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Preface

Large dense matrices arise in many applications such as gravitation, electrostatics, molecular
dynamics simulations, boundary integral equations, imaging etc. Operations involving such
large dense matrices is computationally intensive. This dissertation is composed of research
and results from papers researched and published under the supervision of Professor Eric F.
Darve in the Institute for Computational and Mathematical Engineering, Stanford University.
Most of this work is compiled from publications listed below:

• Ambikasaran, S., and Darve, E. F., “An O(N logN) fast direct solver for partially
hierarchically semi-separable matrices”, Journal of Scientific Computing.

• Ambikasaran, S., Saibaba, A. K., Darve, E. F., Kitanidis, P. K., “Fast algorithms for
Bayesian inversion”, IMA Volume-156, Computational Challenges in the Geosciences.

• Ambikasaran, S., Li, J. Y., Kitanidis, P. K., Darve, E. F., “Large-scale stochastic
linear inversion using hierarchical matrices”, Computational Geosciences.

• Ambikasaran, S., Aminfar, A., and Darve, E. F., “A sparse matrix approach for
constructing fast direct solvers for hierarchical matrices.”, in preparation.

• Ambikasaran, S., and Darve, E. F., “Review of fast multipole method & hierarchical
matrices.”, to be submitted to Mathematics & Mechanics of Complex Systems.

• Ambikasaran, S., Li, J. Y., Darve, E. F., Kitanidis, P. K., “A computationally efficient
large-scale Kalman filtering algorithm”, to be submitted.
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The following packages were released during the course of my doctoral research:

• Black-Box Fast Multipole Method in 2D:

– Code: https://github.com/sivaramambikasaran/BBFMM2D

– Documentation: http://sivaramambikasaran.github.io/BBFMM2D/

• Fast Linear Inversion PACKage:

– Code: https://github.com/sivaramambikasaran/FLIPACK

– Documentation: http://sivaramambikasaran.github.io/FLIPACK/

Other mathematical packages (Fast Kalman filter and Fast direct solvers) from my doctoral
research will also be posted at https://github.com/sivaramambikasaran/ in future.
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Chapter 1

Introduction

The thesis discusses fast algorithms —algorithms that scale linearly (O(N)) or almost linearly
(O(N logaN)) with the number of underlying degrees of freedom —for dense numerical
linear algebra, especially dense matrix vector products and solvers for dense linear systems
arising out of physical applications. The applications considered in the thesis are inverse
problems arising in the context of geophysics applications.

Fast computational algorithms, which reduce the computational burden by exploiting
the underlying structures like symmetry, self-similarity, etc. play a huge role in solving
computational problems, especially given that there is a huge emphasis on big data and
large scale problems in recent time.

The most widely known important fast algorithm is the “Fast Fourier Transform” (FFT),
which reduces the computational complexity of the Discrete Fourier Transform from O(N2)
to O(N logN). The value of FFT can never be overestimated given the enormous speed-up
gained by the use of FFT for even moderately sized problems. One of the many ways to
interpret the FFT is through the language of structured matrices. The matrix arising out of
the discrete Fourier transform is a circulant matrix, which has a nice structure associated
with it. This structure can be exploited to accelerate the computation of matrix vector
products from O(N2) to O(N logN). The FFT is exact for problems arising on uniformly
spaced grid, but is brittle for problems where the underlying is grid is arbitrary.

On the contrary, the fast algorithms discussed in this thesis are applicable for problem
arising from arbitrary grids. These algorithms are approximate and require certain assump-
tions but are robust and can be made arbitrarily accurate. The key ingredient in these
algorithms is that, certain interactions —equivalently certain sub-blocks in dense matrices

1



2 CHAPTER 1. INTRODUCTION

—can be efficiently represented as a low-rank matrix. Hence, the success of these algorithms
rely on efficient low-rank constructions and fast matrix-algebra based on these low-rank
sub-blocks.

In this thesis, fast matrix-vector products and fast direct solvers are developed and
implemented in the context of inverse problems. Inverse problems are ubiquitous in engi-
neering sciences. For reasonably simple engineering systems, simple physical theories enable
us to make predictions, i.e., predict the outcome of certain measurements. However, most
of the complex systems arising in engineering sciences are highly non-trivial to even model
in the first place. An inverse problem is one which consists of using the results of certain
measurements to understand the system better and to infer the values of parameters for
modeling the system. In this thesis, we consider large-scale inverse modeling, where we have
access to a few measurements but are in need for large number of unknowns or parameters
that quantify the system. Such inverse problems are typically ill-posed but under certain
regularizations these can be made well-posed. We adopt the Bayesian approach, where the
regularization for the inverse problems is incorporated using a prior probability distribution
function, to solve these inverse problems. Hence, in this approach, we do not obtain a
unique solution but rather an ensemble of possible solutions consistent with the prior and
measurements, i.e., we obtain

1. A representative depiction of the unknowns.

2. A measure of accuracy in the form of confidence intervals or variance.

3. Many probable solutions, often referred to as conditional realizations.

However, a major hurdle of this approach is that, when the number of unknowns, m, to be
estimated is large, the method becomes computationally expensive. The bottleneck arises
due to the fact that computational storage and matrix operations involving the large dense
prior covariance matrix scales as O(m2) or O(m3), which makes the Bayesian approach
computationally time-consuming. However, thanks to the fast algorithms for dense numerical
linear algebra, the computational cost can be reduce to almost linear complexity, i.e., O(m),
O(m logm) or O(m log2m).



3

The remainder of the thesis is organized as follows:

1. Chapter 2 presents a brief introduction to low-rank matrices, discusses fast algebraic
& analytical techniques to construct low-rank factorizations and how to make use of
these low-rank factorizations to perform fast low-rank matrix algebra.

2. Chapter 3 presents different classes of hierarchical matrices —the class of matrices
that are of main interest in this thesis —and discusses how to construct these.

3. Chapter 4 presents an application of a fast O(N) matrix-vector products for H2

matrices in the context of large-scale linear inversion.

4. Chapter 5 presents a new fast Kalman filtering algorithm, which relies on fast O(N)
matrix-vector products for H2 matrices and a novel way to rewrite the Kalman filtering
recurrences in a computationally friendly form.

5. Chapter 6 discusses a new factorization based algorithm for solving hierarchically
off-diagonal low-rank matrices and hierarchically semi-separable matrices at a compu-
tational cost of O(N log2N) and O(N logN) respectively.

6. Chapter 7 discusses a new approach based on extended sparsification for solving
different hierarchical matrices. The computational complexity for solving hierarchically
off-diagonal low-rank matrices and hierarchically semi-separable matrices based on
this algorithm scales as O(N log2N) and O(N) respectively.



