
Chapter 11

Fading Channels

1. Channel Models

In this chapter we examine models of fading channels and the performance of coding and modulation for fading
channels. Fading occurs due to multiple paths between the transmitter and receiver. For example, two paths
between the transmitter and receiver with approximately the same delay and amplitude but opposite phase (180
degree phase shift) will cause the signal amplitude to be essentially zero.
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The delay being approximately the same for the direct path and the multipath is relative to the duration of the
transmitted symbol. That is the delay should be much shorter than the duration of the transmitted symbol. It may
or may not be shorter than a single cycle of the carrier. Even if it is shorter than a single cycle the multipath could
be due to a reflection from a building, the ground or trees and that can cause a phase reversal.

Thus the type of fading depends on various parameters of the channel and the transmitted signal. Fading can
be considered as a (possibly) time varying filtering operation.

1. Frequency Selective Fading: If the transfer function of the filter has significant variations within the fre-
quency band of the transmitted signal then the fading is called frequency selective.

2. Time Selective Fading: If the fading changes relatively quickly (compared to the duration of a data bit) then
the fading is said to be time selective.

3. Doubly Selective: If both are true then it is said to be doubly selective.

Consider a simple model for fading where there are a finite number of paths from the transmitter to the receiver.
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Consider a signal u
�
t � transmitted over a channel with multipath fading. The signal will be represented as a

baseband signal modulated onto a carrier

s
�
t ��� Re � s0

�
t � exp � j2π fct �	�

where fc is the carrier frequency (in radians) and s0
�
t � is the baseband signal. Alternatively the signal can be

expressed as

s
�
t �
� s0 � c

�
t � cos

�
2π fct �� s0 � s

�
t � sin

�
2π fct �

where

s0 � c
�
t ��� Re � s0

�
t ���

s0 � s
�
t ��� Im � s0

�
t ���

Alternatively

s0
�
t ��� s0 � c

�
t ��� js0 � s

�
t �

The signals s0 � sc � 0 � ss � 0 are assumed to have frequency response much lower than the carrier frequency.

r
�
t ��� Re∑

k

αks0
�
t � τk � exp � j2π fc

�
t � τk ��� jφk �

r0
�
t �
� ∑

k

αks0
�
t � τk � exp � jφk � j2π fcτk �
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Figure 11.1: Model for Fading Channel
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Example 1: Nonselective Fading

The multipath components are assumed to have independent phases. If we let W denote the bandwidth of the
transmitted signal then the envelope of the signal does not change significantly in time smaller than 1 � W . Thus if
τmax � 1 � W , that is

1
fc

� τk � T � W � 1

then s0
�
t � τk ��� u0

�
t � . Then

r0
�
t ��� s0

�
t �

�
∑
k

αk exp � jθk ���
where θk � φk � 2π fcτk. The factor ∑k αk exp � jθk � by which the signal is attenuated is (for a large number of paths
with θ uniformly distributed) a Rayleigh distributed random variable. The fading occurs because of the random
phases sometimes adding destructively and sometimes adding constructively. Thus for narrow enough bandwidths
the multipath results in an attenuation by a Rayleigh distributed random variable.

This is likely to be the case for frequency-hopped spread-spectrum since the bandwidth is that of each hop, not
the spread bandwidth.

Usually the paths lengths are changing with time due to motion of the transmitter or receiver. Above we have
assumed that the motion is slow enough relative to the symbol duration so that the αk

�
t � and φk

�
t � are constants.

Example 2: Frequency Selective Fading

If the bandwidth of the low pass signal is W or the symbol duration is T � 1 � W and the delays satisfy

τk � T � W � 1

then the channel exhibits frequency selective fading. For example consider a discrete multipath model. That is,

r0
�
t ��� α1e jθ1s0

�
t � τ1 ���
	�	�	 αMs0

�
t � τM � e jθM

The impulse response of this channel is

h
�
t ���

M

∑
k  1

αke jθk δ
�
t � τk �

The transfer function is

H
�
f ���

M

∑
k  1

αk exp � jθk � j2π f τk �

More specifically assume M � 2 and that the receiver is synchronized to the first path (so that we assume τ1 �
φ1 � θ1 � 0). Then

H
�
f ��� 1 � α2 exp � jθ2 � j2π f τ2 �

Now it is clear that at frequencies where 2π f τ2 � θ2 � 2nπ or f � �
θ2 � 2nπ ��� 2πτ2 the transfer function will be

H
�
f �
� 1 � α2 while at frequencies where 2π f τ2 � θ2 �

�
2n � 1 � π or f � �

θ2 �
�
2n � 1 � π ��� 2πτ2 the transfer will

be H
�
f �
� 1 � α2.

