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Abstract

A self-tapping screw is a high-strength one-piece fastener that is driven into preformed holes. The goal
of the Major Qualifying Project (MQP) completed by A. Leo et al. [5] and the Research Experience for
Undergraduates (REU) completed by Miller et al. [4] was to create a mathematical model that allows users
to input data about their self-tapping screw and the material it is entering and would output a torque curve
which models the fastening process. We improve the algorithm to include the modeling of the failure of the
joint as well as a model for the clamp load of the joint. We also investigate a model of heat generation in the
screw that includes the speed of screw insertion.
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Chapter 1

Introduction

This paper contains research done by the NSF-supported 2006 REU program in Industrial Mathematics and
Statistics at WPI. Sections 1, 2.1, 2.2, 2.3, and 2.4 were mostly researched and written by the 2006 group
while sections 2.5, 3, and 4 were done for this MQP which was also part of the 2007 REU program. All
other sections have writing done by both groups.

A self-tapping screw is a high-strength one-piece fastener that is driven into preformed holes. As the
screw is driven into the material, it forms its own mating threads. As a result, there is a very good thread
fit which enhances resistance to thread loosening. Self-tapping screws are commonly used for fastening in
assembly operations. Their use not only simplifies the fastening process but also results in lower production
costs. Materials joined together with screws can be easily disassembled, whether it be for repair or main-
tenance, and then reassembled. Furthermore, screws can be used to vary the compressive force with which
materials are held together.

BOSE Corporation is a company that makes high-quality audio equipment. They use automated ma-
chines to assemble their products with self-tapping screws. During this process, however, they may expe-
rience material failure in the form of breaking of the screw just below the screw head and stripping of the
formed threads in the product material if the torque used for screw insertion is set too high.

The goal of the Major Qualifying Project (MQP) completed by A. Leo, et al. [5] was to analyze and
improve a mathematical model of the self-tapping screw insertion process found in [8] so that it could be
used in manufacturing processes at the BOSE Corporation. A Graphical User Interface (GUI) was built
in MATLABr to provide a user-friendly method of generating a torque curve for any set of materials
with various properties. The authors of [5] collected experimental data at BOSE and compared it with
the theoretical results from the model. Though there was fairly good agreement between the model and
experimental data, there were some noticable differences. Possible reasons for these discrepancies were
presented in [5], and included the heat generated by friction.

The goal of this project is to refine the model in [5] by calculating maximum allowable tightening
torque before material failure, and by relaxing the assumption that heat generated by friction is negligible.
We predict that factoring in heat will help to better fit the torque curve to the actual data as well as better
predict the maximum allowable torque before tightening.

1.1 Assumptions

In order to create a model of the screw insertion process, assumptions are made to simplify the system. The
following is an itemized list of assumptions as is found in [5].
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• The holes in the near plate and top of the tap plate are perfectly aligned with each other.

• The screw is centrally positioned and the axis is correctly aligned with the holes.

• The screw is rigidly coupled to the driver and only moves along and about the screw axis.

• The tightening speeds are sufficiently low for the inertia forces to be negligible.

• The plate material is isotropic and homogeneous.

• The near plate has a hole with a diameter greater than the screw major diameter and a flat surface
plane normal to the hole central axis.

• The tap plate has a clean hole with a diameter greater than or equal to the root diameter of the screw
and less than the major diameter of the screw.

• The driver applies just sufficient axial force and torque to allow the screw to advance.

• A balanced axial force is applied during screw fastening.

• The finishing coat used on the screw is not considered a part of the system.

• The screw tapers uniformly from the leading end so that the full thread cross-sectional area rate of
change with respect to the helix angular position is constant throughout the tapered part, and at the tip
of the screw the thread cross-sectional area is zero.

• The cutting portion of the tapered region of the screw is shorter than the depth of the hole in the tap
plate.

• The thread helix angle θ is constant along the entire screw.

• Engagement ends before the untapered portion of the screw comes into contact with the tap plate.

In the model presented in [5], they took into account a tap hole with a draft angle λ > 0 and asymmetric
threads. We assume that there is no draft angle in the tap hole and for calculating the failure torque we
assume that the threads are symmetric.

1.2 Screw Geometry

Figure 1.1 is a diagram of a self-tapping screw with the significant parameters labeled. The picture shows
the screw just before the insertion process begins, where the tapered portion of the screw has just made
contact with the tap plate. We define the angular rotation φ at this point to be zero. The tap plate is the
object into which the tapered portion of the screw will tap threads. The diameter of the tap hole at the top of
the tap plate Dh0 is constant along the hole, and we define this as Dh. The parameters β1 and β2 represent the
lead and trail angles of the thread. When we assume that the threads are symmetric, β1 = β2 = β , which we
define as the thread crest half-angle. The point φ = α is also labeled, and is the point at which the untapered
region of the screw begins. The value α corresponds to the rotation necessary to first make the untapered
portion of the screw come in contact with the tap plate. The helix angle θ is the angle that the crest of
the screw thread makes with the horizontal. The root diameter Dr is the diameter of the screw without the
threads, and the major diameter Ds is the diameter of the screw including the threads. The near plate has a
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hole with diameter Dn, and this diameter must be greater than Ds (see assumptions). In order for the screw to
effectively fasten the near and tap plates together, the screw head diameter Dsh must be larger than Dn. The
pitch p is the distance between two consecutive crests of the screw threads. Dp is the pitch diameter which
is the distance between the threads where the width of the threads are equal. In a screw with symmetric
threads, Dp = Ds+Dr

2 .

Figure 1.1: Screw Geometry
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1.2.1 Parameterization of Screw

Consider a point at position (x,y,z) on the screw where the central axis of the screw corresponds to the z-axis
and z = 0 is aligned with the top of the tap plate when the screw is just placed into the tap plate hole. Let r
be the distance from the screw central axis to the point. In terms of the thread helix angle θ and the helix
coordinate variable φ , this point has coordinates

x = r cos(φ)
y = r sin(φ)
z = r tan(θ)(φ).

Here, φ = 0 corresponds to the helical coordinate for which the major diameter of the tapered region of
the screw is equal to Dh; that is, the first position of the screw that makes contact with the tap plate upon
insertion. The untapered length of the screw begins at φ = α . See Figure 1.1.

1.2.2 Phases of Insertion

The process of screw insertion has four phases characterized by the portion of the screw engaged in the tap
plate material. The value of φ at the top of the tap plate is referred to as φ̄ ; this is also the amount of rotations
that the screw has undergone during insertion. The first φ range begins at the first point of contact between
the screw and the tap hole, φ̄ = 0, and ends when the top of the tapered portion of the screw, φ = α , comes
into contact with the top of the tap plate. This is shown in Figure 1.2. The second range concludes when the
lowest point of cutting on the screw has just broken through the bottom of the tap plate, denoted by φ = φb.
This is illustrated in Figure 1.3. The third φ range ends when the top of the tapered portion of the screw has
broken through the tap plate; this is also when cutting ends completely. See Figure 1.4. The final range for
φ is when there is strict advancement, and it occurs for φ > φb + α and goes until seating when φ = φt as
shown in Figure 1.5.

The different phases of insertion are important because the torque calculated in [5] was over these
phases, and each phase has a different torque. Therefore, when incorporating heat into the torque equations,
we must take into account these intervals.