Chapter 2

Low-rank matrices

Low-rank matrices form an important sub-class of dense matrices. Most of the fast algorithms
discussed in this thesis relies on low-rank matrices in some form. In this chapter we look
in detail at low-rank matrices, construction of these low-rank matrices and matrix algebra
using these low-rank matrices.

In a theoretical setting, when we say that a linear operator has rank p, it means that
the range of the linear operator is a p dimensional space. From a matrix algebra point of
view, column rank denotes the number of independent columns of a matrix while row rank
denotes the number of independent rows of a matrix.

In an applied setting, the rank of a matrix denotes the information content of the matrix.
The lower the rank, the lower is the information content. For instance, if the rank of a
matrix, A ∈ Rn×n is 1, the matrix can be written as a product of a column vector times a
row vector, i.e., if a11 6= 0:

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
... . . . ...

an1 an2 an3 · · · ann


=



a11

a21

a31
...
an1


×
(
1/a11

)
×
(
a11 a12 a13 · · · a1n

)
(2.1)

In general, if we know that a matrix A ∈ Rm×n is of rank p, then we can write A as UKV T

where U ∈ Rm×p, V ∈ Rn×p and we need to store only O(np) of its entries. Hence, if we
know that a matrix is of low rank, then we can compress and store the matrix and can

4
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perform efficient matrix operations.
When the matrix arises out of a kernel function, then analytic techniques like power

series, interpolation, etc., can be used to obtain low-rank factorization of the matrix. The
matrix V T , which forms a basis for the rows is termed the anterpolation operator. This
operator is to be interpreted as aggregating the nodes to a set of super-nodes. The matrix K
is termed the interaction operator, since it captures the interaction between super-nodes. The
matrix U is termed the interpolation operator, since it is to be interpreted as disaggregating
the information from the super-nodes to the nodes.

× ×
Low Rank

Full Rank

A U

K V T

Figure 2.1: Outer product representation of a low-rank matrix.

In the next few sections, we discuss some exact and approximate techniques to obtain a
low-rank factorization. These techniques can be broadly divided into algebraic and analytic
techniques. We first look at some of the algebraic techniques in section 2.1.1. Low-rank
construction using analytic techniques is discussed in section 2.1.2.

2.1 Constructing low-rank factorizations

2.1.1 Algebraic techniques

In this section, we briefly discuss algebraic techniques, namely, singular value decomposition,
pseudo-skeletal approximation, adaptive cross approximation, rank revealing LU factorization,
and rank revealing QR factorization, to construct low-rank factorizations.

2.1.1.1 Singular value decomposition

We first look at singular value decomposition of a matrix. The singular value decomposition
(Proposition 1) of a matrix is one of the most important decompositions of a matrix and is
of much practical importance.



6 CHAPTER 2. LOW-RANK MATRICES

Proposition 1 Consider a matrix A ∈ Cm×n. Then there exists a factorization of the form

A = UΣV ∗ (2.2)

where U ∈ Cm×m, V ∈ Cn×n are unitary matrices and Σ ∈ Rm×n is a diagonal matrix with
non-negative entries on the diagonal, i.e., σk = Σkk ≥ 0. Further, σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥
σmin(m,n) ≥ 0.

Σ =



σ1 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ3 · · · 0
...

...
... . . . ...

0 0
...

... . . .


(2.3)

These σk’s are termed as the singular values of the matrix A. Here V ∗ denotes the conjugate
transpose of the matrix V . Also, a square matrix M ∈ Cr×r is unitary if

MM∗ = M∗M = I (2.4)

where I is the identity matrix. The decomposition in Equation (2.2) is termed as “singular
value decomposition.”

The singular value decomposition enables us to compute the optimal low-rank approximation
of a matrix. Theorem 1 reveals how the singular value decomposition gives the “optimal”
rank p approximation to a matrix.

Theorem 1 Consider A ∈ Cm×n, and let ‖·‖ be a unitarily invariant matrix norm (for
instance, the 2-norm and the Frobenius/ Hilbert-Schmidt norm). Let UΣV ∗ be the singular
value decomposition of the matrix A. Then ∀p ∈ {1, 2, . . . ,min{m,n}}, we have

inf
M∈Rm×n

{‖A−M‖ | rank(M) ≤ p} = ‖A−Ap‖ (2.5)

where,

Ap = UΣpV
∗ =

p∑
k=1

σkukv
∗
k (2.6)



2.1. CONSTRUCTING LOW-RANK FACTORIZATIONS 7

and Σk = diag(σ1, σ2, . . . , σp, 0, . . . , 0). Also, ui, vi, i = 1, . . . , k are the first k columns of
the matrices U and V respectively.

In other words, the “optimal” approximation of a matrix, of rank at most p is obtained
by retaining the first p singular values and vectors of the matrix. In particular, for Ap as
defined before, we have

‖A−Ap‖2 = σp+1 and ‖A−Ap‖2Fro =
min{m,n}∑
j=p+1

σ2
j (2.7)

In terms of a relative error of approximation, it is useful to talk about ε-rank of a matrix.
The ε-rank of a matrix A in the norm ‖·‖ is defined as

p(ε) := min
{
r | ‖A−Ar‖

‖A‖
≤ ε

}
(2.8)

where, Ar = UΣrV
∗.

One of the major drawbacks of using singular value decomposition in fast algorithms to
construct low-rank approximations is that the singular value decomposition is computation-
ally expensive. The computational cost to construct a singular value decomposition of am×n
matrix is O(mnmin(m,n)), which is not desirable to construct low-rank decomposition.

2.1.1.2 Pseudo-skeletal or CUR approximation

The pseudo-skeletal approximation [48] is another technique to construct approximate
low-rank factorizations. Though pseudo-skeletal approximations do not yield the optimal
low-rank factorizations, the computational cost to construct low-rank factorizations using
the pseudo-skeletal approach is independent of the size of the matrix and depends only on
the rank. This makes it attractive to be used for large systems and in the construction of
fast algorithms.

A pseudo-skeletal approximation of a matrix A ∈ Cm×n is a decomposition of the form
CUR, where C ∈ Cm×p is a sub-matrix of A consisting of certain columns of A, R ∈ Cp×n

is another sub-matrix of A consisting of certain rows of A and U ∈ Cp×p is a square matrix.
It is to be noted that there are many different CUR decompositions and depending on the
matrix A, certain CUR decompositions are more optimal than others. Here we look at one
such way.
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Consider a matrix A ∈ Cm×n, which has exact rank p. Choose p linearly independent
rows and columns. Hence, these r rows span the entire m rows and the p columns span
the entire n columns. Without loss of generality, we can assume that the first p rows and
p columns are linearly independent. (Else pre-multiply and post-multiply by permutation
matrices to get the linearly independent rows and columns to the top and to the left
respectively).