The frequency range between successive nulls is 1 � τ. Thus if τ � 1
W , 1

τ � W implies there will be multiple
nulls in the spectrum of the received signal.

Example 3: Time Selective Fading
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Figure 11.2: Transfer Function of Multipath Channel.
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Figure 11.3: Transfer Function of Multipath Channel.
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Figure 11.4: Transfer Function of Multipath Channel.
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Figure 11.5: Density Function of Received Signal for a Channel with 6 Equal Amplitude Paths.
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Figure 11.6: Received Signal Strength as a function of time for vehicle velocity 10mph.
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Figure 11.7: Received Signal Strength as a function of time for vehicle velocity 30mph.
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Now consider a communication system where the path length is changing as a function of time (e.g. due to
vehicle motion). The envelope of the received signal (as the vehicle moves) undergoes time-dependent fading.

Then

h
�
t ���

M

∑
k  1

αk
�
t � e jθ � t � δ � t � τk � t ���

Because the impulse response is time varying the fading at different time instances is correlated if they are very
close and uncorrelated if they are very far apart. The time-varying response leads to a shift in the frequency
spectrum. The spread in the spectrum of the transmitted signal is known as the Doppler spread. If the data duration
is much shorter than the time variation of the fading process then the fading can be considered a constant or a
slowly changing random process.

General Model

The most widely used general model for fading channels is the wide-sense stationary, uncorrelated scattering
(WSSUS) fading model. In this model the received signal is modeled as a time-varying filter operation on the
transmitted signal. That is

r0
�
t ���

� ∞� ∞
h
�
t;t � α � s0

�
α � dα

where h
�
t;t � τ � is the response due to an impulse at time τ and is modeled as a zero mean complex Gaussian

random process. Note that it depends not only on the time difference between the output and the input but also
on the time directly. The first variable in h accounts for the time varying nature of the channel while the second
variable accounts for the delay between the input and output. This is the result of the assumption that there are
a large number of (possibly time varying) paths at a given delay with independent phases. This is known as a
Rayleigh faded channel. If there is a (strong) direct path between the transmitter and receiver then the filter h

�
t � τ �

will have nonzero mean. This case is called a Rician faded channel.
The assumptions for WSSUS is that h

�
t � τ �

E � h � t;τ1 � h � � t � ∆t;τ2 ��� � φ
�
τ1;∆t � δ � τ2 � τ1 ���

Thus the correlation between the responses at two different times depends only on the difference between times
(this is the wide sense stationary assumptions). Also, the response at two different delays are uncorrelated.

The amount of power received at a given delay τ is φ
�
τ;0 � . This is called the intensity delay profile or the delay

power spectrum.
The mean excess delay, µm is defined to be the average excess delay above delay of the first path

µ ��� τmax
τmin

τφ
�
τ;0 � dτ

�
τmax
τmin

φ
�
τ;0 � dτ

� τmin

The rms delay spread is defined as

s � �	� τmax
τmin

�
τ � µ � τmin � 2φ

�
τ;0 � dτ

� τmax
τmin

φ
�
τ;0 � dτ

� 1 
 2
The largest value τmax of τ such that φ

�
τ;0 � is nonzero is called the multipath spread of the channel. In the

general model the delays cause distortion in the received signal. If we let H
�
f ;t � be the time-varying transfer

function of the channel, i.e.

H
�
f ;t �
�

� ∞� ∞
h
�
t;τ � e � j2π f τdτ

then H
�
f ;t � is also a complex Gaussian random process. The correlation between the transfer function at two

different frequencies and two different times is

Φ
�
f1 � f2;∆t ��� E �H �

f1;t � H � � f2;t � ∆t ���
�

� ∞� ∞
φ
�
τ;∆t � e � j2π � f2 � f1 � τdτ
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Figure 11.8: Channel correlation function and Doppler spread for fc � 1GHz, v � 10km � hour.) and without
Rayleigh fading.

Figure 11.9: Channel correlation function and Doppler spread for fc � 1GHz, v � 100km � hour.

Thus the correlation between two frequencies for the WSSUS model (and at two times) depends only on the
frequency difference. If we let ∆t � 0 then we obtain

Φ
�
∆ f ;0 ���

� ∞� ∞
φ
�
τ;0 � e � j2π � ∆ f � τdτ

The smallest frequency Bc separation such that the channel response is uncorrelated at that frequency difference is
called the coherence bandwidth. It is related to the delay spread by

Bc � 1
τmax

Now consider the time-varying nature of the channel. In particular consider Φ
�
∆ f ;∆t � which is the correlation

between the responses of the channel at two frequencies separated by ∆ f and at times separated by ∆t. For ∆ f � 0
Φ
�
0;∆t � measures the correlation between two responses (at the same frequency) but separated in time by ∆t. The

