:

δ	0	1
$->$ Q0	Q0	Q0,Q1
Q1	Q2	Q2
*Q2	Φ	Φ

$1 . \Delta(\mathrm{Q} 0, \varepsilon)=\{\mathrm{Q} 0\}$,
2. $\Delta(\mathrm{Q} 0,01)=\{\mathrm{Q} 0, \mathrm{Q} 1\}$
$3 . \delta(\mathrm{Q} 0,010)=$?
A. $\quad\{\mathrm{Q} 0, \mathrm{Q} 1, \mathrm{Q} 2\}$
B. $\{\mathrm{Q} 0, \mathrm{Q} 1\}$
C. $\{\mathrm{Q} 0, \mathrm{Q} 2\}$
D. $\{\mathrm{Q} 1, \mathrm{Q} 2\}$

Explanation

According to given table and extended transition state implementation, we can find the state at which it rests.
Q. 89 Subset Construction method refers to:
A. Conversion of NFA to DFA
B. DFA minimization
C. Eliminating Null references
D. ε-NFA to NFA

Explanation

The conversion of a non-deterministic automata into a deterministic one is a process we call subset construction or power set construction.

Given Language:
Q. $90 \quad L_{n}=\{\mathbf{x} \in\{0,1\} *| | x \mid \geq n$, nth symbol from the right in x is 1$\}$ How many state are required to execute L_{3} using NFA?
A. 16
B. $\quad 15$
C. 8
D. $\quad 7$

Explanation The finite automaton for the given language is made and thus, the answer can be obtained.
Q. 91 Which of the following does the given NFA represent?

Faculty of Department of CE / IT - 07 / 16 Degree Engineering - 083

Multiple Choice Questions Bank

A. $\{11,101\} *\{01\}$
B. $\{110,01\} *\{11\}$
C. $\{11,110\} *\{0\}$
D. $\{00,110\} *\{1\}$

Explanation The given diagram can be analysed and thus the option can be seeked.
The number of transitions required to convert the following into equivalents DFA:
Q. 92

A. $\quad 2$
B. 3
C. $\quad 1$
D. 0

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank Theory of Computation 3160704

Q. 93 If L is a regular language, L^{c} and L^{r} both will be:
A. Accepted by NFA
B. Rejected by NFA
C. One of them will be accepted
D. Cannot be said

Explanation If L is a regular Language, L^{c} and L^{r} both are regular even.
Q. 94 In NFA, this very state is like dead-end non final state:
A. ACCEPT
B. REJECT
C. DISTINCT
D. START

Explanation REJECT state will be like a halting state which rejects a particular invalid input.
Q. 95 We can represent one language in more one FSMs, true or false?
A. TRUE
B. FALSE
C. May be true
D. Cannot be said

Explanation
 We can represent one language in more one FSMs, example for a same language we have a DFA and an equivalent NFA.

Q. 96 The production of form non-terminal -> ε is called:
A. Sigma Production
B. Null Production
C. Epsilon Production
D. All of the mentioned

Explanation The production of form non-terminal $->\varepsilon$ is call null production.
technical campus

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank Theory of Computation 3160704

Q. 97 Which of the following is a regular language?
A. String whose length is a sequence of prime numbers
B. String with substring $w w^{r}$ in between
C. Palindrome string
D. String with even number of Zero's

Explanation DFSM's for the first three option is not possible; hence they aren't regular.
Q. 98 Which of the following recognizes the same formal language as of DFA and NFA?
A. Power set Construction
B. Subset Construction
C. Robin-Scott Construction
D. All of the mentioned

Explanation

All the three option refers to same technique if distinguishing similar constructions for different type of automata.
Q. 99 Under which of the following operation, NFA is not closed?
A. Negation
B. Kleene
C. Concatenation
D. None of the mentioned

NFA is said to be closed under the following operations:
a) Union
b) Intersection
c) Concatenation
d) Kleene
e) Negation
Q. 100 It is less complex to prove the closure properties over regular languages using
A. NFA
B. DFA
C. PDA
D. Can't be said

We use the construction method to prove the validity of closure properties of regular
Explanation languages. Thus, it can be observe, how tedious and complex is the construction of a DFA as compared to an NFA with respect to space.
Q. 101 Which of the following is an application of Finite Automaton?

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank Theory of Computation 3160704

A. Compiler Design
B. Grammar Parsers
C. Text Search
D. All of the mentioned

Explanation

There are many applications of finite automata, mainly in the field of Compiler Design and Parsers and Search Engines.

John is asked to make an automaton which accepts a given string for all the occurrence of
Q. 102 ' 1001 ' in it. How many number of transitions would John use such that, the string processing application works?
A. $\quad 9$
B. 11
C. 12
D. 15

Explanation

Q. 103 Which of the following do we use to form an NFA from a regular expression?
A. Subset Construction Method
B. Power Set Construction Method
C. Thompson Construction Method
D. Scott Construction Method

Thompson Construction method is used to turn a regular expression in an NFA by
Explanation fragmenting the given regular expression through the operations performed on the input alphabets.
Q. 104 Which among the following can be an example of application of finite state machine(FSM)?
A. Communication Link
B. Adder
C. Stack
D. None of the mentioned

Explanation Idle is the state when data in form of packets is send and returns if NAK is received else waits

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank Theory of Computation 3160704

for the NAK to be received.
Q. 105 Which among the following is not an application of FSM?
A. Lexical Analyser
B. BOT
C. State charts
D. None of the mentioned

Explanation

Finite state automation is used in Lexical Analyser, Computer BOT (used in games), State charts, etc.
$L 1=\{w \mid w$ does not contain the string $\operatorname{tr}\}$
Q. 106
$\mathbf{L} 2=\{\mathbf{w} \mid \mathbf{w}$ does contain the string tr$\}$
Given $\sum=\{t, r\}$, The difference of the minimum number of states required to form L1 and L2?
A. 0
B. $\quad 1$
C. 2
D. Cannot be said

Explanation

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank
Theory of Computation 3160704

Predict the number of transitions required to automate the following language using only 3
Q. 107 states:
$L=\{w \mid w$ ends with 00$\}$
A. 3
B. 2
C. 4
D. Cannot be said

Explanation

The total number of states to build the given language using DFA:
$L=\{w \mid w$ has exactly 2 a's and at least $2 b$'s $\}$
A. 10
B. 11
C. 12
D. 13

Explanation

We need to make the number of a as fixed i.e. 2 and b can be 2 or more. Thus, using this condition a finite automata can be created using 1 states.

Given Language: $\{x \mid$ it is divisible by 3$\}$
Q. 109 The total number of final states to be assumed in order to pass the number constituting $\{0,1\}$ is
A. 0
B. $\quad 1$
C. $\quad 2$
D. 3

The DFA for the given language can be constructed as follows:

Explanation

technical campus

\section*{Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank
 | Theory of Computation | 3160704 |
| :--- | :--- |}

Q. 110 A binary string is divisible by 4 if and only if it ends with:
A. 100
B. 1000
C. 1100
D. 0011

Explanation

If the string is divisible by four, it surely ends with the substring ' 100 ' while a binary string divisible by 2 would surely end with the substring ' 10 '.
Q. 111

Let L be a language whose FA consist of 5 acceptance states and 11 non final states. It further
A. consists of a dumping state. Predict the number of acceptance states in L^{c}
A. 16
B. $\quad 11$
C. 5
D. 6

Explanation

If L leads to FA1, then for L^{c}, the FA can be obtained by exchanging the final and non-final states.
Q. 112 If L1 and L2 are regular languages, which among the following is an exception?
A. L1 U L2
B. $\mathrm{L} 1-\mathrm{L} 2$
C. $\quad \mathrm{L} 1 \cap \mathrm{~L} 2$
D. All of the mentioned

Explanation
 It the closure property of Regular language which lays down the following statement:
 If $\mathrm{L} 1, \mathrm{~L} 2$ are 2- regular languages, then $\mathrm{L} 1 \mathrm{U} \mathbf{L 2}, \mathrm{L} 1 \cap \mathrm{~L} 2, \mathrm{~L} 1^{\mathrm{C}}, \mathrm{L} 1-\mathrm{L} 2$ are regular language.

Q. 113 Predict the analogous operation for the given language:
A. A1-A2
B. A2-A1
C. A1.A2
D. A1+A2

Explanation
Q. 114

When set operation '-' is performed between two sets, it points to those values of prior set which belongs to it but not to the latter set analogous to basic subtraction operation.

Which among the following NFA's is correct corresponding to the given Language?
$L=\{x \in\{0,1\} \mid$ 3rd bit from right is 0$\}$

Dr. SUBHASH
TECHNICAL CAMPUS

Faculty of Department of CE / IT - 07/ 16 Degree Engineering - 083

Multiple Choice Questions Bank

\section*{| Theory of Computation | 3160704 |
| :--- | :--- |}

A.

B.

C.

D. None of the mentioned

Explanation The NFA accepts all binary strings such that the third bit from right end is 1 and if not, is

Faculty of Department of CE / IT - 07 / 16
 Degree Engineering - 083

Multiple Choice Questions Bank

send to Dumping state. Note: It is assumed that the input is given from the right end bit by bit.
Statement 1: NFA computes the string along parallel paths.
Q. 115 Statement 2: An input can be accepted at more than one place in an NFA.

Which among the following options are most appropriate?
A. Statement 1 is true while 2 is not
B. Statement 1 is false while is not
C. Statement 1 and 2, both are true
D. Statement 1 and 2, both are false

While the machine runs on some input string, if it has the choice to split, it goes in all possible

Explanation

 way and each one is different copy of the machine. The machine takes subsequent choice to split further giving rise to more copies of the machine getting each copy run parallel. If any one copy of the machine accepts the strings, then NFA accepts, otherwise it rejects.Which of the following options is correct for the given statement?
Q. 116 Statement: If K is the number of states in NFA, the DFA simulating the same language would have states less than 2^{k}.
A. True
B. False

Explanation

If K is the number of states in NFA, the DFA simulating the same language would have states equal to or less than 2_{k}.
Q. 117

Let $\mathbf{N}(\mathbf{Q}, \Sigma, \delta, q 0, A)$ be the NFA recognizing a language L. Then for a DFA $\left(Q^{\prime}, \Sigma, \delta, q 0^{\prime}\right.$,
A. $\quad \mathrm{Q}^{\prime}=\mathrm{P}(\mathrm{Q})$
B. $\Delta^{\prime}=\delta^{\prime}(R, a)=\{q \in Q \mid q \in \delta(r, a)$, for some $r \in R\}$
C. $\quad Q^{\prime}=\{q 0\}$
D. All of the mentioned

Explanation All the optioned mentioned are the instruction formats of how to convert a NFA to a DFA.
Q. 118

There exists an initial state, 17 transition states, 7 final states and one dumping state, Predict the maximum number of states in its equivalent DFA?
A. 226
B. 225
C. 224
D. 223

Explanation

The maximum number of states an equivalent DFA can comprise for its respective NFA with k states will be 2^{k}.