Let C denote the first p columns and R denote the first p rows and U denote the p×p sub-

matrix at the top-left. We denote: C =

 U

CA

 and R =
(
U RA

)
and A =

 U RA

CA M

 .
Then:

CU−1R =

 U

CA

U−1
(
U RA

)
=

 U

CA

(U−1U U−1RA

)
(2.9)

=

 U

CA

(I U−1RA

)
=

 U UU−1RA

CA CAU
−1RA

 (2.10)

=

 U RA

CA CAU
−1RA

 = A (2.11)

since M = CAU
−1RA from the assumption that A is rank p.

If the matrix is not of exact rank p, but has an ε-rank of pε, we can still obtain an ε-rank
approximation using theorem 2 from [48].

Theorem 2 Assume that the matrix Am×n has an ε-rank at most pε, then there exists a
pseudo-skeletal approximation of the form CUR, where U ∈ Rpε×pε is a matrix that contains
appropriate coefficients that are calculated from the sub-matrix of A in the intersection of
rows R and columns C, such that

‖A− CUR‖2
‖A‖2

≤ ε(1 + 2√pε(
√
m+

√
n)) (2.12)

Note that theorem 2 only proves the existence of such a factorization. It doesnot provide
us with an algorithm to identify the desired rows and columns and thereby constructing
the low-rank approximation. Also, in general if a matrix A is of rank p, it is hard to choose
the p rows and p columns exactly. One way to circumvent this issue is to choose say kp
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rows and kp columns. The matrix U now is not invertible. Obtain the pseudo-inverse
of U and use singular value decomposition on the pseudo-inverse of U to get the rank p
approximation of the pseudo-inverse of U . This along with the matrices C and R, gives us
the CUR decomposition. The cost of CUR decomposition scales as O(p2(m+n)). However,
if the rows and columns are chosen apriori, the cost of obtaining the CUR decomposition is
O(p3).

There are several techniques to choose the “best” set of rows and columns, i.e., the
sub-matrices R and C. These include greedy algorithms, adaptive techniques, random
sampling techniques, interpolatory techniques like using radial basis functions etc. Also, in
the above algorithm to construct the matrix, U , we ensured that the matrix CUR reproduces
exactly certain columns and rows of the matrix A. Another popular technique is to compute
the matrix U using least squares technique, i.e., given C and R, find the matrix U such that
‖A−CUR‖ is minimum. However, in this case, the computational cost to compute U scales
as O(p(m2 + n2)).

2.1.1.3 Adaptive cross approximation

Adaptive cross approximation (ACA) [102] is another technique to construct low-rank
approximations of dense matrices. ACA can be interpreted as a special case of the pseudo-
skeletal algorithm based on an appropriate pivoting strategy. The idea behind the cross
approximation is based on the result described in [10], which states that supposing a matrix
A is well approximated by a low-rank matrix, then we can approximate A with almost the
same approximation quality by a clever choice of p columns C ∈ Rm×p and p rows R of the
matrix A. The algorithm is described in detail in algorithm 1. Though the algorithm is
more efficient than the singular value decomposition, it is still computationally expensive,
since it chooses the “best” set of rows and columns and hence it costs O(pmn).

2.1.1.4 Partially pivoted adaptive cross approximation

Several heuristic strategies have been proposed to reduce the computational complexity
of the adaptive cross approximation algorithm described in 2.1.1.3. Of these, the most
popular one is the partially pivoted adaptive cross approximation algorithm 2. The main
advantage of the partially pivoted ACA is that it only needs the individually entries Aij
of the matrix as opposed to the entire row (or) column. The computational complexity of
partially pivoted ACA is O(p2(m+n)) and is very easy to implement. A practical version of
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Algorithm 1 Adaptive cross approximation technique
Initialize the approximation and the residual matrix.

U = 0,K = 0, V = 0 and R = A

while ‖R‖F ≤ ε‖A‖F do
1. Obtain the row and column of the pivot element. The pivot element is chosen as

the maximum of the absolute value of the entries of the matrix.

{ik+1, jk+1} = argmaxi,j |Rk(i, j)|

2. Get the dominant vectors spanning the row space and column space, i.e.,

U(:, k+1) = Rk(:, jk+1)
Rk(ik+1, jk+1) ; V (k+1, :) = Rk(ik+1, :)

Rk(ik+1, jk+1) and K(k+1, k+1) = Rk(ik+1, jk+1)

3. New residual matrix.

R = R− U(:, k + 1)K(k + 1, k + 1)V (:, k + 1)

end while

the algorithm, which includes a termination criterion based on a heuristic approximation to
the relative approximation in the Frobenius norm, can be found in [15, 103]. The algorithm
is described in algorithm 2. The proofs of convergence of this algorithm can be found in [11],
and relies on approximation bounds of Lagrange interpolation and a geometric assumptions
on the distribution of points, which may not be very practical. For instance, [15] lists some
contrived counterexamples that show that this algorithm can produce bad pivots. To fix
this issue, several other variants have been proposed such as improved ACA (ACA+) and
hybrid cross approximation (HCA).

2.1.1.5 Rank revealing QR factorization

The conventional QR factorization can also be used to construct approximate low-rank
approximations. Let A ∈ Rm×n be a rank p matrix. The QR factorization with appro-
priate pivoting, in exact arithmetic, guarantees to produce a low-rank factorization at a
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Algorithm 2 Partially pivoted adaptive cross approximation technique
while k = 0, 1, 2, . . . do

1. Generation of the row
a = AT eik+1

2. Row of the residuum and the pivot column

(Rk)T eik+1 = a−
k∑
l=1

(uk)ik+1vk (2.13)

jk+1 = arg max
j
|(Rk)ik+1j |

3. Normalizing constant
γk+1 =

(
(Rk)ik+1jk+1

)−1

4. Generation of the column
a = Aejk+1

5. Column of the residual and the pivot row

Rkejk+1 = a−
k∑
l=1

(vk)jk+1uk (2.14)

ik+2 = arg max
i
|(Rk)ijk+1 |

6. New approximation
Sk+1 = Sk + uk+1v

T
k+1

end while
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computational cost of O(pmn), i.e., a reduced QR factorization gives us

P1AP2 =


· · ·

~q1 ~q2 ~q3 · · · ~qp

· · ·





r1,1 r1,2 r1,3 · · · r1,p−1 r1,p r1,p+1 · · · r1,n

0 r2,2 r2,3 · · · r2,p−1 r2,p r2,p+1 · · · r2,n

0 0 . . . · · · r3,p−1 r3,p r3,p+1 · · · r3,n

0 0 0 . . . ...
...

...
...

...
...

...
...

... . . . ...
...

...
...

