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Observed Behavior:  ID-VDS

For low values of drain voltage, the device is like a resistor
As the voltage is increases, the resistance behaves non-linearly 
and the rate of increase of current slows
Eventually the current stops growing and remains essentially 
constant (current source)
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Observed Behavior:  ID-VDS
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As the drain voltage increases, the E field across the oxide at the drain end
is reduced, and so the charge is less, and the current no longer increases 
proportionally.  As the gate-source voltage is increased, this happens
at higher and higher drain voltages.  
The start of the saturation region is shaped like a parabola
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Finding ID = f (VGS, VDS)
Approximate inversion charge QN(y):  drain is 
higher than the source less charge at drain end 
of channel
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Inversion Charge at Source/Drain
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The charge under the gate along the gate, but we are going to 
make a simple approximation, that the average charge is the average 
of the charge near the source and drain 
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Average Inversion Charge

Charge at drain end is lower since field is lower 
Notice that this only works if the gate is inverted along its 
entire length
If there is an inversion along the entire gate, it works well 
because Q is proportional to V everywhere the gate is 
inverted
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Drift Velocity and Drain Current

“Long-channel” assumption:  use mobility to find v
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And now the current is just charge per area, times 
velocity, times the width:
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Square-Law Characteristics

Boundary:  what is ID,SAT?
TRIODE REGION

SATURATION REGION
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The Saturation Region

When VDS > VGS – VTn, there isn’t any inversion
charge at the drain … according to our simplistic model

Why do curves
flatten out?
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Square-Law Current in Saturation

Current stays at maximum (where VDS = VGS – VTn )

Measurement:  ID increases slightly with increasing VDS
model with linear “fudge factor”
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A Simple Circuit:  An MOS Amplifier
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Small Signal Analysis

Step 1:  Find DC operating point.  Calculate 
(estimate) the DC voltages and currents (ignore 
small signals sources)

Substitute the small-signal model of the 
MOSFET/BJT/Diode and the small-signal models 
of the other circuit elements.

Solve for desired parameters (gain, input 
impedance, …)
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A Simple Circuit:  An MOS Amplifier
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Small-Signal Analysis

Step 1.  Find DC Bias – ignore small-signal source

VGS,BIAS was found in
Lecture 15

IGS,Q
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Small-Signal Modeling

What are the small-signal models of the DC supplies?

Shorts!
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Small-Signal Models of Ideal Supplies

Small-signal model:
supply
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Small-Signal Circuit for Amplifier
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Low-Frequency Voltage Gain

Consider first  ω 0 case … capacitors are open-circuits

Transconductance

,2
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( )||out m s D ov g v R r= −
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Design Variable

Design Variables
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Voltage Gain (Cont.)

Substitute transconductance:

Output resistance:  typical value λn= 0.05 V-1

,

1 1 200 k
0.05 0.1o

n D SAT

r k
Iλ

⎛ ⎞ ⎛ ⎞= = Ω = Ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠

Voltage gain:
( )2 0.1 25 || 200 14.3

0.32vA ⋅⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

( ),2
||D SAT

v D o
GS T

I
A R r

V V
⎛ ⎞

= −⎜ ⎟−⎝ ⎠
m Dg R



6

Department of EECS University of California, Berkeley

EECS 105 Spring 2004, Lecture 42 Prof. J. S. Smith

Input and Output Waveforms

Output small-signal voltage amplitude:  14 x 25 mV = 350

Input small-signal voltage amplitude:  25 mV
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What Limits the Output Amplitude?

1. vOUT(t) reaches VSUP or  0 … or 

2. MOSFET leaves constant-current region and enters
triode region

, 0.31VDS DS SAT GS TnV V V V≤ = − =

, , 0.32 Vo MIN DS SATv V= =

2.5 0.32V = 2.18Vamp = −
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Maximum Output Amplitude

vout(t)= -2.18 V cos(ωt) vs(t) = 152 mV cos(ωt) 

How accurate is the small-signal (linear) model?

0.152 0.5
0.32

s

GS Tn

v
V V

= ≈
−

Significant error in neglecting third term in expansion
of  iD = iD (vGS)  
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One-Port Models (EECS 40)
A terminal pair across which a voltage and 
associated current are defined

Circuit
Blockabv
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Small-Signal Two-Port Models

We assume that input port is linear and that the 
amplifier is unilateral: 
– Output depends on input but input is independent of 

output.
Output port :  depends linearly on the current and 
voltage at the input and output ports 
Unilateral assumption is good as long as “overlap”
capacitance is small (MOS)
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Two-Port Small-Signal Amplifiers
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Current Amplifier

Voltage Amplifier
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Two-Port Small-Signal Amplifiers
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Transresistance Amplifier

Transconductance Amplifier
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Common-Source Amplifier (again)