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank Theory of Computation 3160704

ccording to the given transitions, which among the following are the epsilon closures of $\mathbf{q 1}$ for the given NFA?
Q. $119 \Delta(q 1, \varepsilon)=\{q 2, q 3, q 4\}$
$\Delta(q 4,1)=q 1$
$\Delta(\mathbf{q} 1, \varepsilon)=\mathbf{q} 1$
A. $\quad \mathrm{q} 4$
B. $\quad q 2$
C. $\quad \mathrm{q} 1$
D. $q 1, q 2, q 3, q 4$

Explanation
The set of states which can be reached from q using ε-transitions, is called the ε-closure over state q.

State true or false?
Q. 120 Statement: An NFA can be modified to allow transition without input alphabets, along with one or more transitions on input symbols.
A. True
B. False

Explanation

It is possible to construct an NFA with ε-transitions, presence of no input symbols, and that is called NFA with ε-moves.
Q. 121 State true or false?
A. True
B. False

Explanation

ε does not appears on Input tape, ε transition means a transition without scanning a symbol i.e. without moving the read head.

Statement 1: ε - transition can be called as hidden non-determinism.
Q. 122 Statement 2: $\delta(q, \varepsilon)=p$ means from q it can jump to p with a shift in read head. Which among the following options is correct?
A. Statement 1 and 2, both are correct
B. Statement 1 and 2, both are wrong
C. Statement 1 is correct while Statement 2 is wrong
D. Statement 1 is wrong while Statement 2 is correct

Explanation

The transition with ε leads to a jump but without any shift in read head. Further, the method can be called one to introduce hidden non-determinism.

\section*{Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |}

Q. 123ε - closure of $q 1$ in the given transition graph:
A. $\{q 1\}$
B. $\{q 0, q 2\}$
C. $\quad\{\mathbf{q} 1, q 2\}$
D. $\{q 0, q 1, q 2\}$

Explanation

ε-closure is defined as the set of states being reached through ε-transitions from a starting state.
Q. 124 Predict the total number of final states after removing the ε-moves from the given NFA?
A. $\quad 1$
B. 2
C. 3
D. 0

Explanation The NFA which would result after eliminating ε-moves can be shown diagramatically.
Q. 125 For NFA with ε-moves, which among the following is correct?
A. $\quad \Delta: \mathbf{Q X}\left(\sum \mathbf{U}\{\varepsilon\}\right)->\mathbf{P}(\mathbf{Q})$
B. $\quad \Delta: \mathrm{Q} \mathrm{X}(\Sigma)->\mathrm{P}(\mathrm{Q})$
C. $\quad \Delta: \mathrm{QX}\left(\sum^{*}\right)->\mathrm{P}(\mathrm{Q})$
D. All of the mentioned

Explanation

Due to the presence of ε symbol, or rather an epsilon-move, the input alphabets unites with it to form a set including ε.
Q. 126 Which among the following is false?
ε-closure of a subset S of Q is:
A. Every element of $S \in Q$
B. For any $\mathrm{q} \in \varepsilon(\mathrm{S})$, every element of $\delta(\mathrm{q}, \varepsilon)$ is in $\varepsilon(\mathrm{S})$
C. No other element is in $\varepsilon(S)$
D. None of the mentioned

All the mentioned are the closure properties of ε and encircles all the elements if it satisfies the following options:
Explanation a) Every element of $S \in \mathbf{Q}$
b) For any $q \in \varepsilon(S)$, every element of $\delta(q, \varepsilon)$ is in $\varepsilon(S)$
c) No other element is in $\varepsilon(S)$

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank

Theory of Computation	3160704

Q. 127
A. NFA
B. DFA
C. NFA-I
D. All of the mentioned

Explanation

NFA-l or e-NFA is an extension of Non deterministic Finite Automata which are usually called NFA with epsilon moves or lambda transitions.
Q. 128 e-transitions are
A. conditional
B. unconditional
C. input dependent
D. none of the mentioned

Explanation

An epsilon move is a transition from one state to another that doesnt require any specific condition.
Q. 129

The \qquad of a set of states, \mathbf{P}, of an NFA is defined as the set of states reachable from
A. e-closure
B. e-pack
C. $\quad \mathrm{Q}$ in the tuple
D. None of the mentioned

Explanation

The e-closure of a set of states, P, of an NFAis defined as the set of states reachable from any state in \mathbf{P} following e-transitions.
Q. 130 Is the language preserved in all the steps while eliminating epsilon transitions from a NFA?
A. yes
B. no

Explanation Yes, the language is preserved during the dteps of construction: $L(N)=L(N 1)=L(N 2)=L(3)$.
Q. 131 Which of the following does not belong to input alphabet if $S=\{a, b\}^{*}$ for any language?
A. a
B. b
C. e
D. none of the mentioned

The automaton may be allowed to change its state without reading the input symbol using
Explanation epsilon but this does not mean that epsilon has become an input symbol. On the contrary, one assumes that the symbol epsilon does not belong to any alphabet.

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank Theory of Computation 3160704

Q. 132 Regular sets are closed under union,concatenation and kleene closure.
A. True
B. False
C. Depends on regular set
D. Can't say

Explanation Regular sets are closed under these three operation.
Q. 133 Complement of a DFA can be obtained by
A. making starting state as final state.
B. no trival method.
C. making final states non-final and non-final to final.
D. make final as a starting state.

Explanation

String accepted in previous DFA will not be accepted and non accepting string will be accepted.
Q. 134 Complement of regular sets are \qquad
A. Regular
B. $\quad \mathrm{CFG}$
C. CSG
D. RE

Explanation Regular sets are closed under complement operation.
Q. 135 If L1 and $L 2$ are regular sets then intersection of these two will be
A. Regular
B. Non Regular
C. Recursive
D. Non Recursive

Explanation Regular expression are also colsed under intersection.
Q. 136 If L 1 is regular $L 2$ is unknown but L 1-L2 is regular ,then $L 2$ must be
A. Empty set
B. CFG
C. Decidable
D. Regular

Explanation Regular is closed under difference.

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank

Theory of Computation	3160704

Q. 137 Reverse of a DFA can be formed by
A. using PDA
B. making final state as non-final
C. making final as starting state and starting state as final state
D. None of the mentioned

Explanation By making final state as starting state string starting from end will be accepted.
Q. 138 Reverse of $(0+1)^{*}$ will be
A. Phi
B. Null
C. $\quad(0+1)^{*}$
D. $(0+1)$

Explanation

There is only one state which is start and final state of DFA so interchanging starting start and final state doesn't change DFA.
Q. 139 A \qquad is a substitution such that $h(a)$ contains a string for each a.
A. Closure
B. Interchange
C. Homomorphism
D. Inverse Homomorphism

Explanation This operation replace using a function.
Q. 140 Homomorphism of a regular set is \qquad
A. Universal set
B. Null set
C. Regular set
D. Non regular set

Explanation Regular set are closed under homomorphism.
Q. $141 \quad\left(a^{\wedge} 5 b{ }^{\wedge} 5\right)^{*}$ is example of \qquad
A. Type 0 language
B. Type 1 language
C. Type 2 language
D. Type 3 language

Explanation It is a regular expression.
Q. 142 Which of the following is type 3 language ?
A. Strings of 0's whose length is perfect square
B. Palindromes string

\author{

Faculty of Department of CE/IT -07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

}
C. Strings of 0's having length prime number
D. String of odd number of 0 's

Explanation Only d is regular language.
Q. $143 \quad \mathrm{a}^{\wedge} \mathrm{nb}{ }^{\wedge} \mathrm{n}$ where ($\mathrm{n}+\mathrm{m}$) is even .
A. Type 0
B. Type 1
C. Type 2
D. Type 3

Explanation It is a regular expression.
Q. 144 Complement of $\mathrm{a}^{\wedge} \mathrm{nb}{ }^{\wedge} \mathrm{m}$ where $\mathrm{n}>=4$ and $\mathrm{m}<=3$ is example of
A. Type 0
B. Type 1
C. Type 2
D. Type 3

Explanation It is a regular expression.
Q. $145 L$ is a regular Language if and only If the set of \qquad classes of IL is finite.
A. Equivalence
B. Reflexive
C. Myhill
D. Nerode

Explanation

According to Myhill Nerode theorem, the corollary proves the given statement correct for equivalence classes.
Q. 146 A language can be generated from simple primitive language in a simple way if and only if
A. It is recognized by a device of infinite states
B. It takes no auxiliary memory
C. Both are correct
D. Both are wrong

A language is regular if and only if it can be accepted by a finite automaton. Secondly, It

Explanation

 supports no concept of auxiliary memory as it loses the data as soon as the device is shut down.Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank

Theory of Computation	3160704

Q. 147 Which of the following does not represents the given language?

Language: $\{0,01\}$
A. $0+01$
B. $\quad\{0\} \mathrm{U}\{01\}$
C. $\quad\{0\} \mathrm{U}\{0\}\{1\}$
D. $\{0\} \wedge\{01\}$

The given option represents $\{0,01\}$ in different forms using set operations and Regular
Explanation Expressions. The operator like \wedge, v, etc. are logical operation and they form invalid regular expressions when used.

According to the given language, which among the following expressions does it corresponds
Q. 148 to?

Language $L=\{x \in\{0,1\} \mid x$ is of length 4 or less $\}$
A. $(0+1+0+1+0+1+0+1)^{4}$
B. $(0+1)^{4}$
C. $\quad(01)^{4}$
D. $\quad(0+1+\varepsilon)^{4}$

Explanation

The extended notation would be $(0+1)^{4}$ but however, we may allow some or all the factors to be ε. Thus ε needs to be included in the given regular expression.
Q. 149

Which among the following looks similar to the given expression?
$((0+1) .(0+1))$ *
A. $\quad\{x \in\{0,1\} * \mid x$ is all binary number with even length $\}$
B. $\quad\{x \in\{0,1\} \mid x$ is all binary number with even length $\}$
C. $\quad\{x \in\{0,1\} * \mid x$ is all binary number with odd length $\}$
D. $\quad\{\mathrm{x} \in\{0,1\} \mid \mathrm{x}$ is all binary number with odd length $\}$

Explanation

The given regular expression corresponds to a language of binary strings which is of even length including a length of 0 .