1.2.3 Torque Curve

A torque curve is a graph of rotation of a screw φ̄ versus the torque required to continue the insertion process;
see Figure 1.6. By analyzing a torque curve, information about screw insertion can be found. Automatic
screwdrivers work by having a torque ceiling such that, when inserting the screw, if that amount of torque
is ever applied the machine will stop turning the screw. The drive torque Tdrive is the minimum amount
of torque required to seat the screw. The fail torque Tf ail is the minimum amount of torque which, when
applied to the screw, will cause the joint to fail. So for screw insertion BOSE needs to find a torque ceiling
to input into the automatic screwdriver that is greater than the drive torque to ensure seating put less than
the fail torque to avoid compromising the joint.
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Figure 1.2: 0 ≤ φ̄ ≤ α Figure 1.3: α ≤ φ̄ ≤ φb

Figure 1.4: φb ≤ φ̄ ≤ φb +α Figure 1.5: φb +α ≤ φ̄ ≤ φt
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Figure 1.6: A sample torque curve
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Chapter 2

Screw Failure During Tightening

The tightening process begins when the lower surface of the screw head makes contact with the near plate
material. This occurs when φ = φt . At this point and beyond, all of the applied torque, or rotational force,
goes into overcoming the internal stress of the materials as well as friction forces on the head of the screw.
As the screw is tightened, the internal stresses increase. However, certain stresses may cause failure if the
torque is too high. The model presented in [5] calculates the torque required to advance a screw a small
amount after it is seated, but does not investigate failure that may occur during tightening.

2.1 Failure Modes in Tightening

Tightening gives rise to various stresses in the screw and material. The stress σ on a region of area A is
given by σ = P/A where P is the load acting on the region. The tightening process can be broken down
into three distinct stages. In the first stage of tightening, the stresses cause elastic deformation of the joint
materials; that is if the screw is removed there would be no permanent deformation of the screw or plate.
The next stage, the plastic region, is where permanent deformation occurs. This deformation happens when
one of the stress levels of the screw or material reaches its respective yield strength. At this point, if the
screw were to be removed it would not return to its original state. Once we exceed the yield strength of a
material, we enter the final stage where breaking will occur. Breaking occurs when the ultimate strength of
the material is achieved. Although the joint still will work once the ultimate yield strength is passed, it will
not be as strong, so we consider failure to occur when the yield strength is reached.

For our model we consider three types of failure modes that might occur during tightening: stripping
failure in the tap plate material, bearing failure in the near plate material, and breaking of the screw. Stripping
is when the force between the screw thread and plate material is so great that the plate material breaks. At
this point there is nothing holding the screw in the tap plate because the threads of the screw have sheared
off the formed threads in the material. After stripping, if we were to remove the screw from the tap hole
we would observe the failed material filling in the volume between the screw threads. Bearing failure is
permanent deformation of the near plate due to the compressive force of the screw head. Breaking of the
screw is when the screw snaps due to the applied forces during tightening.
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Figure 2.1: Power screw with square threads (β = 0)

2.2 Torque Required to Overcome Internal Stress

To find the torque to cause the different types of failure we must first understand how the applied torque
creates internal forces in the joint. Once we have found this relationship we can find the forces to cause
failure, and then relate applied torque to failure. To find the relationship between torque and internal force,
we will first consider the simple case of a screw with square threads (β = 0) and then in Section 2.2.2 we
will extend this to self-tapping screws with symmetric threads (β1 = β2 = β > 0).

2.2.1 Two-Dimensional Model

First we will look at a simplified analogy of a screw during the tightening process. In the next section we
will extend it to parameters that are better suited for our purpose.

The process of tightening the screw is analogous to a power screw lifting a mass. An example of a power
screw is a basic car jack which is used to lift a vehicle off the ground for maintenance and repair. During
insertion, one may take the point of view that the screw is immobile and the material is moving counter
clockwise up the thread. When making this comparison, it is important to note the differences between a
power screw and self-tapping screw. A power screw uses square threads (β = 0, shown in Figure 2.1) to
convert applied torque into linear motion. In addition, a power screw lifts a load that is just the weight of an
object, while the load for a self-tapping screw during tightening is the load corresponding to stresses of the
materials.

Since a power screw uses square threads, all of the forces can be broken down into x (azimuthal) and
z (axial) components; we essentially have a two-dimensional problem. Consider Figure 2.2. The inclined
plane represents a thread that has been unwrapped from the screw, while the rectangle on the inclined plane
represents a mass of plate material on the screw thread. This mass creates a load P that acts downward on
the screw threads. The normal force N, perpendicular to the surface, is the force of the threads pushing on
the mass. The frictional force which opposes the intended movement, is µ1N where µ1 is the coefficient
of friction between the screw and plate material. The force F is caused by the torque applied to the screw.
There is no acceleration, so the net force is zero, and therefore Fx = 0 and Fz = 0, where Fx and Fz are the
horizontal (actually, azimuthal) and vertical components of the net force, respectively. This leads to the
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Figure 2.2: Unwrapped thread section with labeled forces

following [6]:

Fx = F −µ1N cosθ −N sinθ = 0 (2.1)

Fz = N cosθ −µ1N sinθ −P = 0 (2.2)

Solving for F , we get

F = P
µ1 cosθ + sinθ

cosθ −µ1 sinθ
. (2.3)

The magnitude of torque T1 required to exert a force of magnitude F is the force times the radius at which it
acts. Thus

T1 = P
µ1 cosθ + sinθ

cosθ −µ1 sinθ

(
Ds +Dh

4

)
(2.4)

where Ds is the screw major diameter and Dh is the tap hole diameter.

2.2.2 Three-Dimensional Model

Consider a self-tapping screw. A self-tapping screw uses non-square threads β > 0 to convert applied torque
into a clamp load force. This results in a snug fit between the near plate and tap plate, with a nonzero
thread-crest half-angle β . There is a third component that must be taken into account when finding the
normal force N. This is essentially a perpendicular cross-section of Figure 2.2 but with β > 0. See Figure
2.3. The material still only moves in the x-z direction so P, F and µ1N remain as in Figure 2.2. However, as
illustrated in Figure 2.3, the normal force now has a radial component. We project the normal force onto the
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Figure 2.3: Cross-section of thread showing the effect of β .

x-z plane by multiplying it by cosβ . This leads to the following:

Fx = F −µ1N cosθ −N sinθ cosβ = 0 (2.5)

Fz = N cosθ cosβ −µ1N sinθ −P = 0 (2.6)

Again substituting in for N and solving for F , we get

F = P
µ1 cosθ + sinθ cosβ

cosθ cosβ −µ1 sinθ
. (2.7)

The torque T1 required to exert this force is

T1 = P
µ1 cosθ + sinθ cosβ

cosθ cosβ −µ1 sinθ

(
Ds +Dh

4

)
. (2.8)

The effective load P is the force on the threads related to internal stresses of the material as discussed in
Section 2.1.

2.2.3 Torque Required to Overcome Screw Head Friction

When the screw head comes into contact with the near plate, i.e. seats, and continues to rotate, there is
friction between the bottom of the screw head and the top of the near plate. This friction force opposes the
direction of motion and has a magnitude equal to the normal force times the coefficient of friction between
the two materials. The torque T2 required to overcome friction is the product of the frictional force and the
average radius at which the friction force is acting,

T2 = µ2P
(

Dsh +Dn

4

)
. (2.9)

Here Dsh is the screw head diameter, Dn is the near hole diameter, P is the load exerted on near plate, and
µ2 is the coefficient of friction of the head of the screw touching the near plate; see Figure 2.4.
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Figure 2.4: Diagram of contact between screw head and near plate.