Fourier transform gives the Doppler power spectral density

S
�
λ ���

� ∞� ∞
Φ
�
0;γ � e � j2πλγdγ �

The Doppler power spectral density gives the distribution of received power as a function of frequency shift. Since
there are many paths coming from different directions and the receiver is moving these paths will experience
different frequency shifts. Consider a situation where a mobile is moving toward a base station with velocity v. If
we assume that there are many multipath components that arrive with an angle uniformly distributed over � 0 � 2π �
then the Doppler spectral density is given by

Example 1:

S
�
λ ��� 1

2π fm
� 1 � � λ � fm � 2 � � 1 
 2 � 0 ��� λ ��� fm

where fm � v fc � c, fc is the center frequency and c is the speed of light (3 � 108m � s). For example a vehicle moving
at 100mph with 1GHz center frequency has maximum Doppler shift of 57 Hz. A vehicle moving at 30mph would
have a maximum Doppler shift of 17Hz. Thus most of the power is either at the carrier frequency plus 57Hz or
at the carrier frequency minus 57Hz. The corresponding autocorrelation function is the inverse Fourier transform
and is given by

Φ
�
0 � γ � �

� ∞� ∞
S
�
λ � e j2πλγdλ

� J0
�
2π fmγ �

Example 2: If the channel is not time varying (i.e. time invariant) then the response at two different times are
perfectly correlated so that Φ

�
0;∆t �
� 1 This implies that S

�
λ ��� δ

�
f � .

The largest value of λ for which S
�
λ � is nonzero is called the Doppler spread of the channel. It is related to the

coherence time Tc, the largest time difference for which the responses are correlated by

Bd � 1
Tc

The fading discussed above is referred to as short term fading as opposed to long term fading. Long term fading
refers to shadowing of the receiver from the transmitter due to terrain and buildings. The time scale for long term
fading is much longer (on the order of seconds or minutes) than the time scale for short term fading. It is generally
modeled as lognormal. That is the received power (in dB) has a normal (or Gaussian) distribution.



11-10 CHAPTER 11. FADING CHANNELS

1. Free Space Propagation

In this section we discuss the received power as a function of distance from the receiver. Suppose we have a
transmitter and receiver separated by a distance d. The transmitter and receiver have antennas with gain Gt and Gr

respectively. If the transmitted power is Pt the received power is

Pr � PtGrGt
� λ
4πd

� 2

where λ � c � f is the wavelength of the signal. The above equation holds in free space without any reflections or
multipath of any sort.

Now consider the case where there is an additional path due to a single reflection from the ground. The
multipath has a different phase from the direct path. If we assume the reflection from the ground causes a 180
degree phase change then for large distances the relation between the transmitted power and the received power
changes to

Pr � PtGrGt
h2

1h2
2

d4

Thus the relation of received power to distance becomes an inverse fourth power law or equivalently the power
decreases 40dB per decade of distance. Generally, for a wireless channel the decrease in power is 20dB per decade
near the base station but as the receiver moves away the rate of decrease increases.

Thus overall there are three degradations due to propagation. The first is the normal path loss (in free space
this corresponds to received power decreasing as 1 � r2 while in an urban environment this could be as 1 � r4 where
r is the distance between the transmitter and receiver). The second is the long term shadowing of the receiver
which has log-normal distribution (normal distribution for power received in dB0. The third is fast fading due to
multipath components adding constructively or destructively.

2. GSM Model

The GSM model was developed in order to compare different coding and modulation techniques. The model
consists of Np paths, each time varying with different power levels. Below we show one example of the delay
power profile for a GSM model of an urban environment.
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0dB

-1dB

-2dB

-3dB

-4dB

-5dB

-6dB

-7dB

-8dB

-9dB

-10dB

-11dB

0 1 2 3 4 5

τ (µsec)

Path Delay (µ sec) Average Power (dB)
1 0.0 -4.0
2 0.1 -3.0
3 0.3 0.0
4 0.5 -2.6
5 0.8 -3.0
6 1.1 -5.0
7 1.3 -7.0
8 1.7 -5.0
9 2.3 -6.5

10 3.1 -8.6
11 3.2 -11.0
12 5.0 -10.0

Table 1. Parameters for GSM Model of Urban Area

3. Performance with (Time and Frequency) Nonselective Fading

The performance with nonselective fading is fairly easy to derive. The error probability conditioned on a particular
fading level is determined and then the conditional error probability is averaged with respect to the fading level.