If \mathbf{R} represents a regular language, which of the following represents the Venn-diagram most correctly?
Q. 150

\section*{Faculty of Department of CE/IT -07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |}

B. $\quad \mathbf{R}^{*}$
C. $\quad \mathrm{R}$ complement
D. $\quad \mathrm{R}$ reverse

Explanation

The given diagram represents the Kleene operation over the Regular Language R in which the final states become the initial and the initial state becomes final.

The given NFA corresponds to which of the following Regular expressions?
Q. 151

A. $\quad(0+1) *(00+11)(0+1) *$
B. $(0+1) *(00+11) *(0+1) *$
C. $(0+1) *(00+11)(0+1)$
D. $(0+1)(00+11)(0+1)$ *

The transition states shown are the result of breaking down the given regular expression in
Explanation fragments. For dot operation, we change a state, for union (plus) operation, we diverge into two transitions and for Kleene Operation, we apply a loop.
Q. 152 Concatenation Operation refers to which of the following set operations:
A. Union
B. Dot
C. Kleene
D. Two of the options are correct

Explanation $\in B\}$.

Two operands are said to be performing Concatenation operation $A B=A \cdot B=\{x y: x \in A \& y$
Q. 153 Concatenation of R with Φ outputs:
A. $\quad \mathrm{R}$
B. $\quad \Phi$

\author{

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

}
C. $\quad \mathrm{R}, \Phi$
D. None of the mentioned

Explanation
 By distributive property (Regular expression identities), we can prove the given identity to be Ф.

Q. 154 RR* can be expressed in which of the forms:
A. $\quad \mathrm{R}+$
B. R-
C. $R+U R-$
D. $\quad R$

Explanation $R^{*}=R+$ as $R+$ means the occurrence to be at least once.
Q. 155 A finite automaton accepts which type of language:
A. Type0
B. Type1
C. Type2
D. Type3

Explanation Type 3 refers to Regular Languages which is accepted by a finite automaton.
Q. 156 Which among the following are incorrect regular identities?
A. $\quad \varepsilon R=R$
B. $\varepsilon^{*}=\varepsilon$
C. $\Phi^{*}=\varepsilon$
D. $\quad \mathbf{R} \Phi=\mathbf{R}$

Explanation There are few identities over Regular Expressions which include: $\mathbf{R} \Phi=\Phi \mathbf{R}=\Phi \neq \mathbf{R}$
Q. 157
implify the following regular expression:
A. $(1+011)$ *
B. $\quad\left(1^{*}(011) *\right)$
C. $\quad(1+(011) *) *$
D. (1011)*

Explanation $\begin{aligned} & \varepsilon+\mathbf{1}^{*}(011) *\left(\mathbf{1}^{*}(\mathbf{0 1 1}) *\right) * \\ & \varepsilon+\mathbf{R} \mathbf{R}^{*}=\varepsilon+\mathbf{R} * \mathbf{R}=\varepsilon+\mathbf{R}+=\mathbf{R}^{*}\end{aligned}$
Q. $158 \quad \mathbf{P}, \mathbf{O}, \mathbf{R}$ be regular expression over \sum, \mathbf{P} is not ε, then
$R=Q+R P$ has a unique solution:

\author{

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

}

A.	Q*P
B.	QP*
C.	Q*P*
D.	(P*O*) *
Explanation	The given statement is the Arden's Theorem and it tends to have a unique solution as QP*. Let P and Q be regular expressions, $\mathbf{R}=\mathbf{Q}+\mathbf{R P}$
	$\mathrm{R}=\mathrm{Q}+(\mathrm{Q}+\mathrm{RP}) \mathrm{P}$
	$\mathrm{R}=\mathrm{Q}+(\mathrm{Q}+\mathrm{RP})+\mathrm{RP})+\mathrm{P}=\mathbf{Q}+\mathrm{QP}+\mathrm{RPP}+\mathrm{RPP}=\mathrm{Q}+\mathrm{QP}+(\mathrm{Q}+\mathrm{RP}) \mathrm{PP}+(\mathrm{Q}+\mathrm{RP})$
	$\mathbf{P P}=\mathbf{Q}+\mathbf{Q P}+\mathbf{Q P P}+\mathrm{RPPP}+\mathbf{Q P P}+\mathrm{RPPP}$,
	If we do this recursively, we get:
	$\mathrm{R}=\mathrm{QP} *$
Q. 159	Arden's theorem is true for:
A.	More than one initial states
B.	Null transitions
C.	Non-null transitions
D.	None of the mentioned
	Arden's theorem strictly assumes the following;
Explanation	a) No null transitions in the transition diagrams
	b) True for only single initial state
Q. 160	The difference between number of states with regular expression ($\mathbf{a}+\mathbf{b}$) and ($\mathbf{a}+\mathbf{b}$) * is:
A.	1
B.	2
C.	3
D.	0
Explanation	
Q. 161	In order to represent a regular expression, the first step to create the transition diagram is:
A.	Create the NFA using Null moves
B.	Null moves are not acceptable, thus should not be used
C.	Predict the number of states to be used in order to construct the Regular expression
D.	None of the mentioned
Explanation	Two steps are to be followed while converting a regular expression into a transition diagram: a) Construct the NFA using null moves. b) Remove the null transitions and convert it into its equivalent DFA.

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank Theory of Computation 3160704
Q. $162 \quad(0+\varepsilon)(1+\varepsilon)$ represents
A. $\quad\{0,1,01, \varepsilon\}$
B. $\{0,1, \varepsilon\}$
C. $\quad\{0,1,01,11,00,10, \varepsilon\}$
D. $\{0,1\}$

Explanation

The regular expression is fragmented and the set of the strings eligible is formed. ' + ' represents union while '.' Represents concatenation.
Q. 163 The minimum number of states required to automate the following Regular Expression:
A. $\quad 4$
B. 3
C. 2
D. 5

Explanation
Q. 164 Regular Expression denote precisely the \qquad of Regular Language.
A. Class
B. Power Set
C. Super Set
D. None of the mentioned

Regular Expression denote precisely the class of regular language. Given any regular
Explanation expression, $L(\mathbb{R})$ is a regular language. Given any regular language L, there is a regular expression R, such that $L(R)=L$.

Which of the following is correct?
Q. 165 Statement 1: ε represents a single string in the set.

Statement 2: Φ represents the language that consist of no string.
A. Statement 1 and 2 both are correct
B. Statement 1 is false but 2 is correct
C. Statement 1 and 2 both are false
D. There is no difference between both the statements, ε and Φ are different notation for same reason

Explanation

ε represents a single string in the set namely, the empty string while Statement $\mathbf{2}$ is also correct.
Q. 166 The appropriate precedence order of operations over a Regular Language is
A. Kleene, Union, Concatenate
B. Kleene, Star, Union
C. Kleene, Dot, Union
D. Star, Union, Dot

Explanation

If a regular language expression is given, the appropriate order of precedence if the parenthesis is ignored is: Star or Kleene, Dot or Concatenation, Union or Plus.
Q. 167 Regular Expression R and the language it describes can be represented as:
A. $\quad \mathrm{R}, \mathrm{R}(\mathrm{L})$
B. $\quad L(R), R(L)$
C. $\quad \mathbf{R}, \mathrm{L}(\mathbf{R})$
D. All of the mentioned

Explanation

When we wish to distinguish between a regular expression \mathbf{R} and the language it represents; we write $L(R)$ to be the language of R.
Q. 168 Let for $\sum=\{0,1\} \mathbf{R}=\left(\sum \Sigma \Sigma\right)^{*}$, the language of \mathbf{R} would be
A. $\quad\{\mathrm{w} \mid \mathrm{w}$ is a string of odd length $\}$
B. $\quad\{w \mid w$ is a string of length multiple of 3$\}$
C. $\quad\{w \mid w$ is a string of length 3$\}$
D. All of the mentioned

Explanation

This regular expression can be used to eliminate the answers and get the result. The length can be even and as well more than 3 when $\mathbf{R}=\left(\sum \sum \Sigma\right)\left(\sum \sum \Sigma\right)$ (particular case).
Q. 169 If $\sum=\{0,1\}$, then Φ^{*} will result to:
A. $\quad \varepsilon$
B. $\quad \sum_{\Phi}$
C. $\quad \Phi$
D. None of the mentioned

Explanation the result. If the language is empty, the star operation can put together 0 strings, resulting only the empty string.
Q. 170 The given NFA represents which of the following NFA
A. (ab U a) *
B. $\quad\left(a^{*} b^{*} U a^{*}\right)$
C. $\quad\left(a b U a^{*}\right)$
D. $\quad(a b)^{*} U a^{*}$

The Regular expression ($\mathbf{a b} \mathbf{U}$ a) * is converted to NFA in a sequence of stages as it can be
Explanation clearly seen in the diagram. This NFA consist of 8 stated while its minimized form only contains 2 states.

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083

Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

Q. 171 Which of the following represents a language which has no pair of consecutive 1 's if $\Sigma=\{0,1\}$?
A. $(0+10) *(1+\varepsilon)$
B. $(0+10)^{*}(1+\varepsilon)^{*}$
C. $(0+101) *(0+\varepsilon)$
D. $\quad(1+010) *(1+\varepsilon)$

Explanation

All the options except 'a' accept those strings which comprises minimum one pair of 1 's together.
Q. 172 The finite automata accept the following languages:
A. Context Free Languages
B. Context Sensitive Languages
C. Regular Languages
D. All the mentioned

Explanation

A finite automaton accepts the languages which are regular and for which a DFA can be constructed.
Q. $173(a+b * c)$ most correctly represents:
A. $\quad(\mathrm{a}+\mathrm{b}) * \mathrm{c}$
B. $\quad(a)+((b) * . c)$
C. $\quad\left(a+\left(b^{*}\right)\right) . c$
D. $\quad \mathbf{a +}\left(\left(\mathbf{b}^{*}\right) . \mathbf{c}\right)$

Explanation

Following the rules of precedence, Kleene or star operation would be done first, then concatenation and finally union or plus operation.
Q. 174
A. (rt)*
B. $\quad(t r)^{*}$
C. $\quad\left(\mathrm{r}^{*} \mathrm{t}^{*}\right)$
D. (t*r*)

Explanation

As Kleene operation is not on the whole of the substring, it will not repeat and maintain the order of t, r.
Q. 175 Which of the following is same as the given DFA?