2.2.4 Total Tightening Torque

The total torque T required to overcome the forces occurring during the tightening process is the sum of the
individual torques. It is the sum of the torques to overcome all the internal stresses (2.8) and friction (2.9),

T = P
(

µ1 cosθ + sinθ cosβ

cosθ cosβ −µ1 sinθ

(
Ds +Dh

4

)
+ µ2

(
Dsh +Dn

4

))
. (2.10)

2.3 Failure Due to Stripping

Stripping of the tap plate material is due to a shear stress. Shear stress is the stress that occurs at an area due
to a perpendicular or tangential force acting on that area. When the engaged threads can no longer advance
downwards, the torque applied to the screw creates an upward force on the threads of the tap plate material.
This force Ps produces a shear stress along the surface of a vertical cylinder with diameter Ds in the tap plate.
The magnitude of the shear stress caused by a downward load Ps acting on a surface area As is

τs =
Ps

As
.

If τs exceeds the shear yield strength of the tap plate material, τyt , stripping of the material will occur at the
major diameter of the screw. The surface area As, shown in Figure 2.5, is

As = πDsnt p,

where Ds is the major diameter of the screw, nt is the number of engaged threads, and p is the pitch. The
shear stress in the tap plate material is

τs =
Ps

πDsnt p
.
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Figure 2.5: Area of Shear Stress.

Thus stripping occurs when the load is equal to τytDsnt pπ . We can use this and (2.10) to find the torque
required to cause failure by stripping

Tstripping = τytDsnt pπ

(
µ1 cosθ + sinθ cosβ

cosθ cosβ −µ1 sinθ

(
Ds +Dh

4

)
+ µ2

(
Dsh +Dn

4

))
, (2.11)

if the only internal stress to overcome were the shear stress of the tap plate material.

2.4 Bearing Failure

When the head of the screw is seated on the near plate, the downward force that occurs due to tightening
creates a compressive stress on the plate, known as bearing stress. The bearing stress that the plate material
experiences is:

σb =
Pb

Ab
,

where Pb is a downward force that occurs due to tightening and the area under compression is the contact
surface of the near plate and screw head. Shown in Figure 2.4, this contact surface is an annulus with outer
diameter equal to the screw head diameter Dsh and inner diameter equal to the near hole diameter Dn so that

Ab = π
D2

sh−D2
n

4
.

Combining those two equations gives us the bearing stress

σb =
4P

π(D2
sh−D2

n)
.

If the bearing stress exceeds the yield strength of the near plate material, the near plate would be permanently
deformed in the shape of the annulus with area equivalent to Ab. Bearing failure occurs when the load is
equal to σyn

(
π(D2

sh−D2
n)

4

)
where σyn is the yield strength of the near plate. So, if all the torque applied goes

into overcoming bearing stress only, the minimum torque to cause bearing failure (2.10) is would be

Tbearing = σyn

(
π(D2

sh−D2
n)

4

)(
µ1 cosθ + sinθ cosβ

cosθ cosβ −µ1 sinθ

(
Ds +Dh

4

)
+ µ2

(
Dsh +Dn

4

))
. (2.12)
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2.5 Screw Fracture

In order to calculate when a screw fractures during tightening Miller et al. [4] use the von Mises’ formula
for effective stress. Specifically, the screw fractures when the following force is applied:

Pscrew =
√

σ2
ys +3τ2

ys
(
πr2

t
)

(2.13)

where σys is the tensile yield strength and τys is the torsional yield strength. This formula allows them
to convert the two different yield strengths into one effective yield strength, and then through algebraic
manipulation find a force to cause failure. The force is then converted into a fail torque using the conversion
equation (2.10)

Tscrew =
√

σ2
ys +3τ2

ys
(
πr2

t
)(

µ cosθ + sinθ cosβ

cosθ cosβ −µ sinθ

(
Ds +Dh

4

)
+ µ

(
Dsh +Dn

4

))
. (2.14)

The problem with this method lies in (2.13). This equation finds the force to cause failure by combining the
force to cause torsional failure and the force to cause tensile failure. Although it is true that if this combined
force were ever achieved the screw would fail, it still could fail at lower levels of force. If a purely torsional
force is applied to the screw, and this torsional force is equal to the force required to achieve the torsional
yield strength, then although the force would cause the screw to fail, the force would be less than the fail
force found in (2.13) because the actual fail force would have no tensile component. Similarly a purely
tensile force could cause the screw to fail without ever being at the level of the force found in (2.13).

For this reason we consider an alternative method of calculating the torque required to fracture a screw.
Once again we consider von Mises’ effective stress, however this time instead of applying it to the yield
strengths, we use the formula to combine the applied torsional and tensile forces. By doing this we come up
with a term for total effective stress, which we can then compare to the yield stress of the screw material.

From (2.7), we know the relationship between Ftensile and Ftorsional where Ftensile ≡ P and Ftorsional ≡ F ;
we define their ratio to be γ

Ftensile

Ftorsional
=

cosθ cosβ −µ1 sinθ

µ1 cosθ + sinθ cosβ
= γ. (2.15)

For a given screw geometry the ratio between tensile and torsional forces due to applied torque is fixed. The
von Mises’ formula effective stress on the screw cross sectional area A is then

σ
′ =

√
σ2 +3τ2 =

√
F2

tensile
A2 +3

F2
torsional

A2 (2.16)

where σ ′ is the effective stress, σ is the tensile stress, τ is the torsional stress, The cross sectional area of
the screw shaft A is approximated by

A = π

(
Dp +Dr

4

)2

.

Using γ , we solve for Ftorsional as a function of effective stress

σ
′ =

Ftorsional

A

√
γ2 +3

Ftorsional =
σ ′A√
γ2 +3

. (2.17)
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By substituting σ ′ with our yield strength σys, we find the torsional force required to break the screw,

F ′
torsional =

σysA√
γ2 +3

. (2.18)

Since the torque used to tighten the screw can be represented by a torsional force, we can simply divide the
applied torque by the radius at which it is being applied to find the torsional force to cause breaking:

Tbreak =
σysADp

2
√

γ2 +3
(2.19)

where Dp is the pitch diameter of the screw. The only problem is that we have to take into account the
friction between the screw head and the near plate. Friction force is defined as the coefficient of friction
multiplied by the force normal to the surface. In our case, the normal force is Ftensile and therefore the
friction force is:

Ff riction = µ2γFtorsional. (2.20)

While we are applying the torsional force (2.18) then, the frictional force is

F ′
f riction = µ2γ

σysA√
γ2 +3

,

by (2.15) and the torque to overcome screw head friction is:

T ′
f riction = µ2γ

DshσysA

2
√

γ2 +3
, (2.21)

where Dsh is the screw head diameter. We add the torque required to overcome screw head friction with the
torque to break the screw to find the failure torque associated with screw breaking:

TScrew =
σysADp

2
√

γ2 +3
+ µ2γ

σysADsh

2
√

γ2 +3
. (2.22)

2.5.1 Machinery’s Handbook Screw Fracture Method

Our method for modeling failure due to screw fracture is based on many of the same principles as the method
presented in [3] though they are not the same. For completeness we include their method for calculating
failure due to screw fracture.

