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CALCE Introduction
 

•	 The Center for Advanced Life Cycle Engineering (CALCE) 
formally started in 1984, as a NSF Center of Excellence in systems 
reliability. 

•	 One of the world’s most advanced and comprehensive testing and 
failure analysis laboratories 

•	 Funded at $6M by over 150 of the world’s leading companies 
•	 Supported by over 100 faculty, visiting scientists and research 

assistants 
•	 Received NSF Innovation Award and NDIA Systems Engineering 

Excellence Award 
in 2009 and IEEE 
Standards Education 
Award in 2013. 
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IGBT Applications
 
•	 Need for more compact power converters achieved through faster device 

switching 
•	 IGBTs are the ideal choice with switching frequencies of 1kHz-150kHz and 

current handling of up to 1500A 

Electric Trains 
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Electric CarsInduction Heating Units Power Converters 

Uninterruptible 
Power Supplies Wind Turbines 



  
   

    

 

 

IGBT Technologies
 

Source: 
Infineon 
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Failed Wind Turbine IGBT Module 

Unused IGBT Failed IGBT which experienced a 
thermal runaway, burning the module 
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Steps in Reliability Evaluation 

•  Quantify the life cycle conditions 
•  Failure Modes, Mechanisms, and Effects Analysis 

(FMMEA) > reliability analysis, assess design 
tradeoffs and revise/update design 

•  Part, material and supplier selection 
•  Virtual qualification (VQ), including stress and 

thermal analysis 
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FMMEA Methodology 

Identify life cycle profile  

Identify potential failure modes  

Identify potential failure mechanisms  

Identify failure models 

Define system and identify 
elements and functions to be analyzed 

Identify potential failure causes 

Prioritize failure mechanisms 

Document the process 
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IGBT Failure Modes and Mechanisms 

•  Failure modes in an IGBT are simple at top level: 
–  Short circuit  
–  Open circuit 
–  Parameter drift 

•  Parameter drift occurs as a part degrades and the 
electrical characteristics such as VCE(ON) or ICE drift 
from the acceptable operating range due to the 
accumulation of damage within a device or module 
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Failure Modes and Mechanisms 
Potential Failure Modes (Sites) 

 

Short circuit, loss of gate control, 
increased leakage current (Oxide) 

 

Potential Failure Causes 
 

High temperature, high 
electric field, overvoltage 

Potential Failure 
Mechanisms (Parameters 

affected) 

Time dependent dielectric 
breakdown (Vth, gm) 

High leakage currents 
(Oxide, Oxide/Substrate 

Interface) 

Overvoltage, high 
current densities Hot electrons (Vth, gm) 

Loss of gate control, device 
burn-out (Silicon die) 

 

High electric field, 
overvoltage, ionizing 

radiation 
Latch-up (VCE(ON)) 

Open Circuit (Bond Wire) 

 

High temperature, high 
current densities Bond Wire Cracking, 

Lift Off (VCE(ON)) 

Open Circuit (Die Attach) 

 

Voiding, 
Delamination of Die 

Attach (VCE(ON)) 

High temperature, high 
current densities 
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Examples of Failure Models 
 Failure Mechanism  Failure Sites Failure Causes Failure Models 

                            
Fatigue 

Die attach, Wirebond/TAB,  
  Solder leads, Bond pads, 

  Traces, Vias/PTHs,  
  Interfaces 

    
Cyclic Deformations 

 (Δ T, Δ H, Δ V) 

Nonlinear Power 
 Law (Coffin-Manson) 

Corrosion  Metallizations M, ΔV, T, chemical Eyring (Howard)  

   Electromigration  Metallizations T, J Eyring (Black) 

Conductive Filament 
Formation  

Between Metallizations M, ΛV Power Law (Rudra)     

Stress Driven 
   Diffusion Voiding 

Metal Traces σ, T Eyring (Okabayashi) 

Time Dependent     
  Dielectric Breakdown 

Dielectric layers V, T Arrhenius (Fowler-
Nordheim)                                                                                              

Δ:  Cyclic range   V:  Voltage 
Λ:    gradient    M:  Moisture 
T:    Temperature   J:  Current density 
H:  Humidity    σ:  Stress 
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Thermal Analysis 
Vibrational Analysis 

Shock Analysis 
Failure Analysis 

calcePWA 
Circuit Card Assemblies 

 
Failure Analysis 

calceEP 
Device andPackage  

 

calceFAST 
Failure Assessment 

Software Toolkit 

http://www.calce.umd.edu/software 

CALCE Simulation Assisted Reliability 
Assessment (SARA®) Software 

Conductor II 

Conductor I 

Whisker 

Spacing (ls) 

calceTinWhisker FailureRiskCalculator 
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Thermally-Induced Stresses in IGBT 

Material	   CTE (10-6 K-1)	   Conductivity 
(W m-1 K-1)	  

A12O3 	   6.8 	   24	  
AlN 	   4.7	   170	  

Si3N4	   2.7	   60	  
BeO	   9	   250	  
Al	   23.5	   237	  
Cu	   17.5	   394	  
Mo	   5.1	   138	  
Si	   2.6	   148	  

AlSiC	   7.5	   200	  
- Bond Wire Fatigue 
- Solder Joint Fatigue 
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IGBT Power Cycling Experiment 

•  IGBT samples were power 
cycled between specified 
temperatures TMin and TMax. 
The devices were switched 
at 1 or 5 kHz. Cooling was 
carried out passively by 
exposure to ambient 
temperature.  