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083

Multiple Choice Questions Bank Theory of Computation 3160704

A. $(0+1)^{*} 001(0+1)^{*}$
B. $\quad 1^{*} 001(0+1)^{*}$
C. $\quad(01)^{*}(0+0+1)(01)^{*}$
D. None of the mentioned

Explanation

There needs to be 001 together in the string as an essential substring. Thus, the other components can be anything, 0 or 1 or e.
Q. 176 Which of the following statements is not true?
A. Every language defined by any of the automata is also defined by a regular expression
B. Every language defined by a regular expression can be represented using a DFA
C. Every language defined by a regular expression can be represented using NFA with e moves
D. Regular expression is just another representation for any automata definition

Explanation

Using NFA with e moves, we can represent all the regular expressions as an automata. As regular expressions include e, we need to use e moves.
Q. 177

The total number of states required to automate the given regular expression
A. 3
B. 4
C. 5
D. 6
B. $(11+110)^{*} 1$
C. $(110+11) * 0$
D. $(1+110) * 1$

Explanation

There is no state change for union operation, but has two different paths while for concatenation or dot operation, we have a state change for every element of the string.

\author{

Faculty of Department of CE / IT - 07 / 16
 Degree Engineering - 083
 Multiple Choice Questions Bank
 | Theory of Computation | 3160704 |
| :--- | :--- |

}

Generate a regular expression for the following problem statement:
Q. 178 Password Validation: String should be 8-15 characters long. String must contain a number, an Uppercase letter and a Lower case letter.
A. $\quad \wedge(?=. *[a-z])(?=. *[A-Z])(?=. * \backslash d) .\{8,15\} \$$
B. $\quad \wedge(?=. *[a-z])(?=. *[A-Z])(?=. * \backslash d) .\{9,16\} \$$
C. $\quad \wedge(?=.[\mathrm{a}-\mathrm{z}])(?=.[\mathrm{A}-\mathrm{Z}])(?=. \mathrm{dd}) .\{8,15\} \$$
D. None of the mentioned

Passwords like abc123, 123XYZ, should not be accepted. If one also wants to include special

Explanation

 characters as one of the constraint, one can use the following regular expression:$\wedge(?=. *[a-z])(?=. *[A-Z])(?=. * \backslash d)(?=. *[\wedge \backslash d a-z a-Z]) .\{8,15\} \$$
Q. 179 Generate a regular expression for the following problem statement:
A. $\quad(1+0+e) 6$
B. $(10) 6$
C. $(1+0)(1+0)(1+0)(1+0)(1+0)(1+0)$
D. More than one of the mentioned is correct

Explanation

As the input variables are under Kleene Operation, we need to include e,thus option c is not correct, thereby option (a) is the right answer.
Q. 180

The minimum number of states required in a DFA (along with a dumping state) to check whether the 3 rd bit is 1 or not for $|n|>=3$
A. 3
B. 4
C. 5
D.

Explanation

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank
Theory of Computation 3160704
Which of the regular expressions corresponds to the given problem statement:
Q. 181 $\mathbf{P}(\mathbf{x})$: Express the identifiers in C Programming language
l=letters
d=digits
A. (l+_)(d+_)*
B. $\left(1+d+_\right)^{*}$
C. $\quad\left(\mathrm{l}+_\right)\left(\mathrm{l}+\mathrm{d}+_\right)^{*}$
D. $\quad(+d)(1+\mathrm{d}+)^{*}$

Explanation Identifiers in C Programming Language follows the following identifiers rule:
a) The name of the identifier should not begin with a digit.
b) It can only begin with a letter or a underscore.
c) It can be of length 1 or more.
Q. 182 Generate a regular expression for the given language:l
$L(x):\{\mathbf{x} \hat{\mathbf{I}}\{0,1\} * \mid x$ ends with 1 nd does not contain a substring 01$\}$
A. $\quad(0+01)^{*}$
B. $(0+01)^{*} 1$
C. $\quad(0+01) *(1+01)$
D. All of the mentioned
(a) and (b) are the general cases where we restrict the acceptance of a string witrh substring

Explanation 00 but we ignore the case where the string needs to end with 1 which therby, does not allows the acceptance of e.
Q. 183 Which of the following is an utility of state elimination phenomenon?
A. DFA to NFA
B. NFA to DFA
C. DFA to Regular Expression
D. All of the mentioned

We use this algorithm to simplify a finite automaton to regular expression or vice versa. We
Explanation eliminate states while converting a given finite automata to its corresponding regular
expression.
Q. 184

If we have more than one accepting states or an accepting state with an outdegree, which of the following actions will be taken?
A. addition of new state
B. removal of a state
C. make the newly added state as final
D. more than one option is correct

Faculty of Department of CE / IT - 07/16 Degree Engineering - 083
 Multiple Choice Questions Bank
 Theory of Computation 3160704

If there is more than one accepting state or if the single accepting state as an out degree, add a

Explanation

 new accepting state, make all other states non accepting, and hold an e-transitions from each former accepting state to the new accepting state.Q. 185 Which of the following is not a step in elimination of states procedure?
A. Unifying all the final states into one using e-transitions
B. Unify single transitions to multi transitions that contains union of input
C. Remove states until there is only starting and accepting states
D. Get the resulting regular expression by direct calculation

Explanation

While eliminating the states, we unify multiple transitions to one transition that contains union of input and not the vice versa.

Can the given state diagram be reduced?
Q. 186

A. Yes
B. No

The state q2 can be eliminated with ease and the reduced state diagram can be represented as:

Q. 187 Which of the following methods is suitable for conversion of DFA to RE?
A. Brzozowski method
B. Arden's method
C. Walter's method
D. All of the mentioned

Brzozowski method takes a unique approach to generating regular expressions. We create a
Explanation system of regular expressions with one regular expression unknown for each state in M, and then we solve the system for $R \lambda$ where $R \lambda$ is the regular expression associated with starting

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083

Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

state $q \lambda$.
State true or false:
Q. 188 Statement: The state removal approach identifies patterns within the graph and removes state, building up regular expressions along each transition.
A. true
B. false

Explanation

This method has the advantage over the transitive closure technique as it can easily be visualized.
Q. 189 The behaviour of NFA can be simulated using DFA.
A. always
B. never
C. sometimes
D. none of the mentioned

Explanation For every NFA, there exists an equivalent DFA and vice versa.
Q. 190 It is suitable to use \qquad method/methods to convert a DFA to regular expression.
A. Transitive Closure properties
B. Brzozowski method
C. State elimination method
D. All of the mentioned

Explanation

For converting RE to DFA, first we convert RE to NFA (Thompson Construction), and then NFA is converted into DFA(Subset Construction).
Q. 191 State true or false:
A. true
B. false

Explanation

For every state which is eliminated, a new regular expression is produced. The newly generated regular expression act as an input for a state which is next to removed state.
Q. 192

Is it possible to obtain more than one regular expression from a given DFA using the state elimination method?
A. Yes
B. No

Explanation

Using different sequence of removal of state, we can have different possible solution of regular expressions. For n-state deterministic finite automata excluding starting and final states, n!

\author{

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank
 | Theory of Computation | 3160704 |
| :--- | :--- |

}

Removal sequences are there. It is very tough to try all the possible removal sequences for smaller expressions.
Q. 193 A regular language over an alphabet a is one that can be obtained from
A. union
B. concatenation
C. kleene
D. All of the mentioned

Explanation None.
Q. 194 Regular expression $\{0,1\}$ is equivalent to
A. 0 U 1
B. $0 / 1$
C. $\quad 0+1$
D. All of the mentioned

Explanation All are equivalent to union operation.
Q. 195 Precedence of regular expression in decreasing order is
A. *,., +
B. ., *, +
C. ., + , *
D. $\quad+, a, *$

Explanation None.
Q. 196 Regular expression Φ^{*} is equivalent to
A. $\quad \in$
B. Φ
C. 0
D. $\quad 1$

Explanation None.
Q. $197 \quad \mathrm{a}$? is equivalent to
A. a
B. $a+\Phi$
C. $\quad \mathbf{a}+\boldsymbol{\epsilon}$
D. wrong expression

Explanation Zero or one time repetition of previous character

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank

Q. $198 \quad \epsilon \mathrm{~L}$ is equivalent to
A. ϵ
B. Φ
C. $\quad L$
D. Le

Explanation None.
Q. $199(a+b)^{*}$ is equivalent to
A. $\quad b^{*} a^{*}$
B. $\quad\left(a^{*} \mathbf{b}^{*}\right)^{*}$
C. $\quad a^{*} b^{*}$
D. none of the mentioned

Explanation None.
Q. $200 \quad \Phi \mathrm{~L}$ is equivalent to
A. LФ
B. Φ
C. L
D. ϵ

Explanation None.
Q. 201 Which of the following pair of regular expression are not equivalent?
A. $\quad 1(01)^{*}$ and (10)*1
B. $\quad x(x x)^{*}$ and $(x x)^{*} x$
C. (ab)* and $a^{*} b^{*}$
D. $\quad x+$ and $x^{*} x+$

Explanation (ab)* $=\left(\mathbf{a}^{*} \mathbf{b}^{*}\right)^{*}$.
Consider following regular expression
Q. 202 i) (a/b)* ii) (a*/b*)* iii) (($\left.6 / a) b^{*}\right)^{*}$

Which of the following statements is correct
A. i,ii are equal and ii,iii are not
B. i,ii are equal and i,iii are not
C. ii,iii are equal and i,ii are not
D. all are equal

Explanation All are equivalent to (a+b)*.

Faculty of Department of CE/IT -07/16
Degree Engineering - 083
Multiple Choice Questions Bank Theory of Computation 3160704

Q. 203

How many strings of length less than 4 contains the language described by the regular expression $(x+y) * y(a+a b) *$?
A. 7
B. 10
C. 12
D. 11
string of length $0=$ Not possible (because y is always present).

