(- $-\begin{aligned} & \text { TECHNOLOGY } \\ & \text { CONFERENCE }\end{aligned}$

Fashion Design with GANs: Disentangling Color, Texture, and Shape

Gökhan Yildirim
Calvin Seward Urs Bergmann

11th of October 2018
Session: E8289
zalando
research

Fashion E-Commerce @

zalando

$\sim 4.5_{\text {mimon un }}$

revenue 2017

$>15,000$
employees in
Europe

of visits via
mobile devices

> 200 million
 visits
 per
 month

 million
active customers
$>300,000$
product choices

~2,000 15 brands

Fashion Design at Zalando

How can computers help speed-up the process?

zalando
research

Generative Adversarial Networks (GANs)

(Goodfellow et. al., 2014)

- Train two neural networks in an adversarial setting

GANs and Fashion

Swapping Clothes in Photos

Fashion Style Generator (Jiang and Fu, 2017)

Attribute Control and Disentangling

- Attribute control
- Color
- Texture
- Shape
- Disentangle
- Each attribute has a separate effect
- Changing one should not change the other

Our Model

- Attribute Data

C \circ Color

- 3-dim
- RGB
t ○ Texture (local structure, pattern)
- 512-dim

S \quad Shape (segmentation mask)

- Embedded first
- 512-dim

Discriminator Losses

"Improved Training of Wasserstein GANs"
(Gulrajani et. al., 2017)
"Conditional Image Synthesis With Auxiliary Classifier GANs (Odena et. al., 2017)

Generator Losses

- Color Consistency
- Texture Consistency
- Shape Consistency
- Generator Color Check

Color Consistency

$\begin{array}{lll}\mathbf{c} & \text { color } \quad \mathbf{x}_{1}=G\left(\mathbf{c}, \mathbf{t}_{1}, \mathbf{s}_{1}\right) \\ \mathbf{t} & \text { texture } \\ \mathbf{s} & \text { shape }\end{array} \quad \mathbf{x}_{2}=$

Texture Consistency

- Laplacian matting matrix
- (NxN image $\rightarrow \mathrm{N}^{2} \mathrm{x} \mathrm{N}^{2}$ matrix)
- A Closed Form Solution to Natural Image Matting (Levin et. al., 2006)

Input Image (with markings)

引lando
Estimated Matte
iesearch

Texture Consistency

C color
$N \times N \times 3 \longleftarrow \mathbf{x}_{1}=G\left(\mathbf{c}_{1}, \mathbf{t}, \mathbf{s}_{1}\right)$
$N^{2} \times 3 \longleftarrow \mathbf{V}_{1}$
$\mathbf{x}_{2}=G\left(\mathbf{c}_{2}, \mathbf{t}, \mathbf{s}_{2}\right)$
\mathbf{v}_{2}

$N^{2} \times N^{2} \longleftarrow \mathbf{L}_{1} \longleftarrow$ Laplacian Matrices $\longrightarrow \mathbf{L}_{2}$
zalando
research

Shape Consistency

C color

$$
\mathbf{x}=G(\mathbf{c}, \mathbf{t}, \mathbf{s})
$$

t texture
\mathbf{S} shape

Shape Consistency Loss $\longrightarrow B(\mathbf{x}, \mathbf{s})=\frac{1}{|1-\mathbf{s}|} \sum_{i, j}(1-\mathbf{s}(i, j)) \cdot\|\mathbf{x}(i, j)-\mathbf{b}\|_{1}$ Background Color $\longrightarrow \mathbf{b}=[1,1,1]$

Generator Color Check

C color
t texture
S shape

$\mathbf{x}^{\mathbf{c}}=G(\mathbf{c}, \mathbf{t}, \mathbf{s})$

Average Dress Color $A(\stackrel{\downarrow}{\mathbf{c}}, \mathbf{s})$

Generator Color Check $\longrightarrow\left|\mid \mathbf{C}-A\left(\mathbf{x}^{\mathbf{c}}, \mathbf{S}\right) \|_{2}^{2}\right.$

Experiments \& Results

- Modified the code from *
- Directly generate 128×128 pixel images
- NVIDIA P100 GPU $\rightarrow 1$ week of training
- Dataset \rightarrow 120,000 dresses from Zalando
- ADAM Optimizer ($\mathrm{LR}=0.001, \mathrm{~B} 1=0, \mathrm{~B} 2=0.99)_{(\text {Kingma and } \mathrm{Ba}, 2014)}$

Color Control

$$
G\left(\mathbf{c}_{i}, \mathbf{t}, \mathbf{s}\right)
$$

- Changing color
- Texture and shape stay the same

Texture Control

$$
G\left(\mathbf{c}, \mathbf{t}_{i}, \mathbf{s}\right)
$$

- Changing texture
- Color and shape stay the same

Shape Control

$$
G\left(\mathbf{c}, \mathbf{t}, \mathbf{s}_{i}\right)
$$

- Changing shape
- Color and texture stay the same

DEMO

Fashion Design

Real Article

Estimated Shape Mask

Reconstructed Article

Fashion Design

Color

Failure Cases

Real Article

Estimated Shape Mask
\square

Reconstructed Article
zalando research

What's Next?

- Improve upon the design model
- Allow for multiple colors/color histograms
- More attributes
- Direct texture input

Thank You!

Ralango
research

Preserving Local Structure

(a) Input image

(b) Neural Style

(c) CNNMRF

(d) Our result

(e) Reference style image

Laplacian Matrix

$$
\mathbf{L}(i, j)=\sum_{k \mid(i, j) \in w_{k}}\left(\delta_{i j}-\frac{1}{\left|w_{k}\right|}\left(1+\left(I_{i}-\mu_{k}\right)\left(\Sigma_{k}+\frac{\epsilon}{\left|w_{k}\right|}\right)^{-1}\left(I_{j}-\mu_{k}\right)\right)\right)
$$

$\left|w_{k}\right|$ Size of the neighborhood
$\mu_{k} \quad$ Mean color vector (within neighborhood)
Σ_{k} Color covariance matrix (within neighborhood)

Controlling the Color

- Start small (32×32)
- Latent Vector + Color input (RGB)
- Pro:
- We get the desired color
- Con:
- Color input changes the shape

Same latent vector - Different colors

Adding Shape Consistency

- Shape consistency with Laplacian Matting matrices
- Weighting between color and shape control