According to [3], the fail torque Tscrew due to screw fracture is defined as Tscrew = KFtensileDs where K
is the torque coefficient defined as

K =
1

2Ds

(
p
π

+ µ1Dp sec(tan−1(tanβ cosθ))+ µ2

(
Ds +Dh

2

))
. (2.23)

Essentially, K serves the same purpose as γ in our method. The value for Ftensile is found by using von Mises’
effective stress as in our method only instead of solving for Ftorsional the equation is solved for Ftensile:

Ftensile =
σysA√

1+3
[

2
Dp

( p
π

+ µ1Dp sec(tan−1(tanβ cosθ))
)]2

. (2.24)
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Thus, the fail torque from screw fracture is:

Tscrew =
1
2

(
p
π

+ µ1Dp sec(tan−1(tanβ cosθ))+ µ2

(
Ds+Dh

2

))
σysA√

1+3
[

2
Dp

( p
π

+ µ1Dp sec(tan−1(tanβ cosθ))
)]2

(2.25)

2.6 Joint Failure Method

Now that we have the three different torques required to achieve the three different methods of failure, we
need to find the relationship between the torque we apply from our screwdriver and each of the three fail
torques. Physically, the applied torque is being split among the three different failure types so that no one
failure type is getting all of the applied torque. Unfortunately, we do not know how the force is being
distributed between the three types of failure. To find out which of three methods of failure will cause
the joint to fail, that is the joint failure method, we would simply take the minimum of the three different
fail torques, (2.11), (2.12), and (2.22) multiplied by the appropriate factors. Future research should be
done into finding exactly how the applied torque is distributed among the different failure methods. For
now we assume that each type of failure is having all of the applied torque placed on it. This will always
underestimate our fail torques, however we feel that this is better than overestimating them and having
screws fail unexpectedly.

To resolve this issue in the model for BOSE, we allowed for a torque ratio variable to be used to distribute
the torques. The torque ratio for each method of failure determines what fraction of the applied torque is
going into that method of failure. Theoretically the sum of all of the fail torques should equal one, however
for the sake of simplicity we did not make that required in the GUI. By default, each method of failure
receives the full applied torque as suggested by the REU, however this can be changed by the user of the
program; see Figure 2.6.
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Figure 2.6: Failure GUI programmed with the failure model from CIMS REU 2006 and REU 2007
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Chapter 3

Clamp Load

3.1 Introduction

The purpose of a fastener is to keep two plates attached to each other such that they will stay together while
forces are applied to them. A screw fulfills that purpose by creating a clamp load in the joint. Clamp load is
the force created by tightening a screw that compresses the plates in the joint; see Figure 3.1. Although the
clamp load is created when the screw is being tightened, the force acts on the joint throughout its lifespan.
The clamp load acts as a compressive force on the plates and as a tensile force on the screw, causing the
plates to compress and the screw to stretch axially. Typically a desired clamp load is 75% of the ultimate
tensile strength for dynamically loaded bolts and 90% of the ultimate tensile stength for statically loaded
bolts [9].

Figure 3.1: Clamp load forces acting on a bolt, nut, and plate system.
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Clamp load is created by the tightening of the screw; as the screw is tightened it is stretched axially,
and undergoes an elastic deformation. When the tightening is complete the screw attempts to return to the
original shape, which causes a force to be applied to the plates. Likewise, during tightening of the screw
the plates are being compressed in the elastic region, and when tightening is complete the plates attempt to
return to their original shape. These two forces create an equilibrium in the system. Clamp load is a linear
function of torque until we reach the point of tightening where the joint materials undergo a stress equal to
their yield strength; see Figure 3.2.

Figure 3.2: Graph of torque versus clamp load generated.

When an outside force acts to separate the plates it must first counteract the clamp load in the system.
For this reason having a high clamp load is beneficial; it will allow the joint to withstand higher forces.
Though it is desirable to have a high clamp load, if the screw is over-tightened, plastic deformation may
occur. We prefer to never reach this point of permanent deformation since it would result in the loss of
clamp load. It is desirable for BOSE to have an algorithm for finding the required torque to attain a given
clamp load in a joint as well as a method for finding the clamp load in a joint for a given torque.

3.2 Techniques for Finding Clamp Load

Since clamp load is a force acting internally in a joint, it is not something that can be directly measured. The
most common methods for finding a clamp load involve measuring the physical properties of the joint and
inferring the clamp load from those results. There are several different methods for making this calculation
that are used in modern machining; the most common methods according to [6] are given.

3.2.1 Elongation Measurement

Since the clamp load causes the screw to stretch, one method of measuring clamp load is to measure the
amount of elongation of the screw during or after tightening. The amount of elongation can then be used
to find the strain of the screw. Using Young’s Modulus, the amount of tensile force on the screw can be
obtained. Young’s Modulus E is defined as:

E =
σ

ε
, (3.1)
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where σ is applied stress and ε is strain or the elongation per unit length caused by the stress. If the screw
has both ends accessible then it is possible to simply measure the amount of elongation with a micrometer.
In other situations ultrasonic transducers can measure the elongation from solely the head of the screw.

3.2.2 Torque Measurement

Another common method of measuring clamp load is to measure the amount of torque required to tighten
the screw. Torque wrenches allow for tightening to stop once a designated torque is achieved, and from the
torque value the amount of force in the system can be calculated using an equation to define the torque to
force relationship. This method is prone to error due to the torque wrenches having inaccuracies of up to
30%.

3.2.3 Turn-of-the-Nut Method

The Turn-of-the-Nut Method is a method of clamp load calculation that relies on indirectly measuring screw
elongation by using the amount of rotation beyond seating undergone by the head of the screw. The screw
is inserted into the joint until the head is flush with the near plate. The screw is then tightened by amount
∆φ . The rotation of the screw is used in conjunction with the screw thread helix angle θ and pitch length
p to calculate the amount of elongation that the screw has undergone. That elongation can then be used
to calculate the clamp load as done in 3.2.1. This method is advantageous in that it requires no special
measuring tools, simply the precise amount of rotation that has been applied to the screw. This method first
became popular shortly after World War II [9].

3.3 Computing Clamp Load

For our algorithm we require a method of calculating the clamp load in the joint when the screw is tightened
to a given torque. We formally define this question as: given a torque T̂ such that Tdrive ≤ T̂ ≤ Tf ail what is
the clamp load Fclamp in the joint? The calculation must be based on input by the user and cannot be based
on experimental data. Unfortunately the most common methods of estimating clamp load are not nearly as
accurate as experimentally measuring the clamp load. This is largely due to factors such as the operator
error or minor defects in the screw that cannot be calculated. Also, most research on clamp load has only
been done for bolts; there is very little literature on the clamp load of self-tapping screws.