Explanation

string of length $1=1(y)$
string of length $2=3(\mathbf{x y}, \mathrm{yy}, \mathrm{ya})$
string of length $3=8$ (xxy,xyy,yxy,yyy,yaa,yab,xya,yya)
Q. 204 Which of the following is true?
A. $\quad(01) * 0=0(10)^{*}$
B. $(0+1) * 0(0+1) * 1(0+1)=(0+1) * 01(0+1)^{*}$
C. $(0+1) * 01(0+1)^{*}+1^{*} 0 *=(0+1)^{*}$
D. All of the mentioned

Explanation None
Q. 205 A language is regular if and only if
A. accepted by DFA
B. accepted by PDA
C. accepted by LBA
D. accepted by Turing machine

Explanation

All of above machine can accept regular language but all string accepted by machine is regular only for DFA.
Q. 206 Regular grammar is
A. context free grammar
B. non context free grammar
C. english grammar
D. none of the mentioned

Explanation Regular grammar is subset of context free grammar.
Q. 207

Let the class of language accepted by finite state machine be L1 and the class of languages
A. $\mathrm{L} 1<\mathrm{L} 2$
B. $\mathrm{L} 1>=\mathrm{L} 2$

\section*{Faculty of Department of CE/IT -07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |}

C. L1 U L2 = .*
D. $\mathrm{L} 1=\mathrm{L} 2$

Explanation Finite state machine and regular expression have same power to express a language.
Q. 208 Which of the following is not a regular expression?
A. $\left[(a+b)^{*}-(a a+b b)\right]^{*}$
B. $\left[(0+1)-(0 b+a 1)^{*}(a+b)\right]^{*}$
C. $\quad(01+11+10)^{*}$
D. $(1+2+0)^{*}(1+2)^{*}$

Explanation Except b all are regular expression*.
Q. 209 Regular expression are
A. Type 0 language
B. Type 1 language
C. Type 2 language
D. Type 3 language

Explanation According to Chomsky hierarchy .
Q. 210 Which of the following is true?
A. Every subset of a regular set is regular
B. Every finite subset of non-regular set is regular
C. The union of two non regular set is not regular
D. Infinite union of finite set is regular

Explanation None
Q. 211 L and $\sim \mathrm{L}$ are recursive enumerable then L is
A. Regular
B. Context free
C. Context sensitive
D. Recursive

Explanation If L is recursive enumerable and its complement too if and only if L is recursive.
Q. 212 Regular expressions are closed under
A. Union
B. Intersection
C. Kleen star
D. All of the mentioned

Faculty of Department of CE / IT - 07 / 16
Degree Engineering - 083
Multiple Choice Questions Bank

Theory of Computation	3160704

Explanation According to definition of regular expression.
Q. 213 What kind of expressions do we used for pattern matching?
A. Regular Expression
B. Rational Expression
C. Regular \& Rational Expression
D. None of the mentioned

In automata theory, Regular Expression(sometimes also called the Rational Expression) is a
Explanation sequence or set of characters that define a search pattern, mainly for the use in pattern matching with strings or string matching.
Q. 214 Which of the following do Regexps do not find their use in?
A. search engines
B. word processors
C. sed
D. none of the mentioned

Explanation
 Regexp processors are found in several search engines, seach and replace mechanisms, and text processing utilities

Q. 215 Which of the following languages have built in regexps support?
A. Perl
B. Java
C. Python
D. $\mathrm{C}++$

Explanation

Many languages come with built in support of regexps like Perl, Javascript, Ruby etc. While some provide support using standard libraries like .NET, Java, Python, C++, C and POSIX.
Q. 216 The following is/are an approach to process a regexp:
A. Contruction of NFA and subsequently, a DFA
B. Thompson's Contruction Algorithm
C. Both (a) and (b)
D. None of the mentioned

A regexp processor translates the syntax into internal representation which can be executed

Explanation and matched with a string and that internal representation can have several approaches like

 the ones mentioned.Q. 217 Are the given two patterns equivalent?
A. gray|grey
technical campus
B. $\quad \operatorname{gr}(\mathrm{a} \mid \mathrm{e}) \mathrm{y}$
C. yes
D. no

Explanation

Paranthesis can be used to define the scope and precedence of operators. Thus, both the expression represents the same pattern.
Q. 218 Which of the following are not quantifiers?
A. Kleene plus +
B. Kleene star *
C. Question mark ?
D. None of the mentioned

Explanation

A quantifier after a token specifies how often the preceding element is allowed to occur. ?, *, $+,\{n\},\{\min \},,\{\min , \max \}$ are few quantifiers we use in regexps implementations.
Q. 219

Which of the following cannot be used to decide whether and how a given regexp matches a string:
A. NFA to DFA
B. Lazy DFA algorithm
C. Backtracking
D. None of the mentioned

There are at least three algorithms which decides for us, whether and how a regexp matches a string which included the transformation of Non deterministic automaton to deterministic

Explanation

 finite automaton, The lazy DFA algorithm where one simulates the NFA directly, building each DFA on demand and then discarding it at the next step and the process of backtracking whose running time is exponential.What does the following segment of code output?
Q. 220
\$string1 = 'Hello World\n";
if (\$string1 =~ m/(H..).(l..)/) \{
print "We matched '\$1' and '\$2'. ln ';
\}
A. We matched 'Hel' and 'ld'
B. We matched 'Hel' and 'lld'
C. We matched 'Hel' and 'lo '
D. None of the mentioned

Explanation () groups a series of pattern element to a single element.
technical campus

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank
 Theory of Computation

When we use pattern in parenthesis, we can use any of ' $\$ 1$ ', ' $\$ 2$ ' later to refer to the previously matched pattern.

Given segment of code:
\$string1 = "Hello\nWorld\n";
if (\$string1 =~ m/d\n\z/) \{
Q. 221 print "\$string1 is a string "; print "that ends with 'd
n'. \ln ";
\}
What does the symbol /z does?
A. changes line
B. matches the beginning of a string
C. matches the end of a string
D. none of the mentioned

It matches the end of a string and not an internal line. The given segment of code outputs:

Explanation

Hello
World
is a string that ends with ' $\mathrm{d} \backslash \mathrm{n}$ '
Q. 222 Conversion of a regular expression into its corresponding NFA :
A. Thompson's Construction Algorithm
B. Powerset Construction
C. Kleene's algorithm
D. None of the mentioned

Thompson construction algorithm is an algorithm in automata theory used to convert a given
Explanation regular expression into NFA. Similarly, Kleene algorithm is used to convert a finite automaton to a regular expression.
Q. 223 Which among the following is not a UNIX command for regular expressions?
A. ed
B. sed
C. vi
D. none of the mentioned

Explanation

Regular expressions are used by different commands in Unix like ed, sed, grep, awk, vi, etc. Sed stands for stream editor which is exclusively used for executing scripts.
Q. 224 What is the significance of \$ used in regular expression in UNIX?
A. Matches the beginning of the line

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank Theory of Computation 3160704
B. Matches the end of lines
C. Matches any single character
D. None of the mentioned

Explanation

Regular expression provides more flexibility while matching string patterns. Special characters like ${ }^{\wedge}, \$,{ }^{*}$, . are very useful.
Q. 225 Generate the regular expression to match blank lines
A. /*/
B. $/ \mathrm{bl}$
C. /^?/
D. /^\$/

There are few expressions which provide the utility of matching metacharacters including /^\$/
Explanation for blank lines, / */ for matching one or more spaces, /^.*\$/ for matching an entire line whatever it is.
Q. 226
A. / are used as delimiters
B. pattern refers to a regular expression
C. pattern refers to the string to be matched
D. action refers to the command

Explanation

In the general syntax of sed, pattern is the regular expression and action refers to the command given (p : prints the line, d: deletes the line, etc).
Q. 227 What does grep do in UNIX?
A. It is an editor in UNIX
B. It searches for text patterns
C. Both (a) and (b)
D. None of the mentioned

Explanation

The grep is a standard UNIX utility program that searches through a set of files in search of a text pattern,specified through a regular expression.
Q. 228 State true or false:
A. true
B. false

Explanation Such a generated pattern could be a fixed word or describe something like more general.

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank Theory of Computation 3160704

Which of the following options support the given statement?
Q. 229 Statement: A regular expression could be a fixed word or describe something like more general.
A. This flexibility makes Regular expression invaluable.
B. This flexibility makes the Regular expression unvaluable.
C. Both (a) and (b)
D. None of the mentioned

Explanation

Q. 230
A.
B. manages heroes.txt
C. search for "man" in the file "heroes.txt"
D. none of the mentioned

Explanation

Q. 231 What does "X?" do regular expression operator?
A. Matches zero or more capital X's.
B. Matches no or one occurence of the capital letter \mathbf{X}.
C. Matches one or more capital X's.
D. All of the mentioned

Explanation

There are many other common regular expression operators like \$, ^, etc. Which have their own respective purposes.
Q. 232 Which of the following does not support regular expressions?
A. sed
B. $\quad a w k$
C. emacs
D. none of the mentioned

Explanation

There are many UNIX tools including vi, Emacs, sed, awk and modern programming languages which support regular expressions.
Q. 233 Lexemes can be referred to as:
A. elements of lexicography
B. sequence of alphanumeric characters in a token
C. lexical errors
D. none of the mentioned

Explanation

A lexeme is a string of characters that form a syntactic unit. It is reasonable to say that is the sequence of alphanumeric characters in a token.
Q. 234
A. overwrites the word
B. overwrites the functionality
C. generates an error
D. something else

Reserved words are known as keywords and they are specific and reserved with its
Explanation functionality to a language. Thus, getting an input with the same name by the analyzer will generate an error.
Q. 235

The methodology to show an error when the analyzer faces a keyword over an user's input is based on:
A. rule priority
B. longest match rule
C. keyword-out rule
D. none of mentioned

Explanation

The lexical analyzer follows the rule priority where its prioritizes keywords over an input it gets with the same name as that of the keyword and thus generates an error.
Q. 236

State true or false:
Statement: A lexical analyzer reads the source code line by line.
A. True
B. False

Explanation

A lexical analyzer reads the source code letter by letter and when it encounters a space or an operator or any special character, it decides that the word is completed.