•  This ‘power’ (thermal) 
cycling was repeated until 
failure occurred by latchup 
or by failure to “turn on”. 

TMax 

TMin 

Switching at 1 or 5 kHz 

Heating 

Cooling 

Time 
Power cycling illustration 
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Parasitic Thyristor in IGBT Structure 

Internal PNP Bipolar Transistor 
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Parasitic Thyristor in IGBT Structure 

Parasitic NPN Bipolar Transistor 
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Die Attach Acoustic Scan Images 

New IGBT sample. Failure to turn on 
after 3126 power 
cycles, ΔT = 75°C. 
Die attach shows 
delamination. 

Delaminated surface 

Failure by latchup after 
1010 power cycles, ΔT 
= 100°C. Melting T of 
die attach = 233°C*. 

*Specification sheet for Sn65Ag25Sb10 solder from Indium Corp. Indalloy 209. 

Melted die attach 
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Bond Wire Failures 

Bond Wire Cracking Bond Wire Liftoff 
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Lifetime Statistics of Experimental 
Results 

150-200C Data 
β = 2.26 
η = 7134 
ρ = 0.96 

125-225C Data 
β = 2.60 
η = 1191 
ρ = 0.96 

1 kHz  
5 kHz  

60% duty cycle 

2P-Weibull with 
95% confidence bounds 

MTTF = 6320 

MTTF = 1058 

ANOVA p-value = 7.6E-6 
∴ Different distributions  
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Prediction of Other Reliability Metrics 
Temperature Range MTTF (Cycles) [B5%Life; B95%Life] 

(Cycles) 
150-200°C 6320 cycles [1922; 11,582] 
125-225°C 1058 cycles [381; 1815] 

MTTF varies with loading conditions and from part to part. 
Predicting service life of an IGBT based on a population MTTF 
results in a high uncertainty. 
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Physics of Failure Based Lifetime 
Prediction 

•  Thermo-mechanical fatigue due to variations of power dissipation has 
been identified as a failure mechanism of IGBT.  

•  Die attach fatigue failure model was used in the CalceFAST software. 
The model was based on the Suhir’s interface stress equation coupled 
with the Coffin Manson equation. 
–  Model inputs were: ∆T, cycling period, materials, and dimensions. 
–  Failure criteria were based on separation of die attach material. 

•  This model does not represent latchup failures and the actual 
degradation involves intermetallic growth which changes the crack 
propagation due to brittle fracture.  

Temperature PoF Lifetime Prediction Experiment MTTF 
150-200°C 15,300 cycles 6320 cycles 
125-225°C 10,800 cycles 1058 cycles 
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Limitations of the Die Attach Method 
•  Die attach area reduction may not be linear as assumed since 

thermal stress is highest in the perimeter and reduces as cracks 
move toward the center of the die. Crack growth in the brittle 
intermetallic is not the same as the original material.  

•  Power dissipation changes with time as efficiency degrades.  
•  The latchup Tj is not always 255C due to difference in current 

density between operating conditions, metallization 
degradation, and chip manufacturing variations. 

•  The developed thermal stack model does not represent the 
actual thermal resistance network due to unknown spreading 
resistance, dissipation through the encapsulant and bond wires, 
and changing conductivity through the growing intermetallic. 
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MIL-217 Handbook: Reliability 
Prediction of Electronic Equipment 

•  MIL217 Handbook provides formulas to estimate failure rate of military 
electronic equipment. Constant failure rate is assumed. 

•  No formula was provided for IGBT, therefore a MOSFET and Bipolar 
Junction Transistor (BJT) was modeled in series to represent an IGBT. 

•  Failure rate is calculated by multiplying a base failure rate with several 
conditional factors. For example: 

 
 
where  λP = part failure rate 

  λb = base failure rate 
  πT = temperature factor 
  λA = application factor 
  λQ = quality factor 
  πE = environment factor 

Temperature factor does not 
account for temperature 
cycling input. 

p b T A Q Eλ λ π π π π= failures/106 hours 
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Comparison of MTTFs 
Temperature 

Profile 
MIL-

HDBK-217 
Die Attach 

Fatigue Model 
Experimental Data 

2P-Weibull 
150-200°C 115,843 hours 15,300 cycles 18.7 hours (6320 cycles) 
125-225°C 96,327 hours 10,800 cycles 12.2 hours (1058 cycles) 

•  MIL-HDBK-217 method does not account for temperature 
cycling loading and other relevant loading conditions. 