1. Coherent Reception, Binary Phase Shift Keying

First consider a modulator transmitting a BPSK signal and received with a faded amplitude. The transmitted signal
is

s
�
t �
��� 2Pb

�
t � cos

�
2π fct �



11-12 CHAPTER 11. FADING CHANNELS

where b
�
t � is the usual data bit signal consisting of a sequence of rectangular pulses of amplitude +1 or -1. The

received signal is

r
�
t �
� R � 2Pb

�
t � cos

�
2π fct � φ ��� n

�
t �

Assuming the receiver can accurately estimate the phase the demodulator (matched filter) output at time kT is

zk � R � Ebk � 1 � ηk

where E � PT . The random variable R represents the fading and has density

pR
�
r �
�

�
0 � r � 0

r
σ2 e � r2 
 2σ2

r � 0

The conditional error probability is

Pe
�
R ��� Q

��� 2ER2

N0
���

Let α � 2E � N0, β � σ2α � Ē � N0 and

γ � � β
1 � β

� � Ē � N0

1 � Ē � N0

The unconditional error probability is

Pe �
� ∞

r  0
pR
�
r � Q ��� 2Er2

N0
� dr

�
� ∞

r  0

r
σ2 e � r2 
 2σ2

Q
��� 2Er2

N0
� dr

�
� ∞

r  0

r
σ2

� ∞

u �� αr2
e � r2 
 2σ2 exp � � u2 � 2 �

� 2π
dudr

�
� ∞

u  0

exp � � u2 � 2 �
� 2π

� u 
 � α

r  0

r
σ2 e � r2 
 2σ2

dudr

�
� ∞

u  0

exp � � u2 � 2 �
� 2π

� u 
 � α

r  0

r
σ2 exp � � r2 � 2σ2 � drdu

�
� ∞

u  0

exp � � u2 � 2 �
� 2π

�
1 � exp � � u2 � � 2ασ2 � � � du

� 1
2
�
� ∞

u  0

1

� 2π
exp � � u2

2

�
1 � 1

ασ2 � � du

� 1
2
� γ

� ∞

u  0

1

γ � 2π
exp � � u2

2γ2 � du

� 1
2
� 1

2
� Ē � N0

1 � Ē � N0

The last integral is evaluated by recognizing the integrand to be a Gaussian density function with zero mean which
when integrated from 0 to ∞ is 1/2.
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Figure 11.10: Bit error probability for BPSK with Rayleigh Fading

For large E � N0 the error probability is

Pe �
1

4E � N0
�

Thus for high E � N0 the error probability decreases inverse linearly with signal-to-noise ratio. To achieve error
probability of 10 � 5 require a signal-to-noise ratio of 44.0dB whereas in additive white Gaussian noise the required
signal-to-noise ratio for the same error probability is 9.6dB. Thus fading causes a loss in signal-to-noise ratio of
34.4dB. This loss in performance is at the same average received power. The cause of this loss is the fact that the
signal amplitude sometimes is very small and causes the error probability to be close to 1/2. Of course, sometimes
the signal amplitude is large and results in very small error probability (say 0). However when we average the
error probability the result is going to be much larger than the error probability at the average signal-to-noise ratio
because of the highly nonlinear nature of the error probability as a function of signal amplitude without fading.

2. BPSK with Diversity

To overcome this loss in performance (without just increasing power) a number of techniques are applied. Many of
the techniques attempt to receive the same information with independent fading statistics. This is generally called
diversity. The diversity could be the form of L different antennas suitably separated so that the fading on different
paths from the transmitter are independent. The diversity could be the form of transmitting the same data L times
suitably separated in time so that the fading is independent.

In any case consider a system with L independent paths. The receiver demodulates each path coherently.
Assume that the receiver also knows exactly the faded amplitude on each path. The decision statistics are then
given by

zl � rl � Eb � ηl � l � 1 � 2 � � � � � L
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where rl are Rayleigh, ηl is Gaussian and b represents the data bit transmitted which is either +1 or -1. The optimal
method to combine the demodulator outputs can be derived as follows. Let p1

�
z1 � � � � � zL � r1 � � � � � rL � be the conditional

density function of z1 � � � � � zL given the transmitted bit is +1 and the fading amplitude is r1 � � � � � rL. The unconditional
density is

p1
�
z1 � � � � � zL � r1 � � � � � rL ��� p1

�
z1 � � � � � zL � r1 � � � � � rL � p

�
r1 � � � � � rL �

The conditional density of z1 given b � 1 and r1, is Gaussian with mean rl � E and variance N0 � 2. The joint
distribution of z1 � � � � � zL is the product of the marginal density functions. The optimal combining rule is derived
from the ratio