Which among the following statement is correct?
Q. 237 Statement 1: When the analyzer scans 'int' and 'intvalue', it is not able to decide whether the int leads to a keyword or an identifier.
Statement 2: Longest Match Rule
A. Statement 1 is assertion, Statement 2 is the reason
B. Statement 1 is assertion, Statement 2 is the solution
C. There is no such Statement 2

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083

Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

D. This is not a function of Lexical Analyzer

Explanation

The Longest Match rule states that the lexeme scanned should be determined on the basis of longest match among all the token available.
Q. 238 The output of the lexical and syntax analyzer can stated as:
A. parse stream, parse tree
B. token tree, parse tree
C. token stream, parse tree
D. all of the mentioned

Explanation

The lexical analyzer outputs the stream of token which is taken up by syntax analyzer one by one against the production rule and parse tree is generated.
Q. 239

Which among the following is not a tool to construct lexical analyzer from a regular expression?
A. lex
B. flex
C. jflex
D. none of the mentioned

Lexical analysis is done using few tools such as lex, flex and jflex. Jflex is a computer program
Explanation that generates lexical analyzers (also known as lexers or scanners) and works apparently like lex and flex. Lex is commonly used with yacc parser generator.
Q. 240 A program that performs lexical analysis is termed as:
A. scanner
B. lexer
C. tokenizer
D. all of the mentioned

Explanation

A program which performs lexical analysis is called lexer, scanner or lexer. Nowadays, lexer is combined with a parser which allows syntactic analysis.
Q. 241 Lexers and parsers are not found in which of the following?
A. compiler front end processing
B. prettyprinters
C. linters
D. none of the mentioned

Lexers and parsers are most commonly used in compilers, but it has more application
Explanation elsewhere like in prettyprinters or linters(application of stylistic formatting conventions to textfiles, source code, etc.).
technical campus
Q. 242 Which phase of compiler includes Lexical Analysis?
A. 1
B. 2
C. 3
D. Its primary function, not in any phase

Explanation

The first phase of compilation process is called lexical analysis. It fragments the source code into token which is the smallest programming unit of a program.

The minimum length of a string $\{0,1\}^{*}$ not in the language corresponding to the given regular
Q. 243 expression:
$\left(0^{*}+1^{*}\right)\left(0^{*}+1^{*}\right)\left(0^{*}+1^{*}\right)$
A. 3
B. 4
C. 5
D. 6

0101 or 1010 the strings with minimum length on $\{0,1\}^{*}$ which does not belong to the language

Explanation of the given regular expression. Other strings like $111,000,1101$, etc are accepted by the

 language.Q. 244

Which of the following regular expression is equivalent to $\mathbf{R}(1,0)$?
A. $\quad \mathbf{R}(1,0)=\{\mathbf{1}$,
B. $(111+1111)^{*}$
C. $\quad\left(111+11^{*}\right)^{*}$
D. All of the mentioned

Explanation
 What we observe from the question is that, it includes e and 11 and any number of 1 's then. Therefore, its simplifies when we write the same reg. Expression as $(11+111)^{*}$.

Q. 245

The minimum number of 1's to be used in a regular expression of the given language:
A. 2
B. 3
C. 0
D. 1

Explanation

It is not required to automate the question if asked theoretically.The number of zeroes fixed is 2. Therefore, we can represent the regular expression as 1*01*01*.
Q. 246
A. The language of all strings that end with 11 or 00
B. The language of all strings that end with 0 or 1
C. The language of all strings which does not end with 01
D. None of the mentioned

According to the given regular expression, e is accepted by its language and it does not end

Explanation

with 00 or 11 or $\mathbf{0}$ or 1 . Thus option a and b are eliminated. Further, the regular expression is valid for the third option.

Statement: If we take the union of two identical expression, we can replace them by one copy of the expression.
Which of the following is a correct option for the given statement?
A. Absorption Law
B. Idempotent Law
C. Closure Law
D. Commutative Law

Explanation

Q. 248 Which among the following can be an annihilator for multiplication operation?
A. 0
B. $\quad 1$
C. 100
D. $22 / 7$

Explanation

An annihilator for an operator is a value such that when the operator is applied to the annihilator and some other value, the result is the annihilator.
Q. 249

Statement: A digit, when used in the CFG notation, will always be used as a terminal.
A. True
B. False

Explanation

Lowercase letters near the beginning of an alphabet, a, b and so on are terminal symbols. We shall also assume that digits and other characters such as + or parenthesis are terminals.

Choose the incorrect process to check whether the string belongs to the language of certain
Q. 250 variable or not?
A. recursive inference

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank Theory of Computation
B. derivations
C. head to body method
D. All of the mentioned

There are two approaches to infer that certain string are in the language of a certain variable. The most conventional way is to use the rules from body to head, recursive inference. The second approach is expanding the starting variable using one of its productions whose head is tart symbol and derive a string consisting entirely of terminals(head to body or derivations).
Q. 251

Statement: Left most derivations are lengthy as compared to Right most derivations.
Choose the correct option:
A. correct statement
B. incorrect statement
C. may or may not be correct
D. depends on the language of the grammar

Explanation

It completely depends on the person who develops the grammar of any language, how to make use of the tools i.e. leftmost and rightmost derivations.

All the regular languages can have one or more of the following descriptions:
Q. 252 i) DFA ii) NFA iii) e-NFA iv) Regular Expressions Which of the following are correct?
A. i, ii, iv
B. i, ii, iii
C. i, iv
D. i, ii, iii, iv

Explanation DFA ii) NFA iii) e-NFA iv) Regular Expressions

The class of languages known as the regular language has atleast four different descriptions: i)
Q. 253 Which of the technique can be used to prove that a language is non regular?
A. Ardens theorem
B. Pumping Lemma
C. Ogden's Lemma
D. None of the mentioned

Explanation

We use the powerful technique called Pumping Lemma, for showing certain languages not to be regular. We use Ardens theorem to find out a regular expression out of a finite automaton.
Q. 254 Which of the following language regular?
A. $\quad\left\{a^{i} b^{i} \mid i>=0\right\}$
B. $\quad\left\{a^{i} b^{i} \mid 0<i<5\right\}$
C. $\quad\left\{a^{i} b^{i} \mid i>=1\right\}$

Multiple Choice Questions Bank

D. None of the mentioned

Here, i has limits i.e. the language is finite, contains few elements and can be graphed using a

Explanation

 deterministic finite automata. Thus, it is regular. Others can be proved non regular using Pumping lemma.Q. 255 Which of the following are non regular?
A. The set of strings in $\{a, b\}^{*}$ with an even number of b 's
B. The set of strings in $\{a, b, c\}^{*}$ where there is no c anywhere to the left of a
C. The set of strings in $\{0,1\}^{*}$ that encode, in binary, an integer w that is a multiple of 3 . Interpret the
D. None of the mentioned

Explanation deterministic finite automata. We can also use mealy or moore machine to represent remainders for option c.
Q. 256 If L is DFA-regular, L^{\prime} is
A. Non regular
B. DFA-regular
C. Non-finite
D. None of the mentioned

Explanation

This is a simple example of a closure property: a property saying that the set of DFA-regular languages is closed under certain operations.
Q. 257 Which of the following options is incorrect?
A. A language L is regular if and only if $\sim L$ has finite number of equivalent classes.
B. Let L be a regular language. If $\sim L$ has k equivalent classes, then any DFA that recognizes L
B. must have atmost k states.
C. A language L is NFA-regular if and only if it is DFA-regular.
D. None of the mentioned

Explanation

Let L be a regular language. If $\sim L$ has k equivalent classes, then any DFA that recognizes L must have atleast k states.
Q. 258 Myphill Nerode does the following:
A. Minimization of DFA
B. Tells us exactly when a language is regular
C. Both (a) and (b)
D. None of the mentioned

Explanation

In automata theory, the Myphill Nerode theorem provides a necessary and sufficient condition for a language to be regular. The Myphill Nerode theorem can be used to show a language L is
technical campus

\author{

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank
 | Theory of Computation | 3160704 |
| :--- | :--- |

}
regular by proving that the number of equivalence classes of $\mathbf{R}_{\mathbf{L}}$ (relation) is finite.
Q. 259 Which of the following are related to tree automaton?
A. Myphill Nerode Theorem
B. State machine
C. Courcelle's Theorem
D. All of the mentioned

Explanation

The myphill nerode theorem can be generalized to trees and an application of tree automata prove an algorithmic meta theorem about graphs.

Given languages:
i) $\left\{a^{n} b^{n} \mid n>=0\right\}$
Q. 260 ii) <div> ${ }^{\text {n }}</$ div $>^{\text {n }}$
iii) $\{\mathbf{w} \in\{\mathbf{a}, \mathbf{b}\} * \mid \# \mathbf{a}(\mathbf{w})=\# \mathbf{b}(\mathbf{w})\}$, \# represents occurrences

Which of the following is/are non regular?:
A. i, iii
B. i
C. iii
D. i, ii, iii

Explanation There is no regular expression that can parse HTML documents. Other options are also nonregular as they cannot be drawn into finite automaton.
Q. 261 Finite state machine are not able to recognize Palindromes because:
A. Finite automata cannot deterministically find the midpoint
B. Finite automata cannot remember arbitarily large amount of data
C. Even if the mid point is known, it cannot find whether the second half matches the first
D. All of the mentioned

It is the disadvantage or lack of property of a DFA that it cannot remember an arbitrarily

Explanation

 such large amount of data which makes it incapable of accepting such languages like palindrome, reversal, etc.Relate the following statement:
Q. 262

Statement: All sufficiently long words in a regular language can have a middle section of words repeated a number of times to produce a new word which also lies within the same language.
A. Turing Machine
B. Pumping Lemma
C. Arden's theorem
D. None of the mentioned

Explanation

Pumping lemma defines an essential property for every regular language in automata theory. It has certain rules which decide whether a language is regular or not.
Q. 263
A.