Although much of the literature on clamp load in a bolt can be applied to a self-tapping screw, there
are differences between the two fasteners that must be considered. A bolt/nut system has a threaded bolt
inserted into a nut that has been threaded to fit the bolt. The nut is lubricated to minimize friction so that
the bolt is easier to tighten. A bolt has a long shaft that does not come into contact with the plates that are
being fastened; there is no friction between the bolt and the plates. A self-tapping screw does not have a nut
to fasten it, rather the threads of the screw engage the tap plate. In this regard the tap plate is similar to the
nut of a bolt/nut joint, however the tap plate is often made of weaker materials than a nut, so deformation of
the tap plate has to be considered in the clamp load calculation. The near plate of the self-tapping screw is
equivalent to all of the plates in the bolt/nut joint, since the near plate does not come into contact with the
shaft or the threads of the screw. Since the near plate has the possibility of being very thin, it is possible
that a self-tapping screw has only a very short length of the shaft that is not engaged to the thread. In this
situation there is only a short amount of the screw that can freely stretch, which is typically not a problem
in a bolt/nut joint.
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3.3.1 Model 1

In our first model we base our calculation on the turn-of-the-nut method. Using the model in [5] and [8],
we calculate the rotation φ required to achieve a specific tightening torque, T̂ . In [5] the tightening torque is
dependent on the friction between the threads of the screw and the tap plate, the friction between the head
of the screw and the near plate, and the force required to stretch the screw because of tightening. We use
their calculations to find the amount of rotations until the desired torque is achieved, φ̂ . The screw is seated
at φt rotations where

φt =
2πl

p
, (3.2)

p is the pitch length of the screw, and l is the length of the screw. The amount of rotation done during tight-
ening is then δφ = φ̂ −φt . We then convert rotation of the screw to elongation of the screw. This conversion
is simplified by assuming that all rotation results in elastic stretching of the screw and no deformation of the
near plate or the tap plate. Considering the thread helix angle θ of the screw, elongation e is given by

e =
pδφ

2π

from which we can calculate the strain of the screw:

ε =
e
l
.

Using the Young’s Modulus of the screw (3.1), we have

σ = Eε.

Since force is stress times area, we can use the cross sectional area of the screw to find the tensile force
being applied. This gives us a final equation for clamp load

Fclamp =
pδφEA

2πl
(3.3)

where A is the cross sectional area of the screw shaft. This equation allows us to estimate clamp load by
using the material properties of the screw as well as how much we have tightened it. However, it is a
simplification of the problem because it fails to take into account any deformation of the system besides
the screw elongating axially. It is possible that tightening the screw is causing torsion of the screw or
deformation of the threads in the near plate, however Model 1 does not take these forces into account.

3.3.2 Model 2

Another approach to calculating the clamp load of our joint is to use the tightening torque directly. Clamp
load can be found as a function of torque as follows from [1]:

T̂ = Fclamp

(
p

2π
+

µ1

cosβ

(
Ds +Dh

4

)
+ µ2

(
Dn +Dsh

4

))
. (3.4)

Here the p
2π

term is produced by the tensile force being applied to the screw by stretching. The second term
µ1

cosβ

(
Ds+Dh

4

)
models the friction between the screw thread and tap plate. The final term in the equation

20



µ2

(
Dh+Dsh

4

)
represents the friction between the screw head and near plate. The equation (3.4) is similar to

(2.10) to find the relationship between torque and force causing failure. This similarity is due to the fact that
both equations are attempting to find a tensile force created by an applied torque on the screw. The main
difference in the equations is the friction terms. The friction term in (3.4) seems to take θ = 0.

By solving this equation for Fclamp, we find the clamp load of the joint as a function of torque. This
method has the same problem as model 1 where it is assumed that there is no torsion nor screw deformation
involved in tightening. The advantage of this method is that it does not require measuring of the angle used
to tighten, so there is one less source of error.

3.3.3 Model 3

A third approach for calculating clamp load is given by [3]. This method calculates the clamp load specifi-
cally at the point of screw failure. The yield clamp load F ′

clamp is as follows:

F ′
clamp =

σyA√
1+3

[
4

Dp

( p
π

+ µ1Dp sec(tan−1(tanβ cosθ))
)] (3.5)

This model has similarities to the work done in Section 2.5 with von Mises’ effective stress. Like (2.5) von
Mises’ effective stress is used to find the amount of force within the system at the point of failure of the
screw. The main difference in (3.5) is that rather than finding the torsional force, the tensile force is found
since that is the clamp load of the joint. Another difference is that instead of the ratio γ (2.15) that is used to
related the tensile and torsional forces, [3] uses p

π
+ µ1Dp sec(tan−1(tanβ cosθ)).

3.3.4 Conclusion

Both model 1 and model 2 provide viable methods of estimating the clamp load in a joint held by a self-
tapping screw. Model 3 is also useful for finding the clamp load at screw failure. A possible area for future
work would be to investigate how much clamp load is lost in a self tapping screw due to torsion. Also the
question remains of how much stretching changes the geometry of the screw, especially θ , which would
affect further tightening.
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Chapter 4

Heat Transfer

4.1 Introduction

The initial torque models in [5] and [8] assume that no heat is generated in the screw insertion process.
However, as suggested in [5], the discrepancy between the theoretical and experimental torque curves may
be partly attributed to heat effects. We find this conjecture feasible since a significant amount of torque
required for screw insertion goes towards overcoming friction, and it is widely accepted that nearly all of the
energy dissipated in friction is transformed into heat [7]. Our goal then is to investigate how heat generated
by friction affects material properties, and to incorporate these changes into the calculation for insertion
torque.

We will consider all energy expended on overcoming kinetic friction to be generated heat. We do not
consider any heat generated in the cutting (displacement) process because we were not able to research how
much displacement energy is transformed into heat. We also do not consider any heat generated during en-
gagement or tightening because the rotation intervals are very small. Therefore, we consider heat generated
by friction for α < φ < φt only, the interval during which the untapered portion of the screw is engaged in
the tap plate material. Recall, φ is the amount of rotation completed which corresponds to the depth of the
screw in the tap plate.

The ultimate strength of the material depends on temperature, so variations in temperature cause changes
in the friction forces and thus, the torque required to overcome friction. Since the total torque required for
insertion is the sum of the torques required for engagement, displacement, friction, and tightening, the entire
torque curve will be modified when we account for heat.

In [4], a method of modeling heat generated by friction during screw insertion is developed. For the
model, they assume instantaneous heat distribution, and uniform temperature of the screw. Thus, time and
speed of insertion are not factors in their model; only the physical properties of the screw and plate are
considered relevant. Two different models are presented in [4]. In the first model, they assume that all
the heat generated by insertion enters the screw. The quantity of heat entering the screw at every insertion
position φ̄ is computed. They then convert the heat generated into change in temperature of the screw to
find the temperature of the screw for each φ̄ . Finally from these temperatures they find the ultimate tensile
strength of the material around the screw at the temperature of the screw, which allowed them to include
heat in the insertion model of [5].

The second model does not assume that heat enters only the screw. Instead, some of the heat is assumed
to enter the material surrounding the screw as well. They assume that the volume of plate material around
the screw that experiences a temperature change around the screw is shaped like a cone and that, as the
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screw is inserted further into the material, the cone volume expands. They find that due to the low thermal
conductivity of a plastic tap plate relative to that of a metal screw the amount of heat that enters the tap plate
is negligible. For this reason, it is reasonable to assume that no heat enters the plastic tap plate.

For our model, we relax the assumption of instantaneous heat diffusion and uniform temperature. By
relaxing this assumption, the speed at which the screw is inserted becomes a factor in the model. To model
the temperature dynamics within the screw, we use the heat equation, a partial differential equation, along
with appropriate boundary and initial conditions.

4.2 Posing the Problem

4.2.1 Heat Equation

The fundamental heat equation is as follows:

∂T

∂ t
(x, t) =

1
ρc

∇ · (K∇T ) . (4.1)

This equation defines the temperature T at position x at time t in the system. Here K is the thermal
conductivity of the material, ρ is the material density, and c is the specific heat capacity of the material. We
use this partial differential equation, along with appropriate initial and boundary value problems to model
the temperature variation in the screw.