How to isolate DC level?
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DC Bias

Neglect all AC signals

5 V

2.5 V

Choose IBIAS, W/L
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Load-Line Analysis to find Q
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Small-Signal Analysis

inR = ∞
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Two-Port Parameters:

Find Rin, Rout, Gm

inR = ∞

m mG g= ||out o DR r R=

Generic Transconductance Amp



9

Department of EECS University of California, Berkeley

EECS 105 Spring 2004, Lecture 42 Prof. J. S. Smith

Two-Port CS Model

Reattach source and load one-ports:
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Maximize Gain of CS Amp

Increase the gm (more current)
Increase RD (free?  Don’t need to dissipate extra 
power)
Limit:  Must keep the device in saturation

For a fixed current, the load resistor can only be 
chosen so large
To have good swing we’d also like to avoid getting 
too close to saturation

||v m D oA g R r= −

,DS DD D D DS satV V I R V= − >
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Current Source Supply

Solution:  Use a 
current source!
Current independent 
of voltage for ideal 
source 
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CS Amp with Current Source Supply
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Load Line for DC Biasing

Both the I-source and the transistor are idealized for DC bias 
analysis
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Two-Port Parameters

From current
source supply

inR = ∞

||out o ocR r r=

m mG g=

Department of EECS University of California, Berkeley

EECS 105 Spring 2004, Lecture 42 Prof. J. S. Smith

P-Channel CS Amplifier

DC bias:  VSG = VDD – VBIAS  sets drain current –IDp = ISUP
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Common Gate Amplifier

DC bias:

SUP BIAS DSI I I= =

current gain=1
Impedance buffer

Gain of transistor
tends to hold this 
node at ss ground:
low input impedance
load for current input

Notice that 
IOUT must equal
-Is
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CG as a Current Amplifier:  Find Ai

out d ti i i= = −

1iA = −
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CG Input Resistance

At input:

Output voltage:  

t out
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o

v vi g v g v
r

⎛ ⎞−
= − + + ⎜ ⎟

⎝ ⎠
( || ) ( || )out d oc L t oc Lv i r R i r R= − =

gs tv v= −

( )||t oc L t
t m t mb t

o

v r R i
i g v g v

r
⎛ ⎞−

= + + ⎜ ⎟
⎝ ⎠

Department of EECS University of California, Berkeley

EECS 105 Spring 2004, Lecture 42 Prof. J. S. Smith

Approximations…

We have this messy result

But we don’t need that much precision.  Let’s start 
approximating:
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CG Output Resistance
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CG Output Resistance

Substituting vs = itRS

1 1 t
t S m mb

S o o

vi R g g
R r r

⎛ ⎞
+ + + =⎜ ⎟

⎝ ⎠

The output resistance is (vt / it)|| roc
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Approximating the CG Rout

The exact result is complicated, so let’s try to
make it simpler:

Sgm µ500≈ Sgmb µ50≈ Ω≈ kro 200

][|| SSombSomoocout RRrgRrgrrR +++=

][|| SSomoocout RRrgrrR ++≅

Assuming the source resistance is less than ro,

)]1([||][|| SmoocSomoocout RgrrRrgrrR +=+≈
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CG Two-Port Model

Function:  a current buffer
• Low Input Impedance
• High Output Impedance
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Common-Drain Amplifier

21 ( )
2DS ox GS T

WI C V V
L

µ= −

2 DS
GS T

ox

IV V WC
L

µ
= +

Weak IDS dependence

In the common drain amp,
the output is taken from a
terminal of which the current
is a sensitive
function
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CD Voltage Gain

Note vgs = vt – vout
||

out
m gs mb out

oc o

v g v g v
r r

= −
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out
m t out mb out
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v g v v g v
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CD Voltage Gain (Cont.)

KCL at source node:

Voltage gain (for vSB not zero):
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out
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v g v v g v
r r

= − −

1
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CD Output Resistance

Sum currents at output (source) node:

|| || t
out o oc
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CD Output Resistance (Cont.)

ro || roc is much larger than the inverses of the 
transconductances ignore

1
out

m mb

R
g g

≈
+

Function:  a voltage buffer
• High Input Impedance
• Low Output Impedance
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Voltage and current gain

Current tracks input

voltage tracks input
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Bias sensitivity
When a transistor biasing circuit is designed, it is 
important to realize that the characteristics of the 
transistor can vary widely, and that passive 
components vary significantly also.
Biasing circuits must therefore be designed to 
produce a usable bias without counting on specific 
values for these components.
One example is a BJT base bias in a CE amp.  A 
slight change in the base-emitter voltage makes a 
very large difference in the quiescent point.  The 
insertion of a resistor at the emitter will improve 
sensitivity.
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Insensitivity to transistor parameters