While applying Pumping lemma o
fragment it into
B. 5
C. 3
D. 6

Explanation
We select a string w such that $w=x y z$ and $|y|>0$ and other conditions. However, there exists an integer n such that $|\mathbf{w}|>=n$ for any wîL.
Q. 264

If we select a string w such that $w \in L$, and $w=x y z$. Which of the following portions cannot be an empty string?
A. $\quad x$
B. $\quad \mathbf{y}$
C. $\quad \mathrm{z}$
D. all of the mentioned

Explanation

The lemma says, the portion y in xyz cannot be zero or empty i.e. $|y|>0$, this condition needs to be fulfilled to check the conclusion condition.
Q. 265
A. Generating
B. Pumping
C. Producing
D. None of the mentioned

Explanation

The process of repeatation is called pumping and so, pumping is the process we perform before we check whether the pumped string belongs to L or not.
Q. 266

There exists a language L. We define a string w such that $w \in L$ and $w=x y z$ and $|w|>=n$ for some constant integer n. What can be the maximum length of the substring xy i.e. $|\mathrm{xy}|<=$?
A. $\quad n$
B. $\quad|y|$
C. $\quad|\mathbf{x}|$
D. none of the mentioned

Explanation It is the first conditional statement of the lemma that states that $|x y|<=n$, i.e. the maximum

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Theory of Computation</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">3160704</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Theory of Computation | 3160704 |
| :--- | :--- |</table-markdown></div>

length of the substring $x y$ in w can be n only.
Q. 267

Fill in the blank in terms of p, where p is the maximum string length in L.
A. $p^{*} 1$
B. $\quad \mathbf{P}+\mathbf{1}$
C. $\mathrm{p}-1$
D. None of the mentioned

Explanation

Finite languages trivially satisfy the pumping lemma by having n equal to the maximum string length in 1 plus 1.
Q. 268
A. $\quad i>0$
B. $\quad \mathrm{I}<0$
C. $\quad I<=0$
D. $\quad i>=0$

Suppose L is a regular language. Then there is an integer n so that for any $x \in L$ and $|x|>=n$, there are strings $\mathbf{u}, \mathrm{v}, \mathrm{w}$ so that

Explanation

$\mathrm{x}=\mathrm{uvw}$
$|u v|<=n$
$|v|>0$
for any $\mathrm{m}>=0, \mathrm{uv}^{\mathrm{m}} \mathbf{w} \in \mathrm{L}$.
If \mathbf{d} is a final state, which of the following is correct according to the given diagram?
Q. 269

Answer in accordance to the third and last statement in pumping lemma:
For all \qquad $x^{\prime} y^{i} \in \in L$

A. $\mathrm{x}=\mathrm{p}, \mathrm{y}=\mathrm{qr}, \mathrm{z}=\mathrm{s}$

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083
Multiple Choice Questions Bank

B. $\mathrm{x}=\mathrm{p}, \mathrm{z}=\mathrm{qrs}$
C. $\quad x=p r, y=r, z=s$
D. All of the mentioned

Explanation

Q. 270
A. string count
B. string
C. both (a) and (b)
D. none of the mentioned

Explanation

Given: w =xyz. Here, xyz individually represents strings or rather substrings which we compute over conditions to check the regularity of the language.

Which of the following one can relate to the given statement:
Q. 271 Statement: If \mathbf{n} items are put into m containers, with $\mathbf{n}>\boldsymbol{m}$, then atleast one container must contain more than one item.
A. Pumping lemma
B. Pigeon Hole principle
C. Count principle
D. None of the mentioned

Explanation

Pigeon hole principle states the following example: If there exists $\mathbf{n}=10$ pigeons in $\mathbf{m}=\mathbf{9}$ holes, then since $10>9$, the pigeonhole principle says that at least one hole has more than one pigeon.
Q. 272 Which kind of proof is used to prove the regularity of a language?
A. Proof by contradiction
B. Direct proof
C. Proof by induction
D. None of the mentioned

Explanation

We use the method of proof by contradiction in pumping lemma to prove that a language is regular or not.
Q. 273 The language of balanced paranthesis is
A. regular
B. non regular
C. may be regular
D. none of the mentioned

Given n, there is a string of balanced parentheses that begins with more than p left

Explanation

 parentheses, so that y will contain entirely of left parentheses. By repeating y, we can produce a string that does not contain the same number of left and right parentheses, and so they cannot be balanced.State true or false:
Q. 274 Statement: Pumping lemma gives a necessary but not sufficient condition for a language to be regular.
A. true
B. false

Explanation

The converse of the lemma is not true. There may exists some language which satisfy all the conditions of the lemma and still be non-regular.
Q. 275 Which of the following is/are an example of pigeon hole principle?
A. Softball team
B. Sock picking
C. Hair counting
D. All of the mentioned

There are several applications of pigeonhole principle:
Example: The softball team: Suppose 7 people who want to play softball(n=7 items), with a
Explanation limitation of only 4 softball teams to choose from. The pigeonhole principle tells us that they cannot all play for different teams; there must be atleast one team featuring atleast two of the seven players.
Q. 276 Pigeonhole principle can be applied in the following computer science algorithms:
A. hashing algorithm
B. lossless compression algorithm
C. both (a) and (b)
D. none of the mentioned

Explanation

Collisions are inevitable in a hash table because the number of possible keys exceeds the number of indices in the array.
Q. 277 If \mathbf{n} objects are distributed over m places, and $\mathbf{n}<m$, then some of the places receive:
A. at least 2 objects
B. at most 2 objects
C. no object
D. none of the mentioned

Explanation This is one of the alternative formulations of the pigeon hole principle. As $\mathbf{n}<\mathbf{m}$, there will
technical campus
exist some place which will not receive any of the object.
Q. 278 Which of the following fields may have pigeonhole principle violated?
A. Discrete mathematics
B. Computer Science
C. Quantum Mechanics
D. None of the mentioned

Explanation

Q. 279 Which of the following is not an application of Pumping Lemma?
A. $\quad\left\{0^{i} 1^{i} \mid i>=0\right\}$
B. $\quad\left\{0^{i} x \mid i>=0, x \in\{0,1\}^{*}\right.$ and $\left.|x|<=i\right\}$
C. $\quad\left\{0^{n} \mid n\right.$ is prime $\}$
D. None of the mentioned

None of the mentioned are regular language and are an application to the technique Pumping
Explanation Lemma. Each one of the mentioned can be proved non regular using the steps in Pumping lemma.
Q. 280 Which of the following can refer a language to be non regular?
A. Pumping Lemma
B. Myphill Nerode
C. Both (a) and (b)
D. None of the mentioned

Explanation

On the contrary, the typical way to prove that a language is to construct either a finite state machine or a regular expression for the language.
Q. 281 Which of the following is not an example of counting argument?
A. Pigeonhole principle
B. Dirichlet's drawer principle
C. Dirichlet's box principle
D. None of the mentioned

Explanation

Q. 282

A.

A.

Pigeon hole principle or Dirichlet's drawer principle or Dirichlet's box principle is an example of counting argument whose field is called Combinatorics.

If $\mathrm{L} 1, \mathrm{~L} 2$ are regular and $\mathrm{op}(\mathrm{L} 1, \mathrm{~L} 2)$ is also regular, then L 1 and L 2 are said to be
\qquad under an operation op.

Faculty of Department of CE/IT-07/16
Degree Engineering - 083
Multiple Choice Questions Bank Theory of Computation 3160704
B. closed
C. decidable
D. none of the mentioned

Explanation

If two regular languages are closed under an operation op, then the resultant of the languages over an operation op will also be regular.
Q. 283 Suppose a regular language L is closed under the operation halving, then the result would be:
A. $\quad 1 / 4 \mathrm{~L}$ will be regular
B. $\quad 1 / 2 \mathrm{~L}$ will be regular
C. $\quad 1 / 8 \mathrm{~L}$ will be regular
D. Al of the mentioned

Explanation At first stage $1 / 2 \mathrm{~L}$ will be regular and subsequently, all the options will be regular.
Q. 303 If L1' and L2' are regular languages, then L1.L2 will be
A. regular
B. non regular
C. may be regular
D. none of the mentioned

Explanation

Regular language is closed under complement operation. Thus, if L1' and L2' are regular so are L1 and L2. And if L1 and L2 are regular so is L1.L2.
Q. 284 If L 1 and $\mathrm{L} 2^{\prime}$ are regular languages, $\mathrm{L} 1 \cap\left(\mathrm{~L} 2^{\prime} \mathrm{U}\right.$ L1')' will be
A. regular
B. non regular
C. may be regular
D. none of the mentioned

Explanation

If L1 is regular, so is L1' and if L1' and L2' are regular so is L1' U L2'. Further, regular languages are also closed under intersection operation.
Q. 285 If A and B are regular languages, !($\left.A^{\prime} U^{\prime} B^{\prime}\right)$ is:
A. regular
B. non regular
C. may be regular
D. none of the mentioned

Explanation
If A and B are regular languages, then $A C ̧ B$ is a regular language and $A \cap B$ is equivalent to !($\left.\mathbf{A}^{\prime} \mathbf{U} \mathbf{B}^{\prime}\right)$.

Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank Theory of Computation 3160704

Q. 286

Which among the following are the boolean operations that under which regular languages are closed?
A. Union
B. Intersection
C. Complement
D. All of the mentioned

Regular languages are closed under the following operations:
a) Regular expression operations

Explanation b) Boolean operations
c) Homomorphism
d) Inverse Homomorphism

Suppose a language L1 has 2 states and L2 has 2 states. After using the cross product
Q. 287 construction method, we have a machine M that accepts $L 1 \cap L 2$. The total number of states in M:
A. 6
B. 4
C. 2
D. 8

Explanation

M is defined as: ($\mathrm{Q}, \mathrm{S}, \mathrm{d}, \mathrm{q0}, \mathrm{~F}$)
where $\mathrm{Q}=\mathrm{Q}$ 1*Q2 and $\mathrm{F}=\mathrm{F}$ 1*F2
Q. 288 If L is a regular language, then ($\left.L^{\prime}\right)^{\prime} U L$ will be :
A. L
B. L'
C. f
D. none of the mentioned

Explanation (L^{\prime})' is equivalent to L and $L U L$ is subsequently equivalent to L.
Q. 289 If L is a regular language, then $\left(\left(\left(L^{\prime}\right) r\right)^{\prime}\right)^{*}$ is:
A. regular
B. non regular
C. may be regular
D. none of the mentioned

Explanation
If L is regular so is its complement, if L^{\prime} is regular so is its reverse, if $\left(L^{\prime}\right)^{r}$ is regular so is its Kleene.
Q. 290 Which among the following is the closure property of a regular language?