0 0 0 · · · 0 rp,p rp,p+1 · · · rp,n


where ~qj ∈ Rm×1 are orthonormal vectors. Hence, this gives us a low-rank decomposition of
the matrix A as

A = P1


· · ·

~q1 ~q2 ~q3 · · · ~qp

· · ·





r1,1 r1,2 r1,3 · · · r1,p−1 r1,p r1,p+1 · · · r1,n

0 r2,2 r2,3 · · · r2,p−1 r2,p r2,p+1 · · · r2,n

0 0 . . . · · · r3,p−1 r3,p r3,p+1 · · · r3,n

0 0 0 . . . ...
...

...
...

...
...

...
...

... . . . ...
...

...
...

0 0 0 · · · 0 rp,p rp,p+1 · · · rp,n


P2

Typically though, only column pivoting is done. For instance, [46] discusses a column
pivoting strategy by choosing the maximum diagonal entry in the remainder matrix as one
proceeds with the QR factorization. Once we have the permutation matrix, P ∈ Rn×n, to
pivot, the QR factorization of AP is obtained as

AP = QR,

where Q ∈ Rm×n and R ∈ Rn×n, with QTQ = In and the upper triangular matrix R is
partitioned as

R =

R11 R12

R21 R22

 ,
where R11 ∈ Rp×p and hopefully R22 is small in norm. If ‖R22‖2 = O(εmachine), we then
have that σp+1 = O(εmachine) [66] and thereby we can conclude that the matrix A has a
numerical rank of at most p.

The QR factorization that yields a suitably small R22 is referred to as the rank-revealing
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QR (RRQR) factorization [19]. While the RRQR is a great way to detect numerical rank of
a matrix, the column pivoting strategy discussed in [46] can also fail miserably. Look at
example 3.1 in [69] for a counterexample. There are quite a few different pivoting strategies
for finding the RRQR factorization of a matrix [13, 19, 40, 46, 70, 86, 91]. However, all
of these either fail for the example 3.1 in [69] or do not provide provide a rigorous error
bound. However, there are other efficient pivoting strategies to obtain rank-revealing
QR factorizations. For instance, the pivoting strategy discussed in [66, 98] based on local
maximum volume —the product of the singular values —of a matrix is sufficient for developing
an efficient pivoting strategy for obtaining a rank-revealing QR factorization. [20, 54] also
discuss efficient pivoting strategy to obtain RRQR factorizations.

2.1.1.6 Rank revealing LU factorization

As with the QR factorization, the conventional LU factorization can also be used to construct
fast low-rank approximations. Let A ∈ Rm×n be a rank p matrix. The LU factorization with
appropriate pivoting, in exact arithmetic, guarantees to produce a low-rank factorization at
a computational cost of O(pmn), i.e., we have

P1AP2 =

L11 0
L21 I(m−p)×(m−p)

U11 U12

0 0

 (2.15)

where P1 and P2 are permutation matrices. Hence, this gives us

P1AP2 =

L11

L21

 [U11 U12
]

Hence, the low-rank factorization of the matrix A is

A = P1

L11

L21

 [U11 U12
]
P2

[18] was the first to discuss the existence of a pivoting strategy for RRLU factorizations for
certain class of matrices. [97] discusses the existence of a pivoting strategy based on local
maximal volume that efficiently extracts full rank and rank deficient portions of the matrix.
[97] also claims that the RRLU algorithm is typically faster than the corresponding RRQR
algorithms. We refer the readers to [67, 68, 90] for more details regarding RRLU algorithm.
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2.1.2 Analytic techniques

2.1.2.1 Taylor Series approximation

In this section, we look at an analytic approach to construct low-rank factorization for
matrices arising out of analytic kernels. A kernel is termed asymptotically smooth, if there
exist constants cas1 , c

as
2 and a real number g ≥ 0 such that for all multi-indices α ∈ Nd

0 it
holds that ∣∣∣∂αyK(x, y)

∣∣∣ ≤ cas1 p!(cas2 )p(|x− y|)−g−p, p = |α| (2.16)

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two pairwise distinct points in Rd and
DX , DY be the convex hulls of X and Y respectively. If we have the additional condition
that

diamDY ≤ ηdist(DX , DY ), 0 < η < (cas2 d)−1 (2.17)

then, by using a Taylor expansion at the point y0 ∈ Dσ, where Dσ is the convex hull of Xσ,
we get that

κ(x, y) =
k−1∑
l=0

(y − y0)l

l! ∂lyκ(x, y0) +Rk(x, y), (2.18)

where Rk(x, y) is the residual in the Taylor series expansion. The residual Rk(x, y) can be
written as

Rk(x, y) = (y − y0)k

k! ∂kyκ(x, ỹ)

for some point ỹ ∈ Dσ. This then gives us

|Rk(x, y)| ≤ dk

k!

( |y − y0|
|x− ỹ|

)k
c1k!ck2|x− ỹ|−g

The rank of the resulting matrix is O(kd) [10]. However, there are two problems with this
approach. The first is that computing the Taylor series (or for that matter, other analytical
expressions such as multipole expansions) in 3D of kernels can be a tedious task. Moreover,
every time one needs to use a new kernel, it might be necessary to re-derive the Taylor series
for that particular kernel. Therefore, in general we would prefer an approach that is kernel
independent.
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2.1.2.2 Multipole Expansions

The original version of the FMM is based on certain analytical expansions of the kernel K(r),
for example with spherical harmonics, powers of r, Bessel functions, etc. As an example,
we consider the logarithmic kernel given by K(xj , xk) = − log(‖xj − xk‖). Also, we use the
language of electrostatics since the original FMM was developed for electrostatic interactions.
If a charge of strength q is located at (x0, y0) ∈ R2, then the potential at (x, y) ∈ R2 is given
by

φq,z0(z) = −q log (‖z − z0‖) = Re (−q log (z − z0)) (2.19)

where z = x+ iy, z0 = x0 + iy0 and z, z0 ∈ C. Let ψq,z0(z) = q log (z − z0), i.e., φq,z0(z) =
−Re (ψq,z0(z)). Now note that for any z such that |z| > |z0|, we have

ψq,z0(z) = q log (z − z0) = q

(
log(z)−

∞∑
k=1

1
k

(
z0
z

)k)
(2.20)

This analytic expansion above is the basis for computing the multipole expansion [51, 104]
when we have a cluster of charges.

Lemma 3 Consider a set of n charges of strength qk located at zk, where k ∈ {1, 2, . . . , n}.
Let R = maxk |zk|. For any z such that |z| > R, the potential φ(z) due to the n charges is
given by

φ(z) = q log(z)−
∞∑
k=1

ak
kzk

(2.21)

where q =
n∑
j=1

qj and ak =
n∑
j=1

qjz
k
j .