To simplify the geometry of the problem, we approximate the screw by a cylinder of diameter Dr and
height L−Lt where Dr is the root diameter of the screw, L is the length of the screw, and Lt is the length
of the tapered portion of the screw. This approximation removes the thread of the screw as well as the
untapered region of the screw so that the region of interest has a geometrically simpler boundary. See Figure
4.1. In cylindrical coordinates 1, this cylinder is defined as

0 ≤γ ≤ 2π

0 ≤r ≤ Dr/2

0 ≤z ≤ L−Lt .

When the thermal conductivity is independent of temperature, the heat equation in cylindrical coordinates
is given by

∂T

∂ t
=

K
ρc

(
∂ 2T

∂ r2 +
1
r

∂T

∂ r
+

1
r2

∂ 2T

∂γ2 +
∂ 2T

∂ z2

)
. (4.2)

4.2.2 Boundary Regions

Since there are no threads in our model (cylindrical) screw, we assume that the friction region is the pro-
jection of the portion of the threads engaged with the tap plate projected onto the cylinder. The surface of
our cylinder is split into four regions; see Figure 4.2. The bottom of the screw shaft is denoted B1; likewise
the top of the cylinder which represents the top of the screw shaft is denoted B4. The central face is split
into two regions, B2 and B3. The region representing the thread generating heat from friction is B2 while
the region that is not generating heat is B3. The conductivity of plastic is typically significantly less than
the conductivity of metal, so we assume that the amount of heat entering the tap plate is negligible. For this

1we use γ for our azimuthal angle instead of the traditional θ since we have defined θ as the thread helix angle
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Figure 4.1: Simplified screw geometry for heat calculation. The heat generating region is shown in red.

reason, we consider B1 and B3 to be insulated. The heat flux in region B4 is dependent on how much heat is
being absorbed by the head of the screw and how much of that heat is being lost into the air. In this work,
we assume B4 is also insulated, however this is a topic requiring further research. It is straightforward to
define the regions B1 and B4:

B1 =


0 ≤ γ ≤ 2π

0 ≤ r ≤ Dr
2

z = 0
(4.3)

B4 =


0 ≤ γ ≤ 2π

0 ≤ r ≤ Dr
2

z = L−Lt

. (4.4)

However, defining B2 and B3 is more complicated. Region B2 is a helical strip around the side of the
cylinder. In order to define it, we find the width of the strip. Recall that the strip is the projection of the
engaged thread onto the cylinder. By analyzing the cross section of the thread, we find that the height of the
strip is 1

2(tanβ1 + tanβ2)(Ds−Dh); see Figure 4.3. Since we know that the ratio of width to height must be
the same as πDr : p our value for the width of the strip is

π(tanβ1 + tanβ2)(Ds−Dh)Dr

2p
,

so the angular width is
π(tanβ1 + tanβ2)(Ds−Dh)

p
.

From here we can define B2 as

B2 =


(

2πz
p ≤ γ ≤ 2πz+π(tanβ1+tanβ2)(Ds−Dh)

p

)
mod 2π

r = Dr
2

0 ≤ z ≤ L−Lt

. (4.5)
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Figure 4.2: The boundaries of the cylinder: B2 is the blue region, B3 is the gray region, B4 is the red region,
and B1 is not shown.

Figure 4.3: Cross section of screw during heat generation. The maroon segment represents the true heat
generating surface and the red represents our projection onto the cylinder.
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We now define region B3. Since B2∪B3 is just the surface of the side of the cylinder, we simply define B3
as the surface of the side of the cylinder with set B2 removed:

B3 = (B2∪B3)\B2. (4.6)

4.2.3 Boundary Conditions

We consider our boundary to be of two types. There are two conditions on the boundaries; some of the screw
boundary is insulated, while the area representing the screw thread engaged to the tap plate is generating
heat. For the insulated region, there is no heat flow across the boundary so the boundary condition is ∂T

∂n = 0.
For the heat generating portion, we use Fourier’s Law which relates heat flux to the directional derivative of
temperature.

Since heat is a form of energy, we use the equation for work to find how much energy is generated

Work = Force×Displacement

Q = Ff riction×d. (4.7)

Our force term for friction Ff riction is dependent on the normal force FN that the screw exerts on the tap plate.
The displacement refers to the change in position of the force. For our screw the force is moving in a helical
manner as the screw is inserted into the tap plate. Since we know that this force is strong enough to cut the
material we find the force as a function of the ultimate tensile strength σuts of the tap plate material,

σuts =
FN

A
FN = σutsA

Ff riction = µσutsA, (4.8)

where µ1 is the coefficient of friction between the screw and tap plate and A is the area of the region
generating heat. We also must find out how much displacement will occur. Since the area generating
friction is on the surface of the screw, we find the amount of displacement that a point on the screw will
undergo in time t; see Figure 4.4. In time t, the screw will rotate a distance of 2πtω Dr

2 , where ω is the
revolutions per second of the screw. A point on the screw is not just spinning but moving on a helix so we
take that into account by dividing by cosθ ′ to get

d =
2πtω Dr

2
cosθ ′ . (4.9)

Note that we use θ ′ rather than θ because since our cylinder has a smaller diameter than Ds the thread helix
angle on our cylinder will be different than the thread helix angle measured from the tip of the thread. With
(4.7), (4.8) and (4.9), our equation for work is

Q =
πµ1σutsAtωDr

cosθ ′ . (4.10)

From (4.10), the heat flux, that is, the rate at which heat flows across a unit area of surface, is

q =
πµ1σutsωDr

cosθ ′ . (4.11)
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Figure 4.4: The path of a force generating friction on the surface of our cylinder.

Fourier’s Law of Heat Conduction gives

q =−K
∂T

∂n
, (4.12)

so using (4.11), we find that where there is frictional heating, the boundary condition is

∂T

∂n
=−µ1σutsπωDr

K cosθ ′ . (4.13)

Surfaces B1, B3, and B4 are insulated surfaces. The surface B2 is heat-generating but only at positions
that are in contact with the tap plate. For this reason, a point on the surface B2 at height z on the model
cylinder at time t after the untapered region contacts the tap plate will only generate heat when tω p− t2 ≤
z ≤ tω p where t2 is the length of the tap plate, since if z ≤ tω p− t2 then the point will have broken through
the tap plate, and if tω p ≤ z the point will not yet have entered the tap plate.

In summary, we model heat generation and temperature distribution during the self-tapping screw inser-
tion process by the following initial value boundary problem:

∂T

∂ t
=

K
ρc

(
∂ 2T

∂ r2 +
1
r

∂T

∂ r
+

1
r2

∂ 2T

∂γ2 +
∂ 2T

∂ z2

)

∂T

∂n
=


0 (γ,r,z) ∈ B1,B3,B4

− µ1σutsπωDr
K cosθ ′ (γ,r,z) ∈ B2 tω p− t2 ≤ z ≤ tω p

0 (γ,r,z) ∈ B2 z ≤ tω p− t2
0 (γ,r,z) ∈ B2 t2ω p ≤ z

. (4.14)

T (γ,r,z,0) = Tinit ,

0 ≤ γ ≤ 2π, 0 ≤ r ≤ Dr/2, 0 ≤ z ≤ L−Lt , t ≥ 0.