Λ � p1
�
z1 � � � � � zL � r1 � � � � � rL �

p � 1
�
z1 � � � � � zL � r1 � � � � � rL �

� p1
�
z1 � � � � � zL � r1 � � � � � rL � p

�
r1 � � � � � rL �

p � 1
�
z1 � � � � � zL � r1 � � � � � rL � p

�
r1 � � � � � rL �

� p1
�
z1 � � � � � zL � r1 � � � � � rL �

p � 1
�
z1 � � � � � zL � r1 � � � � � rL �

� exp � � 1
N0

∑L
l  1

�
zl � rl � E � 2 �

exp � � 1
N0

∑L
l  1

�
zl � rl � E � 2 �

� exp � 4
N0

L

∑
l  1

zlrl � E � �
The optimum decision rule is to compare Λ with 1 to make a decision. Thus the optimal rule is

L

∑
l  1

rlzl

b �� 1��
b  � 1

0

The error probability with diversity L can be determined using the same technique as used without diversity.
The expression for error probability is

Pe
�
L � � Pe

�
1 � � 1

2

L � 1

∑
k  1

�
2k � !
k!k!

�
1 � 2Pe

�
1 � � � Pe

�
1 � � k � 1 � Pe

�
1 � � k

In the case of diversity transmission the energy transmitted per bit Eb is LE . For a fixed Eb as L increases each
transmission contains less and less energy but there are more transmissions over independent faded paths. In the
limit as L becomes large using the weak law of large numbers it can be shown that

lim
L � ∞

Pe
�
L �
� Q

�� � 2Ēb

N0

��

While this shows it is possible to get back to the performance with additive white Gaussian noise by using sufficient
resources (diversity) it is possible to do even better with the right coding. In Figure 11.12 we show the performance
of a rate 1/2 constraintl length 7 convolutional code on a Rayleigh faded channel (independent fading on each bit)
where the receiver knows the fading level for each bit and can appropriatel weight the metric in the decoder. Notice
that the requied Eb � N0 for 10 � 5 bit error probability is about 7.5dB, which is less than that required for uncoded
BPSK without fading. The gain compared to uncoded performance is more than 36dB.

3. Fundamental Limits

The fundamental limits on performance can be determined for a variety of circumstances. Here we assume that
the transmitter has no knowledge of the fading amplitude and assume the modulation in binary phase shift keying.
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Figure 11.11: Error probability for BPSK (coherent demodulation) with and without Rayleigh fading.

When the receiver knows exactly the amplitude (and phase) of the fading process the maximum rate of transmission
(in bits/symbol) is

C � 1 �
� ∞

r  0

� ∞

y  � ∞
f
�
r � g � y � log2

�
1 � e � 2yβ � dydr

where f
�
r �
� 2r exp � � r2 � , β ��� 2Ē � N0 and

g
�
y ��� 1

� 2π
exp � � � y ��� 2Ēr2 � N0 � 2 � 2 � �

If the receiver does not know the fading amplitude (but still does coherent demodulation) then the capacity is

C � 1 �
� ∞

r  0

� ∞

y  � ∞
p
�
y � 1 � log2

�
1 � p

�
y � 0 �

p
�
y � 1 � � dy

where

p
�
y � 0 ���

� ∞

0
f
�
r � 1

� 2πN0
e � � y � � Er � 2 
 N0 dr

and

p
�
y � 1 ���

� ∞

0
f
�
r � 1

� 2πN0
e � � y � � Er � 2 
 N0 dr

If the receiver makes a hard decision and the receiver knows the fading amplitude then the capacity is

C �
� ∞

0
f
�
r � � 1 � p

�
r � log2

�
p
�
r � ��� � 1 � p

�
r � � log2

�
1 � p

�
r � ��� dr
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Figure 11.13: Capacity of Rayeigh Fading Channels.

where p
�
r � � Q

� � 2Ēr2

N0
� . For a receiver that does not know the fading amplitude and makes hard decisions on

each coded bit the capacity is given by

C � 1 � p̄ log2
�

p̄ ��� �
1 � p̄ � log2

�
1 � p̄ �

where

p̄ � 1
2
� 1

2
� Ē � N0

Ē � N0 � 1
�

Finally if the transmitter is not restricted to binary phase shift keying but can use any type of modulation then the
capacity when the receiver knows the fading level is

C �
� ∞

0
f
�
r � 1

2
log2

�
1 � 2Ēr2 � N0 � dr

In this figure the top curve (a) is the minimum signal-to-noise ratio necessary for reliable communication with
hard decisions, no side information. The second curve (b) is the case of hard decisions with side information. The
third curve (c) is the case of soft decisions with side information and binary modulation (BPSK). The bottom curve
(d) is the case of unrestricted modulation and side information available a the reveiver. There is about a 2 dB gap
between hard decision and soft decisions when side information is available. There is an extra one dB degradation
in hard decisions if the receiver does not know the amplitude. A roughly similar degradation in performance is
also true for soft decisions with and without side information.