More importantly, for any p ∈ Z+, if we set

φp(z) = q log(z)−
p∑

k=1

ak
kzk

(2.22)

we have the following error bound, given by Equation (2.23).

|φ(z)− φp(z)| ≤

n∑
j=1
|qj |

(p+ 1)
(
1−

∣∣ r
z

∣∣)
∣∣∣∣rz
∣∣∣∣p+1

(2.23)
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Note that
∣∣ r
z

∣∣ < 1.

In the above, if we have |z| > 2|r|, we then get that

|φ(z)− φp(z)| ≤

n∑
j=1
|qj |

(p+ 1)2p (2.24)

Using lemma 3 and arguments of the type found in section 2.1.2.1, we can derive low-rank
approximations of matrices.

2.1.2.3 Interpolation

Many problems in computational physics involve evaluation of pairwise interactions of large
number of particles. Most of these N boyd problems are of the form

f(xj) =
m∑
k=1

K(xj , yk)σk (2.25)

where j ∈ {1, 2, . . . ,m}, xj are the target points, yk are the source points and σk are the
sources and K(x, y) is a kernel. A direct computation of 2.25 has a computational complexity
of O(m2), which is prohibitively expensive for large m. However, the computation can be
accelerated if the kernel happens to be degenerate, i.e., can be well-represented by a low-rank
approximation.

K(x, y) ≈
p∑
l=1

ul(x)vl(y) (2.26)

where p is a fixed number independent of m and p � m. Once we have such a low-rank
representation, a fast summation technique is available. We have

f(xj) ≈
m∑
k=1

p∑
l=1

ul(x)vl(yk)σk =
p∑
l=1

ul(x)
(

m∑
k=1

vl(yk)σk

)
(2.27)

See Algorithm 3.
Hence, the algorithm above scales as O(pm) as opposed to O(m2) scaling of the direct

computation, since p� m.
Hence, the goal is to construct a low-rank representation which can be constructed by
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Algorithm 3 Fast summation when the kernel is well approximated by a low-rank repre-
sentation.

1. Transform the sources using the basis functions vl(y).

Wl =
m∑
k=1

vl(yk)σk, where l ∈ {1, 2, . . . , p}.

The computational cost of this step is O(pm).
2. Compute f(x) at target location using the basis function ul(x).

f(xj) =
p∑
l=1

ul(xj)Wl, where j ∈ {1, 2, . . . ,m}.

The computational cost of this step is O(pm).

some interpolation scheme as shown below.

Consider interpolating a function g(x) on an interval [a, b]. For pedagogical reasons, let
us fix the interval to be [−1, 1]. An n-point interpolant approximating the function g(x) is
given by

gn−1(x) =
n∑
k=1

g(xk)wk(x) (2.28)

where xk’s are the interpolation nodes and wk(x)’s are the interpolating functions k ∈
{1, 2, . . . , n}. The above extends to functions (kernels), K(x, y), that are functions of two
variables.

First by treating K(x, y) as a function of x, we get that

K(x, y) ≈
p∑
j=1

K(xj , y)wj(x) (2.29)

Now treating K(xj , y) as a function of y, we get that

K(x, y) ≈
p∑
j=1

p∑
k=1

K(xj , yk)wj(x)wk(y) (2.30)

This gives us the desired low-rank representation for the kernel K(x, y), since we have

K(x, y) =
p∑
j=1

uj(x)vj(y) (2.31)
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where uj(x) = wj(x) and vj(y) =
p∑

k=1
K(xj , yk)wk(y). Note that the above low-rank

construction works with any interpolation technique.

Chebyshev interpolation:

One of the most popular interpolation technique is to interpolate using Chebyshev
polynomials, with the Chebyshev polynomials serving as interpolation basis and the Cheby-
shev nodes serving as interpolation nodes. Let us briefly review some of the properties of
Chebyshev polynomials, before proceeding further.

The first kind Chebyshev polynomial of degree p, denoted by Tp(x), is defined for
x ∈ [−1, 1] by the recurrence:

Tp(x) =


1 if p = 0

x if p = 1

2xTp−1(x)− Tp−2(x) if p ∈ Z+\{1}

(2.32)

Tp(x) has p distinct roots in the interval [0, 1] located at x̄k = cos
(2k − 1

2p

)
, where k ∈

{1, 2, . . . , p}. These p roots are termed as Chebyshev nodes.

There are many advantages to Chebyshev interpolation. The major advantage of
Chebyshev interpolation is that it is a stable interpolation scheme, i.e., it doesn’t suffer from
Runge’s phenomenon and the convergence is uniform.

Hence, the Chebyshev interpolation of a function g(x) is an interpolant of the form

gp−1(x) =
p−1∑
k=0

ckTk(x) (2.33)

where

ck =


2
p

p∑
j=1

g(x̄j)Tk(xj) if k > 0

1
p

p∑
j=1

g(x̄j) if k = 0
(2.34)

where x̄j are the Chebyshev nodes, i.e., the p roots of Tp(x). Rearranging the terms, we get
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that

gp−1(x) =
p∑
j=1

g (x̄j)Sp (x̄j , x) (2.35)

where

Sp(x, y) = 1
p

+ 2
p

p−1∑
k=1

Tk(x)Tk(y) (2.36)

If g(x) ∈ Cr([−1, 1]), then error in the approximation is given by

|g(x)− gp(x)| = O(p−r) (2.37)

Further, if the function g(x) can be extended to a function g(z), which is analytic inside
a simple closed curve Γ that encloses the points x and all the roots of the Chebyshev
polynomial Tp+1(x), then the interpolant gp(x) can be written as

gp(x) = 1
2πi

∮
Γ

(Tp+1(z)− Tp+1(x))g(z)
Tp+1(z)(z − x) dz (2.38)

This gives us an expression for the error:

g(x)− gp(x) = 1
2πi

∮
Γ

Tp+1(x)g(z)
Tp+1(z)(z − x)dz (2.39)

If g(z) is analytic inside an ellipse Er, given by the locus of points 1
2

(
r exp(iθ) + 1

r
exp(−iθ)

)
,

for some r > 1 and θ ∈ [0, 2π) and if M = sup
Er

|g(z)| < ∞, then for every x ∈ [−1, 1], we

have an exponential convergence since

|g(x)− gp(x)| ≤
(
r + r−1)M

(rp+1 + r−(p+1))(r + r−1 − 2)
(2.40)

Note that Sp (x̄j , x) is the interpolating function and {x̄j}pj=1 are the interpolation nodes.
As discussed earlier, this enables us to get the low-rank representation of the kernel K(x, y)
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using Chebyshev polynomials as

K(x, y) ≈
p∑
j=1

p∑
k=1

K(x̄j , ȳk)Sp(x̄j , x)Sp(ȳk, y) (2.41)

Algorithm 4 Fast summation using Chebyshev interpolation to construct low-rank repre-
sentation.
1. Compute the weights at the Chebyshev nodes ȳk by anterpolation.