Most of the circuit parameters are independent of 
variation of the transistor parameters, and depend 
only on resistance ratios.  That is often a design 
goal, but in integrated circuits we will not want to 
use so many resistors.
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NMOS pullup

Rather than using a big (and expensive) resistor, 
let’s look at a NMOS transistor as an active pullup
device

Note that when the transistor is connected this way, it is not an amplifier,
it is a two terminal device.  When the gate is connected to the drain of 
this NMOS device, it will be in saturation, so we get the equation for 
the drain current:
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⎠
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Small signal model

So we have:

The N channel MOSFET’s transconductance is:

And so the small signal model for this device will 
be a resistor with a resistance:
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IV for NMOS pull-up

The I-V characteristic of this pull-up device:
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Active Load
We can use this as the pullup device for an NMOS common 
source amplifier:
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Active Load
Since I2=I1 we have:

−

+
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outv
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Behavior

If the output voltage goes higher than one threshold 
below VDD, transistor 2 goes into cutoff and the 
amplifier will clip.
If the output goes too low, then transistor 1 will fall 
out of the saturation mode.
Within these limitations, this stage gives a good 
linear amplification.
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CMOS Diode Connected Transistor

Short gate/drain of a transistor 
and pass current through it
Since VGS = VDS, the device 
is in saturation since VDS > 
VGS-VT
Since FET is a square-law (or 
weaker) device, the I-V curve 
is very soft compared to PN 
junction diode
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Diode Equivalent Circuit
1

0OUT

OUT t
D

OUT tI

di vR
dv i

−

=

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠
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The Integrated “Current Mirror”
M1 and M2 have the same 
VGS
If we neglect CLM (λ=0), 
then the drain currents are 
equal
Since λ is small, the 
currents will nearly mirror 
one another even if Vout is 
not equal to VGS1
We say that the current 
IREF is mirrored into iOUT
Notice that the mirror 
works for small and large 
signals!

High Res

Low Resis
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Current Mirror as Current Sink

The output current of M2 is only weakly dependent on 
vOUT due to high output resistance of FET
M2 acts like a current source to the rest of the circuit
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Small-Signal Resistance of I-Source
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Improved Current Sources

Goal:  increase roc
Approach:  look at amplifier output resistance 
results … to see topologies that boost resistance

Looks like the output 
impedance of a common-
source amplifier with source 
degeneration

out oR r>>
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Effect of Source Degeneration

Equivalent resistance loading gate is dominated by 
the diode resistance … assume this is a small 
impedance
Output impedance is boosted by factor

( )
St t m gs o Rv i g v r v= − +

1
eq

m

R
g

≈

Sgs Rv v≈ −

SR t Sv i R=

( )t t m S t o t Sv i g R i r i R= + +

( )1t
o m S o

t

vR g R r
i

= ≈ +

( )1 m Sg R+
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Cascode (or Stacked) Current Source

Insight:  VGS2 = constant AND
VDS2 = constant

Small-Signal Resistance roc:

( )1o m S oR g R r≈ +

( )1o m o oR g r r≈ +

2
0o m oR g r r≈ >>
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Drawback of Cascode I-Source

Minimum output voltage to keep both transistors in 
saturation:

, 4, 2,OUT MIN DS MIN DS MINV V V= +

 

vOUT 

iOUT 

2, 2 0 2DS MIN GS T DSATV V V V> − =

4 2 4 2 4 0D DSAT GS GS GS TV V V V V V> + = + −

, 2 4 0OUT MIN GS GS TV V V V= + −
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Current Sinks and Sources

Sink:  output current goes
to ground

Source: output current comes
from voltage supply
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Current Mirrors

We only need one reference current to set up all the current
sources and sinks needed for a multistage amplifier.

Department of EECS University of California, Berkeley

EECS 105 Spring 2004, Lecture 42 Prof. J. S. Smith

Summary of Cascaded Amplifiers

General goals:

1. Boost the gain (except for buffers)
2. Improve frequency response
3. Optimize the input and output resistances:

RoutRin

Transresistance:

Transconductance:
Current:
Voltage: ∞

∞

∞

0
0

∞

0 0
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Start:  Two-Stage Voltage Amplifier

• Use two-port models to explore whether the combination 
“works”

CS1 CS2

Results of new 2-port:   Rin = Rin1, Rout = Rout2

( ) ( )1 2 1 2 2||v m in out m outA G R R G R= − × −

( )( )1 2 2 1 2||v m m in out outA G G R R R=

CS1,2
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Cascading stages

CS1 CS2 CD3

Output resistance:  

Voltage gain (2-port parameter):  

Input resistance:  ∞

( ) ( )1 1 1 2 2 2|| ||v m o oc m o ocA g r r g r r= − × −

1
out

m mb

R
g g

=
+