We take Tinit to be room temperature.

27



Figure 4.5: A cell used in the numerical method for solving the heat equation in a cylinder.

4.3 Numerical Methods

We solve the initial value boundary problem above numerically. The model cylinder is discretized into
discrete cell volumes; see Figures 4.5 and 4.6. Choosing positive integers Nγ ,Nr,Nz, the cell volumes each
have dimensions ∆γ = 2π/Nγ ,∆r = Dr/2Nr,∆z = (L−Lt)/Nt . In addition, we discretize the time into steps
of size ∆t so that tn = n∆t.

We use a finite volume methodology. The temperature at the center of cell (i, j,k) for i = 1, · · · ,Nγ , j =
1, · · · ,Nr and k = 1, · · · ,Nz is denoted by

T n
i, j,k ≈T ((i−1/2)∆γ,( j−1/2)∆r,(k−1/2)∆z,n∆t),

and is taken to be the average temperature in that cell. To derive the numerical scheme that computes T n+1
i, j,k ,

we use the law of conservation of energy. The amount of heat energy in the (i, j,k)th cell at time tn+1 is
equal to the heat energy in the cell at tn plus the heat enters the cell via its faces between time tn and time
tn+1. Equivalently, we integrate the heat equation over the cell volume∫ ∫ ∫

R
ρc

∂T

∂ t
dV =

∫ ∫ ∫
R

∇ · (K∇T ) dV (4.15)

which, for constant ρ,c, and K gives

∂

∂ t

∫ ∫ ∫
R

ρcT dV =
∫ ∫

∂R
K∇T ·~ndA (4.16)

=
∫ ∫

R1

∂T

∂n
dA+

∫ ∫
R2

∂T

∂n
dA+

∫ ∫
R3

∂T

∂n
dA+

+
∫ ∫

R4

∂T

∂n
dA+

∫ ∫
R5

∂T

∂n
dA+

∫ ∫
R6

∂T

∂n
dA, (4.17)
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Figure 4.6: A cell used in the numerical method for solving the heat equation in a cylinder.

for a typical cell volume with six boundary faces which we denote by R1, · · · ,R6. The mean value theorem
for integrals gives

ρc
K
|R|∂ T̂

∂ t
=

∂ T̂1

∂n
|R1|+

∂ T̂2

∂n
|R2|+

∂ T̂3

∂n
|R3|+

∂ T̂4

∂n
|R4|+

∂ T̂5

∂n
|R5|+

∂ T̂6

∂n
|R6| (4.18)

where T̂ is the average temperature in the volume and ∂ T̂i
∂n is the average outward normal derivative on Ri.

The areas and volumes considered are inserted into the formula, and the partial derivatives are replaced with
their numerical approximations

ρc
K

T n+1
i, j,k −T n

i, j,k

∆t
r j∆r∆γ∆z ≈

T n
i+1, j,k −T n

i, j,k

r j∆γ
∆r∆z+

T n
i, j,k −T n

i−1, j,k

r j∆γ
∆r∆z+

+
T n

i, j+1,k −T n
i, j−1,k

∆r
(r j +

∆r
2

)∆γ∆z+
T n

i, j,k −T n
i, j−1,k

∆r
(r j −

∆r
2

)∆γ∆z+

+
T n

i, j,k+1−T n
i, j,k

∆z
r j∆r∆γ +

T n
i, j,k −T n

i, j,k−1

∆z
r j∆r∆γ. (4.19)

See Figure 4.6 to see the locations of the cells surrounding T n
i, j,k. When simplified and solved for T n+1

i, j,k
(4.19) becomes:

T n+1
i, j,k ≈ κ∆t

(T n
i, j+1,k −2T n

i, j,k +T n
i, j−1,k

(∆r)2 +
1
r j

T n
i, j+1,k −T n

i, j−1,k

2∆r
+

+
1
r2

j

T n
i+1, j,k −2T n

i, j,k +T n
i−1, j,k

(∆γ)2 +
T n

i, j,k+1−2T n
i, j,k +T n

i, j,k−1

(∆z)2

)
+T n

i, j,k (4.20)
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where κ = K/ρc is known as the thermal diffusivity.
We now have a method for finding temperature at T n+1

i, j,k in terms of temperatures at time n. This is an
explicit scheme since we can define T n+1

i, j,k solely in terms of temperatures at time tn. Starting with the initial
values at time n = 0 we can systematically solve for temperatures at time n = 1, n = 2, and so on until we
have temperature values for all of the cells at all of the times during screw insertion. To ensure stability,
we use a value for ∆t that is small enough to satisfy stability criterion for explicit schemes for diffusion
equations. For our scheme (4.20), that condition is

∆tκ
(

1
(∆r)2 +

1
(∆γr j)2 +

1
(∆z)2

)
≤ 1

2
. (4.21)

4.4 Interfacing our Model with Previous Work

Ultimately, we are not concerned with the temperature of the screw, but rather the ultimate tensile strength
of the material surrounding the screw thread. Since ultimate tensile strength is a function of temperature, if
we can find the temperature of the material surrounding the screw we can find the ultimate tensile strength
of that material. Since the tap plate is in contact with the heat-generating portions of the thread, we use the
temperature of the surface of the screw along the thread for the value of the temperature of the tap plate.

The work done by Leo et al. in [5] finds the amount of torque required to overcome friction by computing
an integral along φ where φ is the helix coordinate variable of the screw. Inside that integral is a term for
ultimate tensile strength. For this reason, it would be helpful to find the ultimate tensile strength of the
material as a function of φ and φ̄ where φ̄ is the angular position at the top of the tap plate. Then, we
replace the standard ultimate tensile strength term in the integral with the function and compute the integral
numerically.

First, we find a function T ′(φ , t) that gives the temperature of the screw thread at point φ at time t. We
define T ′(φ , t) as

T ′(φ , t) =
Drπ(tanβ1 + tanβ2)(Ds−Dh)

p

∫ 2πz/p+π(tanβ1+tanβ2)(Ds−Dh)/p

2πz
p

T

(
γ,

Dr

2
,
2πφ +Lt

p
, t

)
dγ

(4.22)
when φ > 2πLt

p and is equal to Tinit otherwise. The next step is to remove the time component of the
function and replace it with φ̄ , where φ̄ is the point φ at the top of the tap plate. This is done because the
model proposed in [5] has no time component; rather it measures the insertion process by what point φ is
currently at the top of the tap plate. Therefore

T ′
2 (φ , φ̄) = T ′

(
φ ,

φ̄

2πω

)
. (4.23)

Now that we have a temperature function of φ and φ̄ we need to convert it to a function of ultimate
tensile strength. Research done in [4] finds that a linear relation exists between ultimate tensile strength and
temperature. Using data found in [2], a least squares method is used to obtain the following equation

σuts(T ) = s1T + s0 (4.24)

where s0 and s1 are least squares coefficients. We substitute T ′
2 (φ , φ̄) for T to get

σuts(φ , φ̄) = s1T
′

2 (φ , φ̄)+ s0. (4.25)

With (4.25), we have a term that can be used to replace σuts in the equations done in [5] to implement our
heat model.
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4.5 Other Concerns