Wk =
m∑
j=1

Sp(ȳk, yj)σj where k ∈ {1, 2, . . . , p}.

The computational cost of this step is O(pm).
2. Compute f(x) at the Chebyshev nodes x̄l.

f(x̄l) =
p∑

k=1
WkK(x̄l, ȳk) where l ∈ {1, 2, . . . , p}.

The computational cost of this step is O(p2).
3. Compute f(x) at the target location xj by interpolation.

f(xj) =
p∑
l=1

f(x̄l)Sp(x̄l, xj) where j ∈ {1, 2, . . . ,m}.

The computational cost of this step is O(pm).

Algorithm 4 describes a fast summation algorithm using Chebyshev interpolation. Since
p� m, the computational cost of the algorithm is O(pm).

The extension to d-dimensions proceeds as follows. For instance, consider the kernel
K(x,y), where x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd). A rank pd low-rank approxima-
tion to the kernel K(x,y) is given by

K(x,y) ≈
∑
j=1

∑
k=1

K(x̄j , ȳk)Rp(x̄j ,x)Rp(ȳk,y) (2.42)

where

Rp(x,y) = Sp(x1, y1)Sp(x2, y2) . . . Sp(xd, yd) (2.43)

and x̄j = (xj1 ,xj2 , . . . ,xjd) and ȳk = (yk1 ,yk2 , . . . ,ykd) are the Chebyshev nodes in d-
dimensions.
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2.2 Low-rank algebra

We now look at operations involving low-rank matrices. Throughout this section, we assume
that we have the rank p decomposition of the matrix A ∈ Rm×n as UV T , where U ∈ Rm×p

and V ∈ Rn×p. Algorithm 5 presents efficient matrix-vector product, when the matrix is in
low-rank form. Algorithm 6 discusses compressing a rank p matrix into a rank r matrix,
where r < p. Algorithm 7 and 8 discusses efficient ways to add and multiply low-rank
matrices.

Algorithm 5Matrix vector product Ax when the matrix is given in low-rank form A = UV T .
1. Compute w = V Tx. The computational cost of this step is O(pn)

2. Compute y = Uw. The computational cost of this step is O(pm)

The overall cost is O(p(m+n)) as opposed to a direct matrix-vector product, which would
scale as O(mn). The reduction in computational cost is significant when p� min(m,n).

Algorithm 6 Compressing a rank p matrix, A = UV T , into a rank r matrix, where r < p.
1. Compute the QR decomposition of U and V , i.e., U = QURU and V = QVRV .
Computational cost is O(p2(m+ n)).

2. Compute the singular value decomposition of RURTV , i.e., RURTV = Û Σ̂V̂ . Computa-
tional cost is O(p3).

3. Set Ũ = QU Û(:, 1 : r), Ṽ = QV V̂ (:, 1 : r) and Σ̃ = Σ̂(1 : r, 1 : r) (MATLAB style
notation). Computational cost is O(rp(m+ n)).

Now Ã = Ũ Σ̃Ṽ is the desired low-rank approximation of UV T .

Algorithm 7 Adding two low-rank matrices and obtaining a rank p′ approximation.
Given A = UAV

T
A , B = UBV

T
B , where UA ∈ Rm×p, VA ∈ Rn×p, UB ∈ Rm×r and

VB ∈ Rn×r.

A+B = UAV
T
A + UBV

T
B = [UA;UB] [VA;VB]T in MATLAB notation.

Now use algorithm 6 to compress into the desired rank p′ matrix.



22 CHAPTER 2. LOW-RANK MATRICES

Algorithm 8 Multiplying two low-rank matrices.
Given A = UAV

T
A , B = UBV

T
B , where UA ∈ Rm×p, VA ∈ Rl×p, UB ∈ Rl×r and VB ∈ Rn×r.

Compute ΣAB = V T
A UB. The computational cost of this step is O(prl).

Now AB = UAΣABV
T
B is the desired product in low-rank form.



Chapter 3

Hierarchical matrices

Hierarchical matrices are data-sparse approximations of a class of dense matrices. The
data-sparse representation relies on the fact that certain dense matrices, can be recursively
sub-divided based on a tree structure and certain sub-blocks of these matrices arising at
different levels in the tree can be well-represented using a low-rank matrix. For these
matrices dense linear algebra like matrix-vector products, matrix factorizations, solving
linear equations, etc., can be performed in almost linear complexity. There are different
possible hierarchical matrices depending on the tree structure and algorithms to obtain
low-rank different matrix. Before discussing the different hierarchical matrices, we briefly
discuss how to interpret a matrix using a tree structure. We will only be dealing with
balanced hierarchical matrix trees in this chapter.

Any entry of a matrix in the current chapter, should be interpreted as an interaction
between two points in Rd, where d is typically 1, 2, or 3, as discussed below. Consider
the index set N = {1, 2, 3, . . . , n}, corresponding to n points, {~r1, ~r2, ~r3, . . . , ~rn}, in the set
X ⊂ Rd, where typically d ∈ {1, 2, 3}. A cluster CI ⊂ X is a collection of points close to
each in a topological sense. Typically, the topology is induced by the usual Euclidean norm.
Let I be the index corresponding to the cluster CI . Let A ∈ Rn×n, where A(i, j) denote
the interaction between points ~ri and ~rj , i.e., A(i, j) : (i, j) ∈ N ×N 7→ R. Let #CI denote
cardinality of CI .

The matrix A(I, J) ∈ R(#CI)×(#CJ ) is a sub matrix of A and contains the interaction
between points in the cluster CI ⊂ X with the points in the cluster CJ ⊂ X. Note that
A(X,X) = A. Let DI , DJ denote the diameter of the clusters CI and CJ respectively and
DIJ denote the distance between the clusters CI and CJ . Now let us look a hierarchical

23
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division of points in X based on a tree structure, typically a binary tree, quad tree or oct
tree. Now lets define the following terms, which we shall use over the course of the remainder
of the chapter. We will only consider balanced trees in the current context.

1. Each node in the tree is a cluster of points, i.e., to each node we associate a cluster CI .

2. A cluster CI is a child of cluster CJ if I ⊂ J . The cluster CJ is termed the parent of
cluster CI .

3. A cluster CI is a sibling of cluster CJ , if CI and CJ share the same parent. The set
of all siblings of a cluster CI is denoted by S(CI).