We can also plot the maximum rate of communications in bits/second/Hz as a function of the energy per bit to
noise power ratio.
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Figure 11.14: Capacity of Rayleigh faded channel with coherent detection

4. Noncoherent Demodulation

In this section consider noncoherent demodulation of FSK. The transmitted signal is

s
�
t ��� � 2P

∞

∑
l  � ∞

cos
�
2π
�
fc � b

�
t � ∆ f � t � θ � pT

�
t � lT � �

The received signal is now

r
�
t � � � 2PRcos

�
2π
�
fc � b

�
t � ∆ f � t � θ � ψ ��� n

�
t �

where ψ is the additional phase due to the fading. and the fading level R is a Rayleigh distributed random variable.
The density of R is

pR
�
r �
�

�
0 � r � 0

r
σ2 e � r2 
 2σ2

r � 0

where 2σ2 is the mean square value of the fading variable. If we let Ē denote the received energy (as opposed to
the transmitted energy E) then

Ē � 2σ2E �
The outputs of the standard FSK receiver are

Xc � 1
�
iT ��� � ERδ

�
bi � 1 � 1 � cos

�
θ ��� ηc � 1 � i

Xs � 1
�
iT ��� � ERδ

�
bi � 1 � 1 � sin

�
θ ��� ηs � 1 � i

Xc � � 1
�
iT ��� � ERδ

�
bi � 1 � � 1 � cos

�
θ ��� ηc � � 1 � i

Xs � � 1
�
iT ��� � ERδ

�
bi � 1 � � 1 � sin

�
θ ��� ηs � � 1 � i
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Figure 11.15: Transmission Rate versus Signal-to-Noise Ratio

where δ
�
n � m � is 1 if n � m and is 0 otherwise.

The conditional error probability is then

Pe
�
R ��� 1

2
e � REb 
 2N0

The unconditional error probability is

Pe �
� ∞

0
pR
�
r � 1

2
e � rEb 
 2N0dr

� 1
2 � 2σ2E � N0

� 1
2 � Ē � N0

There is an increase of 36.6dB in the signal-to-noise ratio needed for 10 � 5 error probability when Rayleigh
fading is present.

5. M-ary Orthogonal Modulation

The above result is easily extended to M-ary orthogonal signalling. The symbol error probability is

Pe
�
M �
�

M � 1

∑
m  1

�
M � 1

m � � � 1 � m � 1 1
1 � m � mĒ � N0

For large M this is difficult to compute. Asymptotically the error probability is

lim
M � ∞

Pe
�
M ��� 1 � exp � � ln

�
2 ��� Ēb � N0 �

where Eb � E � log2
�
M � is the energy transmitted per bit of information. This asymptotic result also holds with

coherent detection.
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Figure 11.18: Symbol error probability for M-ary orthogonal signalling with Rayleigh fading and diversity using
square-law combining (M � 8).

A word of caution is necessary here. For different M the time bandwidth product of the modulation changes.
If the time is kept constant then larger M implies larger bandwidth. The assumption that the channel is frequency
nonselective over the larger bandwidth should be reconsidered. If the channel becomes frequency selective then
not all of the signal will fade simultaneously (as in the assumption above). On the other hand, there will be some
intersymbol interference from the frequency selectivity. Careful analysis of the affect of frequency selectivity will
be discussed after considering a spread-spectrum waveform.

Similaryly the error probability with M-ary orthogonal signals and diversity can be calculated

6. Rician Fading

When there is a direct path between the transmitter and receiver in addition to the many reflected paths then the
channel is said to undergo Rician fading. In this section we analyze the performance of binary FSK in the presence
of Rician fading.

The transmitted signal for FSK it is expressed as

s
�
t �
� � 2Pcos

�
2π
�
fc � b

�
t � ∆ f � t �

where b
�
t � is the data waveform taking values � 1 every T seconds. The received signal is now

r
�
t � � � 2Pαcos

�
2π
�
fc � b

�
t � ∆ f ��� θ � � � 2PRcos

�
2π
�
fc � b

�
t � ∆ f � t � θ � ψ � � n

�
t �

where n
�
t � is white Gaussian noise with power spectral density N0 � 2, α represents the amplitude of the direct path

component and R represents the fading amplitude for the multipath and ψ the additional phase due to the fading.
The total received energy due to the transmitted signal is a random variable. The average received energy is

Ē � �
α2 � 2σ2 � E �
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Figure 11.19: Symbol error probability for M-ary orthogonal signalling with Rayleigh fading and diversity using
square-law combining (M � 32).
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This energy includes the energy in the direct (unfaded) component and the multipath (faded) component. An
important quantity in quantifying performance is the ratio of the power in the faded part with the power in the
direct path.

γ2 � 2σ2

α2

The ratio of total received (direct plus faded) energy to the noise spectral density (N0) is denoted by Γ.