•  Die attach fatigue model provides a better estimate than the 
handbook. Improvement to the model includes obtaining 
material fatigue properties, incorporating intermetallic growth 
into the crack propagation, and estimation of junction 
temperature. 

•  Predicting lifetime using a population MTTF cannot account  
for variability from part to part. 
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Motivation for Health Monitoring 
Approach (for IGBT and System) 

•  Using MTTF to predict IGBT lifetime is not sufficient to avoid 
unexpected failures in the field due to the variability in 
prediction.  

•  Handbook approach ignores relevant loading conditions, device 
characteristics, and failure mechanisms leading to erroneous  
lifetime predictions. 

•  Physics-based lifetime prediction cannot avoid unexpected 
failures in the field due to variations from part to part and field 
loading conditions. 

•  An alternative approach to avoid failures is to monitor IGBT 
health individually under operation by using a data-driven 
method to analyze the operating data and detect for faulty 
conditions before failure occurs. 
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What We Need to Do? 
•  Relevant material properties for the critical failure 

mechanisms 
•  Ability to update the failure models quickly 
•  Modeling platforms for the units and components 

•  Life cycle condition information from monitoring 
•  Use of data for determination of anomaly at the level 

of interest 
•  Remaining useful life assessment ability 
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IGBT Prognostics 
•  Patil et. al. [9] IGBTs were monitored for VCE and ICE during continuous 

power cycling. Proposed a method to predict remaining useful life (RUL) 
of IGBT under power cycling by extrapolating VCE curve to a failure 
threshold using particle filter 

•  Sutrisno et. al. [10] generated a K-Nearest Neighbor algorithm for fault 
detection of IGBTs under continuous power cycling conditions using 
monitored electrical characteristics such as VCE and ICE .   

[9] N. Patil, “Prognostics of Insulated Gate Bipolar Transistors,” Ph. D. dissertation, Dept. Mech. Eng., University of 
Maryland, College Park, MD, 2011. 

[10] E. Sutrisno, “Fault Detection and Prognostics of Insulated Gate Bipolar Transistor (IGBT) Using K-Nearest Neighbor 
Classification Algoritihm,” M.S. dissertation, Dept. Mech. Eng., University of Maryland, College Park, MD, 2013. 
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IGBT Prognostics 
•  Xiong et al. [11] proposed an online diagnostic and prognostic system to 

predict the potential failure of an automotive IGBT power module. A 
prognostic check-up routine was implemented that would be activated at a 
preset frequency and current during vehicle turn-on and turn-off.  

•  Ginart et al. [12] developed an online ringing characterization technique to 
diagnose IGBT faults in power drives. Analysis of the damping 
characteristic allowed the authors to identify failure mechanisms 

 
[11] Y. Xiong, Xu. Cheng, Z. Shen, C. Mi, H. Wu, and V. Garg, ―Prognostic and Warning System for Power-Electronic 
Modules in Electric, Hybrid Electric, and Fuel-Cell Vehicles,ǁ‖ IEEE Transactions on Industrial Electronics, Vol. 55, No. 
6, pp. 2268-2276, 2008.  
[12] A. Ginart, D. Brown, P. Kalgren and M. Roemer, ―Online Ringing Characterization as a Diagnostic Technique for 
IGBTs in Power Drives,ǁ‖ IEEE Transactions on Instrumentation and Measurement, Vol.58, No.7, pp.2290-2299, 2009.  
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Unclamped Inductive Switching (UIS) 
Current Imbalance 

•  IGBTs operated with inductive loads can experience voltages 
well above their breakdown rating if no voltage clamp is 
implemented 

•  Voiding and delamination caused by either aging or voiding 
leads to current imbalance within the IGBT cells, causing local 
heating  
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Heating within IGBT under UIS Conditions 

Unstable behavior observed on die at nominal current localized 
heating [13] 
[13] M. Riccio, A. Irace, G. Breglio, P. Spirito, E. Napoli, and Y. Mizuno, “Electro-thermal instability in multi-
cellular Trench-IGBTs in avalanche condition: Experiments and simulations,” in Proc. IEEE 23rd Int. Symp. 
Power Semiconductor Devices and ICs (ISPSD), May 23–26, 2011, pp. 124–127. 



University of Maryland 
Copyright © 2015 CALCE 

30 calceTM 30 Prognostics and Health Management Consortium 

Dynamic Avalanche at Turn-off 
•  Similar to UIS conditions, dynamic avalanche can cause 

current imbalance between the cells of the IGBT 
•  Dynamic Avalanche can be self-induced if the gate resistance 

is too low causing high gate currents 

Burned emitter contact 
pad for discrete IGBT 
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