\section*{Faculty of Department of CE / IT - 07/16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |}

A. Emptiness
B. Universality
C. Membership
D. None of the mentioned

All the following mentioned are decidability properties of a regular language. The closure
Explanation properties of a regular language include union, concatenation, intersection, Kleene, complement, reverse and many more operations.
Q. 291 If L is a language, the reversal of the language can be represented as:
A. L'
B. $\quad L^{c}$
C. $\quad L^{r}$
D. more than one option is correct
L^{r} is defined as the reversal of a language. L^{r} is a set of strings whose reversal is in L.
Explanation Example: $L=\{0,01,100\}$
$\mathbf{L r}=\{\mathbf{0}, \mathbf{1 0}, \mathbf{0 0 1}\}$
Q. 292 If L is a regular language, \qquad is also regular.
A. L^{r}
B. L^{\prime}
C. L^{*}
D. All of the mentioned

Explanation
L^{r}, L^{\prime}, L^{*} i.e. reversal, complementation and kleene all are the closure properties of regular language.
Q. 293

If $\mathrm{E}=\mathrm{F}+\mathrm{G}$;
A. $\quad \mathbf{F}^{\mathrm{r}}+\mathbf{G}^{\mathrm{r}}$
B. $\quad(\mathrm{F}+\mathrm{G})^{\mathrm{r}}$
C. Both (a) and (b)
D. None of the mentioned

Explanation $\begin{aligned} & \text { If } \mathrm{E} \text { is a symbol } \mathrm{a} \text {, } \mathrm{e} \text {, or } \mathrm{f} \text {, then } \mathrm{Er}=\mathrm{E} \text {. Other inductive properties include union of reversals, } \\ & \text { concatenation and Kleene. }\end{aligned}$
Q. 294 If $\mathrm{E}=\mathrm{FG}, \mathrm{E}^{\mathrm{r}}=$?
A. $\quad F^{r} G^{r}$
B. $\quad G^{r} \mathbf{F}^{r}$
C. Both (a) and (b)
D. None of the mentioned

Explanation If E=FG, $E^{r}=\mathbf{G r}^{\mathrm{r}} \mathrm{F}^{\mathrm{r}}$. Example: $\left(01^{*}\right) \mathbf{R}=\left(\mathbf{1}^{*}\right) \mathbf{R}(0) \mathbf{R}$
Simplify the following identity:
Q. $295 \mathrm{E}=01^{*}+10^{*}$
$\mathrm{E}^{\mathrm{R}}=$?
A. $\quad(1 * 0+0 * 1)$
B. $\quad\left(01 * 10^{*}\right)^{\mathrm{R}}$
C. $\quad\left(0^{*} 1+10^{*}\right)$
D. All of the mentioned

Explanation

01*+10*
$E R=(01 *)^{R}+\left(10^{*}\right)^{\mathrm{R}}=>\left(\mathbf{1}^{*}\right)^{\mathrm{R}} \mathbf{0}^{\mathrm{R}}+\left(0^{*}\right)^{\mathrm{R}} \mathbf{1}^{\mathrm{R}}=>1 * 0+0 * 1$
Q. 296 Which of the following obey the closure properties of Regular language?
A. Homomorphism
B. Inverse Homomorphism
C. Reversal
D. All of the mentioned

Explanation
 Homomorphism on an aphabet is a function that gives a string for each symbol in that alphabet. Example: $h(0)=a b$, etc.

Q. 297 Let $h(L)$ be a language of regular expression abe*+e(ab)*. Simplify the $h(L)$
A. (ab)*+eab*
B. $a^{*}+e^{*} b^{*}$
C. (ab)*
D. None of the mentioned

Explanation $\begin{aligned} & \left.\text { abe*+e(ab)*(Using the identities } \mathrm{e}=\mathrm{e}^{*}, \mathrm{eE}=\mathrm{Ee}=\mathrm{E}\right) \\ & =\mathrm{ab}+(\mathrm{ab})^{*}=>\text { ab will contain inside }(\mathbf{a b})^{*}, \text { thus }=>(\mathrm{ab})^{*} .\end{aligned}$
Let $h(0)=a b ; h(1)=e$
Q. 298 Let L=\{abab,baba\}
$\mathrm{h}-1(\mathrm{~L})=$ \qquad
A. the language of two one's and any number of zeroes
B. the language of two zeroes and any number of one's
C. the language of two zeroes and two one's
D. none of the mentioned

Explanation $h-1(L)$ is the language with two 0 's and any number of 1 ' $s=>(1 * 01 * 01 *)$.

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083

Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

Q. 299 While proving Inverse Homomorphism, which of the following steps are needed?
A. Start with a DFA Ain L
B. Construct a DFA B for h-1(L)
C. The set of states, initial and final states should be same.
D. All of the mentioned

While constructing DFA B, we need to take care of the following:
a) The same set of states

Explanation b) The same start state
c) The same final state
d) Input alphabet $=$ the symbols to which homomorphism h applies.
8. Let $h(0)=a b ; h(1)=e$
Q. 300

Let $\mathrm{L}=\{a b a b, b a b a\}$
$h-1(L)=$ the language of two zeroes and any number of one's.
The given example belongs to which of the following?
A. Homomorphism
B. Inverse Homomorphism
C. Both (a) and (b)
D. None of the mentioned

Explanation
 $h-1(L)=\{w \mid h(w)$ is in $L\}$.

Let h be a homomorphism and L a language whose alphabet is the output language of h.
Q. 301 Which of the following conversion is not feasible?
A. Regular expression to automaton conversion
B. Automaton to Regular Expression Conversion
C. NFA to DFA
D. None of the mentioned

Explanation

Each of the four formats of representation of the regular language be it, DFA, NFA, Regular Expression or e-NFA can be converted to the rest three forms.
Q. 302 The computation of e-closure of \mathbf{n}-states takes \qquad time.
A. $\quad O\left(n^{2}\right)$
B. $\quad \mathbf{O}\left(\mathrm{n}^{3}\right)$
C. $\quad \mathrm{O}\left(2^{\mathrm{n}}\right)$
D. None of the mentioned

Explanation

We must search from each of the \mathbf{n} states along all arcs labelled \mathbf{e}. If there are \mathbf{n} states, there can be no more than \mathbf{n}^{2} states.
technical campus

\section*{Faculty of Department of CE / IT - 07/ 16
 Degree Engineering - 083
 Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |}

Q. 303 For a \qquad state DFA, the time taken for DFA-NFA conversion is $\mathbf{O}(\mathbf{n})$.
A. $\quad n$
B. $\quad n^{1 / 2}$
C. $\quad n^{2}$
D. $\quad 2^{n}$

Explanation The conversion DFA to NFA is simple, and takes $\mathbf{O}(\mathrm{n})$ time on an n-state DFA.
With reference to Automaton to Regular Expression Conversion, for each of the n rounds,
Q. 304
A. double
B. triple
C. quadruple
D. none of the mentioned

Explanation

We can quadruple the size of the regular expression per round. Thus, we can simply write

Q. 305 Conversion of regular expression to e-NFA takes \qquad time.
A. linear
B. exponential
C. logarithmic
D. none of the mentioned

Explanation

It is possible to parse the expression efficiently, using a technique that takes only $\mathbf{O}(\mathrm{n})$ time on a expression of length n^{3}
Q. 306 The conversion of NFA to DFA can be done in:
A. exponential time
B. linear time
C. logarithmic time
D. all of the mentioned

We can eliminate e-transitions from an n state epsilon-NFA to build an ordinary NFA in $\mathbf{O}\left(\mathbf{n}^{3}\right)$
Explanation time, without changing the number of states.Next, producing to DFA can take exponential time.
Q. 307 Which of the following cannot be converted in an ordinary NFA?
A. DFA
B. Regular Expression
C. e-NFA

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083

Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

D. None of the mentioned

Explanation

Each of the following can expressed in terms of ordinary NFA with different time complexities.
Q. 308 NFA to DFA conversion is done via
A. Subset Construction method
B. Warshalls Algorithm
C. Ardens theorem
D. None of the mentioned

Explanation

Powerset or subset construction method is a standard method for converting a non deterministic finite automata into DFA which recognizes the same formal language.
Q. 309 State true or false:
A. true
B. false

Explanation

There exists subsequent steps like formation of epsilon-NFA and NFA before the formation of corresponding DFA.
Q. 310 Is the following statement correct?
A. Yes
B. No

Thompson's Construction is used to find out a Finite Automaton from a Regular Expression.
Explanation We will reduce the regular expression into smallest regular expressions and convert them to NFA and finally to DFA.
Q. 311 Language classes have the following property:
A. Closure property
B. Decision property
C. Closure \& Decision property
D. None of the mentioned

Explanation

A decision property of a language class is an algorithm that takes a formal description of a language(e.g., a DFA) and tells whether or not some property holds.
Q. 312 Which of the following are decision properties?
A. Emptiness
B. Infiniteness

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083

Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

C. Membership
D. All of the mentioned

Explanation
Q. 313 Pick the odd one out of the given properties of a regular language:
A. Kleene
B. Reversal
C. Homomorphism
D. Membership

Explanation

Membership is a decision property of language class while others mentioned like Kleene, Reversal and Homomorphism are Closure properties of language class.
Q. 314 For an automata, which of the following are equivalent variants?
A. DFA and NFA
B. NFA and epsilon NFA
C. DFA and epsilon NFA
D. All of the mentioned

For a given automata, all the formats of representation be it deterministic finite automata or
Explanation
non deterministic finite automata or non deterministic finite automata with epsilon
transitions, all are equivalent variants.
Q. 315 Which of the following are not meant to specify a regular language?
A. Regular Expression
B. DFA
C. NDFA and epsilon-NFA
D. All of the mentioned

Explanation

It is possible to convert from one specification to another. We can express a regular language in all the given four variants.
Q. 316 Which of the following problems do not belong to decision properties?
A. Given two languages, are there strings that are in both
B. Is the language a subset of another regular language
C. Is the language same as another regular language
D. None of the mentioned

Explanation
To give a solution to the mentioned problems, we require decision properties and for some, we need additional tools like minimized automaton and Pumping lemma.

Faculty of Department of CE / IT - 07/16
Degree Engineering - 083

Multiple Choice Questions Bank | Theory of Computation | 3160704 |
| :--- | :--- |

Q. 317 Which of the following is a function of Closure properties?
A. Helps construct representations
B. Helps show informally described languages not to be in class
C. Both (a) and (b)
D. None of the mentioned

Explanation

Using closure properties we can give a=solution to many problems like : Is the regular languages L1 and L2 closed on concatenation operation?, etc.
Q. 318

Suppose there is a string w=abbab, and there exists a DFA which accepts w. How many stepts will be required to test its membership?
A. 2
B. $\quad 1$
C. $\quad 4$
D. None of the mentioned

Explanation

If a string belongs to a language, the number of steps required to test that member ship is equal to the length of string i.e. 5 .
Q. 319 If a DFA has \mathbf{n} states and the language contains any string of length \mathbf{n} or more, the language is
A. Infinite
B. Empty
C. Non regular
D. None of the mentioned

Explanation

The language is surely finite if it is limited to string of length \mathbf{n} or less. This is because there are atleast $\mathbf{n + 1}$ states along the path while traversing \mathbf{w} (string).

State true or false:
Q. 320 Statement: If an n-state DFA accepts a string w of length n or more, then there must be a state that appears twice on the path labeled w from the start state to the final state.
A. true
B. false

Explanation This occurs because there are atleast $\mathbf{n + 1}$ states along the path while traversing the string w.