Γ � Ē
N0

The standard FSK receiver processes the received signal by computing

Xc � 1
�
iT � �

� iT

� i � 1 � T r
�
t �

�
2
T

cos
�
2π
�
fc � ∆ f � t � dt

Xs � 1
�
iT � �

� iT

� i � 1 � T r
�
t �

�
2
T

sin
�
2π
�
fc � ∆ f � t � dt

Xc � � 1
�
iT � �

� iT

� i � 1 � T r
�
t �

�
2
T

cos
�
2π
�
fc � ∆ f � t � dt

Xs � � 1
�
iT � �

� iT

� i � 1 � T r
�
t �

�
2
T

sin
�
2π
�
fc � ∆ f � t � dt

The outputs of the standard FSK receiver are

Xc � 1
�
iT � � �

α � R � � Eδ
�
bi � 1 � 1 � cos

�
θ � � ηc � 1 � i

Xs � 1
�
iT � � �

α � R � � Eδ
�
bi � 1 � 1 � sin

�
θ ��� ηs � 1 � i

Xc � � 1
�
iT � � �

α � R � � Eδ
�
bi � 1 � � 1 � cos

�
θ � � ηc � � 1 � i

Xs � � 1
�
iT � � �

α � R � � Eδ
�
bi � 1 � � 1 � sin

�
θ ��� ηs � � 1 � i

where ηc � 1 � i � ηc � � 1 � i � ηs � 1 � i � ηs � � 1 � i are independent Gaussian random variables with mean zero and variance N0 � 2.
Also δ

�
n � m � is 1 if n � m and is 0 otherwise.

The error probability for Rician fading can be expressed as follows.

Pe � b � P � Xc � 1
�
it � 2 � Xs � 1

�
iT � 2 � Xc � � 1

�
it � 2 � Xs � � 1

�
iT � 2 � bi � 1 � � 1 �

� 1 � γ2

2 � γ2
�
2 � Γ � exp � � Γ

2 � γ2
�
2 � Γ � �

The error probability is plotted in Figure 11.18 as a function of the signal-to-noise ratio for various values of γ.
Notice that if the faded power is equal or larger than the power of the direct path (gamma � 1) then the performance
is essentially that of a pure Rayleigh fading channel.

A similar analysis can be performed for 32-ary orthogonal modulation. The symbol error probability is shown
in the following figure. The same general conclusion for binary modualtion also applies to 32-ary modulation.

7. BFSK with Diversity and Rayleigh Fading

Now consider the case where we have L independent paths between the transmitter and receiver, i.e diversity.
Assume the receiver has no knowledge of the fading amplitude or phase. In this case the optimal combining rule
is called square-law combining. The error probability can be determined as

Pe
�
L ��� Pe

�
1 � L

L � 1

∑
j  0

�
L � j � 1

j � �
1 � Pe

�
1 � � j � DL � � 4Pe

�
1 � � 1 � Pe

�
1 � ��� L
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Figure 11.20: Error Probability for Binary FSK with Noncoherent Detection and Rician Fading.

where

Pe
�
1 ��� 1

2 � E � N0

For the case of diversity transmission E � Eb � L. The larger L is the small amount of energy in each diversity trans-
mission. However, the larger L is, the more transmissions there are over independent faded paths. For noncoherent
demodulation, unlike coherent demodulation, as L approaches ∞ the error probability approaches 1/2. However,
for a fixed signal-to-noise ratio Ēb � N0, there is an optimal value of L that minimizes the error probability. The
optimal L is an increasing function of Ēb � N0. If we do not worry about the fact that L must be an integer and set
L � aĒb � N0 then the error probability can be upper bounded by an exponentially decreasing function of Ēb � N0.

It can be shown (using the Chernoff bound) that the error probability can be upper bound by an exponentially
decreasing function of the signal-to-noise ratio.

Pe � b � e � 0 � 149Eb 
 N0 �
As can be seen from the above figures it is extremely important that some form of coding be used with fading.

When a repetition code is used the error probability can be made to decrease exponentially with signal to-noise
ratio provided that we use the optimal diversity. Below we determine the capacity of the channel. We show that
Rayleigh fading only causes a degradation of 1.35dB relative to unfaded system when optimal codes are applied (to
both). A drawback to this is that the codes that achieve capacity at the minimum signal-to-noise ratio for Rayleigh
fading have rate close to 0.24 while for an unfaded channel the rate is 0.48.