4. A node in the tree is a leaf if the cardinality of the associated cluster is less than
nmin.

5. A cluster CJ is said to be in the interaction list of CI if the matrix capturing the
interaction between cluster CI and CJ is a low-rank matrix. The set of all clusters in
the interaction list of CI is denoted by I(CI).

6. Two disjoint clusters are termed well-separated, if there is a distance of separation
either geometrically (or) based on a graph between the two clusters. The set of all
well-separated clusters of a cluster CI is denoted by W(CI).

7. Two disjoint clusters are termed neighbors, if they are not well-separated. The set of
all neighbors of a cluster CI is denoted by N (CI).

8. Two disjoint clusters are termed cousins, if the parents of the two clusters are
neighbors. The set of all cousins of a cluster CI is denoted by C(CI).

Different hierarchical structures arise based on the following criteria:

1. Tree structure, i.e., binary, quad or oct tree.

2. Admissibility, i.e., whether the neighbors are in the interaction list.

3. Nested low-rank structure, i.e., if the basis for the interpolation and anterpolation
operator of the parent can be constructed from the basis for the interpolation and
anterpolation operator of its children’s.

4. Construction of low-rank, i.e., using analytic or algebraic techniques.
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Figure 3.1 presents an Euler diagram of the different hierarchical structures discussed in
this chapter.

H

H2

HODLR HSS
FMM

Figure 3.1: An Euler diagram of the different hierarchical matrices

Table 3.1: Different hierarchical structures.

Nested basis?

A
d
m
is
si
b
il
it
y

Strong

Weak

H
HODLR

Not-nested

H2

HSS

Nested

3.1 Hierarchically off-diagonal low-rank matrix

The defining characteristic of hierarchically off-diagonal low-rank matrices (denoted by
HODLR) is that the interaction between a cluster and any non-intersecting cluster can
be efficiently represented by a low-rank interaction, i.e., if CJ ∩ CI = ∅, then CJ ∈ I(CI),
where I(CI) is the interaction list of cluster CI . Matrices arising out of interaction between
points lying on a smooth one-dimensional manifold as shown in Figure 3.2 can be efficiently
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Tree structure Interaction list Nested low-rank Low-rank construction
HODLR Any Siblings Maybe Any
HSS Any Siblings Yes Any
H Any Cousins Maybe Any
H2 Any Cousins Yes Any

FMM 2d-tree Cousins Yes Analytic

Table 3.2: Properties of different hierarchical matrices

represented as HODLR matrices, after an appropriate ordering of points. A 2-level HODLR

Cluster C
(0)
1 Cluster C

(1)
1

Cluster C
(1)
2

Cluster C
(2)
2

Cluster C
(2)
1

Cluster C
(2)
4

Cluster C
(2)
3

Figure 3.2: Partitioning of a smooth 1D manifold; Left: Level 0; Middle: Level 1; Right:
Level 2.

matrix is one that can be written in the form shown in equation (3.2).

K =

 K
(1)
1 U

(1)
1 K

(1)
1,2V

(1)T
2

U
(1)
2 K

(1)
2,1V

(1)T
1 K

(1)
2

 (3.1)

=



 K
(2)
1 U

(2)
1 K

(2)
1,2V

(2)T
2

U
(2)
2 K

(2)
2,1V

(2)T
1 K

(2)
2

 U
(1)
1 K

(1)
1,2V

(1)T
2

U
(1)
2 K

(1)
2,1V

(1)T
1

 K
(2)
3 U

(2)
3 K

(2)
3,4V

(2)T
4

U
(2)
4 K

(2)
4,3V

(2)T
3 K

(2)
4



 (3.2)

where K(k)
i ∈ RN/2k×N/2k , K(k)

i,j ∈ Rr×r, U (k)
i , V

(k)
i ∈ RN/2k×r and r � N is the rank of

interaction between siblings.

In general, a κ-level HODLR matrix is one in which, the ith diagonal block at level k,
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where 1 ≤ i ≤ 2k and 0 ≤ k < κ, denoted as K(k)
i , can be written as

K
(k)
i =

 K
(k+1)
2i−1 U

(k+1)
2i−1 K

(k+1)
2i−1,2iV

(k+1)T
2i

U
(k+1)
2i K

(k+1)
2i,2i−1V

(k+1)T
2i−1 K

(k+1)
2i

 . (3.3)

The operators K(k+1)
2i−1,2i and K

(k+1)
2i,2i−1 are the interaction operators, U (k+1)

2i−1 , U
(k+1)
2i are the

interpolation operators and V (k+1)
2i−1 , V

(k+1)
2i are the anterpolation operators. The maximum

number of levels, in case of a perfectly balanced HODLR tree, is given by κ =
⌊

log2(N/2r)
⌋
.

A pictorial description of the HODLR-matrix, corresponding to the binary tree in Figure 3.2,

(a) Level 0 (b) Level 1 (c) Level 2

Figure 3.3: HODLR-matrix at different levels for the corresponding tree in Figure 3.2.

is shown in Figure 3.3.

3.2 HSS matrix

The HSS matrix is a sub-class of the HODLR matrix with the additional property that the
low-rank basis for the interaction of a node with its siblings can be constructed from the
low-rank basis of the interaction of its children.

The recursive hierarchical structure of the HSS representation is seen when we consider
a 4× 4 block partitioning of a HSS matrix, K. The two-level HSS representation is shown
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in equation (3.4).

K =

 K
(1)
1 U

(1)
1 K

(1)
1,2V

(1)T
2

U
(1)
2 K

(1)
2,1V

(1)T
1 K

(1)
2

 =



 K
(2)
1 U

(2)
1 K

(2)
1,2V

(2)T
2

U
(2)
2 K

(2)
2,1V

(2)T
1 K

(2)
2

 U (2)
1 S

(2)
1

U
(2)
2 S

(2)
2

K(1)
1,2

V (2)
3 R

(2)
3

V
(2)

4 R
(2)
4

T
U (2)

3 S
(2)
3

U
(2)
4 S

(2)
4

K(1)
2,1

V (2)
1 R

(2)
1

V
(2)

2 R
(2)
2

T  K
(2)
3 U

(2)
3 K

(2)
3,4V

(2)T
4

U
(2)
4 K

(2)
4,3V

(2)T
3 K

(2)
4




(3.4)

Note that the interpolation operator, U (k)
i at level k, can be constructed from the interpolation

operators of its children at level k + 1.

U
(k)
i =

U (k+1)
2i−1 S

(k+1)
2i−1

U
(k+1)
2i S

(k+1)
2i

 (3.5)

The operators S(k+1)
2i−1 and S(k+1)

2i are termed the downward pass operators. Similarly, the
anterpolation operator, V (k)

i at level k, can be constructed from the anterpolation operators
of its children at level k + 1.