4.5.1 Improving Friction Term

In 4.4, we found a method of relating temperature to ultimate tensile strength. Although this is important
for interfacing our heat model with the work done in [5], it has another application as well. To find the
amount of heat generated during screw insertion we have a term for ultimate tensile strength (4.13). With
slight modification (4.14) can be used to find the ultimate tensile strength for the boundary condition, which
would make our model more accurate. The new boundary condition ends up as:

∂T

∂n
=


0 (γ,r,z) ∈ B1,B3,B4

− µ1σuts(z,t)πωDr
K cosθ ′ (γ,r,z) ∈ B2 tω p− t2 ≤ z ≤ tω p

0 (γ,r,z) ∈ B2 z ≤ tω p− t2
0 (γ,r,z) ∈ B2 t2ω p ≤ z

. (4.26)

4.5.2 Tightening

Our model generates heat in the screw by considering how much displacement a point on the screw thread
undergoes. During the tightening phase of screw insertion, the displacement of a point on the screw thread
can vary depending on if the tightening is causing the screw to stretch and if the head of the screw is limiting
movement. Due to the complex nature of finding the exact amount of displacement during tightening, we
chose to not consider heat diffusion during the tightening phase. Instead, we hold the temperature of the
screw constant during tightening. Further research should be done into heat generated during tightening in
order to find a more accurate method of representing temperature.

4.5.3 Heat Generating Area

A source of error in our model is the location of the heat generating surface. By projecting the surface onto
a cylinder, the area of the surface has decreased. Not only that, but since the surface is now closer to the
center of the cylinder, the surface travels less when the screw is rotated; see Figure 4.7. For these reasons
the amount of heat generated in our model is inaccurate. A more accurate model for how much heat is
generated was created by [4], however their model was not conducive to an initial value boundary problem,
so we did not use it. When the amount of heat generated by their model is compared to ours using equivalent
screws and tap plate materials, it is found that their screw had a temperature change of 37.25◦C while our
screw had an average temperature change of 16.8◦C. Further research should be done into modifying our
heat generating term so that it is closer to that in [4].

4.6 Results

For testing our model we use the screw and material parameters in Table 4.1. We compare our model to the
model in [5] that does not include heat and the model in [4] which includes heat generation.

4.6.1 Low RPM and Near Instantaneous Heat Diffusion

The model in [4] assumes instantaneous heat diffusion and uniform screw temperature. Our model loosens
these assumptions by making heat diffusion time dependent which makes insertion speed an important
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Figure 4.7: A portion of the true heat generating surface being projected onto our cylinder.

variable in the model. As the RPM approaches zero, the heat in the screw will have more time to diffuse
during insertion so we would expect our model would converge to the model in [4].

As can be seen in Figure 4.8, our model with a low insertion speed of 5 RPM has a much higher drive
torque than the model of [4]. This difference can be attributed to a number of issues. As discussed in
Section 4.5.3, we are generating less heat than the model described in [4]. One way to possibly overcome
this difference is to change the rate at which heat is generated in our model. In a screw, the friction is not
being generating at an outward radius of Dr/2 as we use in (4.13); a better approximation would be

∂T

∂n
=−

µ1σutsπω
Dh+Ds

2
K cosθ ′ (4.27)

since the average outward radius of a point of the thread generating heat is Dh+Ds
2 . Note, we keep the radius

of the model cylinder at Dr/2; only the rate of heat generation is changed. The results of using this new
radius can be seen in Figure 4.9. Using the larger radius Dh+Ds

2 we generate more heat than if we were to use
Dr/2 and thus the required torque is lowered. However, it is clear that we have still not accounted for all of
the differences between our model and the model in [4]. Section 4.5.3 describes that the area could be one
of the reasons for this drastic difference, as well as this the work done in Section 4.5.1 could be a source of
part of the difference since we do not generate heat at a constant rate.

There are several other interesting results from Figure 4.9. In the figure, the change in radius affected
the screw being inserted at 900 RPM significantly more than the screw being inserted at 5 RPM. This is
most likely because the heat being generated has less time to diffuse into the screw so it remains closer to
the surface and thus has more of an impact on insertion. The curve generated by [4] has a linear decrease in
torque after breakthrough but before tightening, while our curve does not. This can be attributed to several
factors. In the model of [4], after breakthrough, heat is generated at a constant rate, while in our model heat
is not generated at a constant rate as we explain in Section 4.5.1. Also some of the heat on the surface of the
screw may be diffusing into the screw, which would affect our model but not the model of 4.5.1.
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Table 4.1: Parameters for Test 1 [ABS]
Screw Properties Plate Properties
Major Diameter Ds 3.42 mm Tap Hole Diameter 2.5 mm
Root Diameter Dr 2.49 mm Near Hole Diameter 0.0 mm
Screw Head Diameter 6.52 mm Draft Angle 0
Point Diameter 0.00 mm Near Plate Thickness 0
Pitch 1.19 mm Tap Plate Thickness 4.46 mm
Length 9.67 mm Elastic Modulus 2.35 GPa
Taper Length 2.94 mm Friction Coef. (Tap) µ 0.19
Trail Angle 30 deg. Yield Strength 45 MPa
Lead Angle 30 deg. Tensile Strength σuts 45 MPa
Engagement Rotation 0 deg. Compressive Strength 45 MPa
Thermal conductivity 51.9 W/m·K Thermal conductivity 0.128 W/m·K
Density 7.8 g/cc Density 1.02 g/cc
Specific heat capacity 0.486 J/g·K Specific heat capacity 1.96 J/g·K
Initial Temperature 20◦ C

4.6.2 Effects of RPM

Before creating the model, we hypothesized that an increase in RPM would decrease the amount of torque
required to insert the screw. The reasoning for this hypothesis was that if the screw was inserted quickly
there would be less time for the heat generated by friction to diffuse into the center of the screw and the
air. Since the heat would stay near the surface of the screw it would have more of an affect on the ultimate
tensile strength and thus decrease the required torque. Figure 4.10 shows the torque curves generated by
different insertion speeds. It appears that our hypothesis was correct; a higher insertion speed lowered the
drive torque of the screw. The speed of screw insertion did not seem to have a drastic effect on the torque
curve, although further experimental evidence is needed to determine if this is accurate.

Figure 4.11 shows the temperature of the surfaces of screw shafts at seating. Notice that at higher
insertion speeds the change in temperature along the surface is more abrupt. This is because there is less
time for the heat to diffuse from the heat generating thread to the rest of the screw surface. Surprisingly the
screw does not seem significantly warmer at the time of seating when the screw is inserted at a high RPM.
We attribute this to the work done in Section 4.5.1.

4.6.3 Conclusion

When testing our model it became clear that a higher screw insertion speed lowered the drive torque of
the screw. This decrease was a relatively small amount compared to the drive torque itself. This decrease is
promising, however further research should be done to compare our results with experimental data generated
by BOSE.

When we compared the torque curve generated with out heat model to the ones generated using the
work of Miller et al. we found that although they had a similar shape, our model required more torque to
overcome friction. It is likely that the higher required torque is due to the reasons discussed in Section 4.5.3,
however more research needs to be done before we can be certain.
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Figure 4.8: A comparison of our model of screw insertion using near instantaneous heat distribution with
the model of [4] and the heatless model.

Figure 4.9: A comparison of our model of screw insertion using near instantaneous heat distribution with
the model of [4] and the heatless model.
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Figure 4.10: A comparison of the torque curves generated with different insertion speeds.
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Figure 4.11: The effect of insertion speed on screw surface temperature at seating
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