When we consider the output of the noncoherent matched filter to be the channel output and the input to be the
binary symbol the capacity of the channel is given by

C � 1 �
exp

�
� α2β2 
 2

1 � σ2β2 �
4
�
1 � σ2β2 �

� ∞

0

� ∞

0
e � � y1 � y � 1 ��
 2I0 � � α2β2y � 1 � log2

�
1 � Λ

�
y � 1 � y1 � � dy � 1dy0
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Figure 11.21: Symbol error probability of 32-ary orthogonal modulation in a Rician faded channel with noncoher-
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Figure 11.23: Error probability for rate 1/2 constraint length 7 convolutional code with Rayleigh fading (soft
decision decoding).

where β2 � 2E
N0

.

4. Problems

1. Consider a base station with antenna height h1 and receiver with antenna height h2. The distance between
the base and the receiver is d (along the ground). Assume d is much larger than h1 and h2. There are two
paths between the transmitter and receiver: a direct path and a path that reflects off of the ground. Assume a
180 degree phase change when the signal is reflected off the ground and that the angle of reflection is equal
to the angle of incidence. Finally assume free space propagation for each of the two paths. Show that the
received power as a function of distance is

Pr � PtGrGt
h2

1h2
2

d4

2. Derive the error probability for the optimum receiver for BPSK with diversity L in Rayleigh fading. Assume
independent fading for each of the L diversity transmissions.

3. Consider a transmitter and receiver inside a building. The building has height 4 meters. The transmitter and
receiver are 1.5m above the ground. There are three paths between the transmitter and receiver. The first
path is the direct path. The second path is reflected off of the floor with reflection coefficient -0.8. The third
path is reflected off the ceiling with reflection coefficient -0.8. Each signal undergoes the usual free space
propagation loss. Plot the received power as a function of distance. (You should use a program to calculate
and plot this). Consider the following different frequencies: fc=100MHz, fc=1GHz, fc=10GHz. Consider
the distance form 1 meter to 100 meters.

Appendix A: Matlab Code for GSM Simulation

clear
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SLOW FADING SIMULATION %
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Figure 11.24: Eb � N0 needed for reliable communication for Rician fading with soft decision decoding a) γ2 � ∞,
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Figure 11.25: Eb � N0 needed for reliable communication for Rician fading with hard decision decoding a) γ2 � ∞,
b) γ2 � 1 � 0, c) γ2 � 0 � 5, d) γ2 � 0 � 1, e) γ2 � 0.
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Figure 11.26: Eb � N0 needed for reliable communication for Rayleigh fading (a) soft decisions with side infor-
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without side information.
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% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N=2ˆ12;
N2=N/2;
fmax=400 % Maximum Frequency of Slow Fading of 400 Hz
fs=2*fmax; % Sampling Frequency
df=2*fmax/N
dt=1./(df.*N)
f=(1:N)*df-df;
t=(1:N)*dt-dt;
tmax=dt*N
Np=12; %Np is the number of paths
w=200*(randn(N,Np)+j*randn(N,Np));
wf=fft(w).*dt;
vel=40*10ˆ3/3600
c=3*10ˆ8;
fc=850*10ˆ6
fm=vel*fc/c;
Nm=round(fm/df)-1;
hf(1:N)=zeros(1,N);
hf(1:Nm)=1./(pi*fm*sqrt(1-(f(1:Nm)/fm).ˆ2));
hf(N2+2:N)=conj(fliplr(hf(2:N/2)));
for l=1:Np
vf(:,l)=hf’.*wf(:,l);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% vf(:,l) is the frequency response of the l-th path %
% v(:,l) is the time response of the l-th path %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
v=ifft(vf)./dt;

clear vf
clear wf
clear hf

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% FAST FADING SIMULATION %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N=2ˆ14;
N2=N/2;
fmax=20e6
fs=2*fmax; % Sampling Frequency
df=2*fmax/N
dt=1./(df.*N)
f=(1:N)*df-df;
t=(1:N)*dt-dt;
M=moviein(40);
tau=[0.0 0.1 0.3 0.5 0.8 1.1 1.3 1.7 2.3 3.1 3.2 5.0]*10ˆ(-6);
powdb=[-4 -3 0 -2.6 -3.0 -5.0 -7.0 -5.0 -6.5 -8.6 -11 -10];
pow=10.ˆ(powdb/10)
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plot(tau, powdb)
pause(5)
for k=1:Np
% u(k,:)=exp(-tau(k)/1e-6)*exp(-j*2*pi*f*tau(k));
u(k,:)=sqrt(pow(k))*exp(-j*2*pi*f*tau(k));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% u(:,l) is the frequency response of the l-th path %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for l=1:40
l
hf=zeros(1,N);
for k=1:Np
hf=hf+v(l,k)*u(k,:);
end
plot(f-N/2*df,10*log10(abs(fftshift(hf))));
axis([-4e6 4e6 -20 10])
grid
M(:,l)=getframe;
end
clear v u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 f t;
pause(5)
movie(M,-10)