V
(k)
i =

V (k+1)
2i−1 R

(k+1)
2i−1

V
(k+1)

2i R
(k+1)
2i

 (3.6)

The operators R(k+1)
2i−1 and R(k+1)

2i are termed the upward pass operators.
Most of the HODLR matrices can also be efficiently represented as a HSS matrix.

3.3 H-matrix

The defining feature of the H-matrix is that the interaction list of a cluster, CI , consists
of other clusters that are well-separated. Most matrices arising out of interaction between
points lying in Rd, can be efficiently represented as H-matrices. Note that the HODLR
matrices form a strict subset of the H matrices. A pictorial description of the H-matrix,
corresponding to the binary tree in Figure 3.5, is shown in Figure 3.6.

3.4 H2-matrix

The H2-matrix is a sub-class of the H-matrix with the additional property that the low-rank
basis for the interaction of a node with its siblings can be constructed from the low-rank
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Figure 3.4: Points distributed uniformly random within a unit square

basis of the interaction of its children. Most of the H-matrices arising in practice can also
be efficiently represented as a H2-matrix.

3.5 FMM-matrix

The FMM-matrix is a sub-class of the H2-matrix with the following additional properties:

1. A 2d tree is used if the points lie on a d-dimensional manifold.

2. The interaction between siblings is strictly not low-rank.

3. Low-rank approximation is obtained using an analytic technique.

The storage and algorithm for constructing a FMM-tree is the same as H2-tree with the
above additional properties enforced. Figure 3.7 shows the FMM-tree for a unit square and
Figure 3.8 represents the corresponding matrices at the different levels. Note that FMM
requires a quad tree to be used for a 2D manifold.

To start off, the entire square domain is our cluster. This is level 0 in the algorithm. At
the next level i.e. at level 1, the entire square domain is divided into four equal clusters each
being a smaller square domain. In general, the clusters at level l+ 1 are obtained by dividing
each cluster at level l into four equal squares. This is pictorially described in Figures 3.9
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(a) Clusters at level 1 (b) Clusters at level 2

(c) Clusters at level 3 (d) Clusters at level 4

Figure 3.5: Different levels in the partitioning of a unit square using a binary H-matrix tree.
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(a) Level 3 (b) Level 4

Figure 3.6: H-matrix at levels 3 and 4 corresponding to the tree in Figure 3.5.

(a) Clusters at level 2 (b) Clusters at level 3

Figure 3.7: Different levels in the partitioning of a unit square using a quad tree for FMM.
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(a) Level 2 (b) Level 3

Figure 3.8: FMM-matrix at levels 2 and 3 corresponding to the tree in Figure 3.7.

and 3.10. Note that for a cluster C at a given level, we can partition the remaining clusters
at the same level into three mutually disjoint sets:

• NC : the set of clusters that are neighbors to C

• IC : the set of clusters that are in the interaction list of C

• WC : the remaining clusters.

The three sets for a cluster at level 3 are indicated in Figure 3.10. Often in many practical
applications, the distribution of charges is highly non-uniform. This would in-turn imply
that the partition of the space must be slightly different to take into account the non-uniform
distribution of the charges. An example of such a partition is shown in Figure 3.11. The
partition of a cluster is terminated when the number of charges within a cluster reaches a
threshold.

The algorithm 3.5 describes the general algorithm to construct any of the above hierar-
chical matrix structures. The total storage cost depends on whether the nested low-rank
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Cluster C

Neighboring cluster of C

Clusters in the interaction list of C

Figure 3.9: Pictorial representation of different sets of clusters at level 2. The interaction of
the red cluster C with the clusters in the interaction list i.e. the green clusters, is computed
using analytic techniques.

Cluster C

Neighboring cluster of C

Clusters in the interaction list of C

Remaining clusters

Figure 3.10: Pictorial representation of different sets of clusters at level 3. The interaction of
the red cluster C with the clusters in the interaction list i.e. the green clusters, is computed
using analytic techniques. The interaction of the red cluster with the pink clusters have
already been computed at the previous level, level 2.
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Figure 3.11: An unbalanced tree for a nonuniform distribution of charges.

Algorithm 9 Construction of a hierarchical matrix tree.
1. Let the root of the tree represent all the points inside the domain as shown in Figure 3.2
or Figure 3.4.
2. Recursively, sub-divide the domain as shown in Figure 3.2 or Figure 3.5 or Figure 3.7.
3. For a cluster i at level k + 1,
if (The matrix has a nested low-rank structure) then

Store the upward & downward pass matrices, i.e., S(k+1)
i and R(k+1)

i and the interaction
matrices K(k+1)

i,j . The cost of storing these matrices is O
((
r

(k)
i

)2
)
.

else
Store the interpolation (U (k+1)

i ), anterpolation (V (k+1)
i ) and interaction (K(k+1)

i,j )
matrices, which enables the interaction of the cluster with clusters in its interaction list.
The cost of storing these matrices is O

(
r

(k)
i N/2k +

(
r

(k)
i

)2
)
.

end if
4. Proceed till the number of points in a cluster is less than nmin.
5. At the leaf level, store the matrix corresponding to the interaction of a cluster with
itself (& possibly neighbors if the interaction with the neighbors is not low-rank) along
with the interpolation (U (κ)

i ), anterpolation (V (κ)
i ) and interaction (K(κ)

i,j ) matrices. The
cost to store these matrices at a single leaf is O(n2

min).
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structure is present or not.

Storage cost =

O (pN) if nested low-rank structure is present

O (pN log2(N)) if no nested low-rank structure

where p =
(
nmin + maxi,k

{
r

(k)
i

})
.



Chapter 4

Fast linear inversion

4.1 Introduction

Large-scale stochastic inverse modeling has been drawing substantial attention in recent
times, for example in the context of subsurface modeling. Inverse modeling is an essential
ingredient in subsurface modeling due to the fact that direct measurements of hydrogeologic
parameters such as conductivity and specific storage and variables such as pressure and solute
concentration are expensive and sometime impossible to obtain. Engineering applications,
such as remediation, real-time monitoring of CO2 sequestration sites, deep-well injection
projects and hydrocarbon reservoir exploitation, demand ever more accurate prediction of
the unknowns such as hydraulic conductivity, hydraulic head, solute concentrations, and
others.

Such inverse problems are ill-posed because they involve few measurements and a large
number of unknowns and require solving underdetermined linear systems. A popular
technique that has found numerous applications in the context of subsurface imaging for
solving such underdetermined inverse problems is the Bayesian geostatistic approach [29, 73,
74, 76–78, 93, 99]. The motivation behind this approach is to combine the data obtained
through measurements with a stochastic model of the structure of the function to be
estimated. The structure of the underlying function is characterized through an a priori
given probability density function. The prior probability density function is parameterized
through variograms and generalized covariance functions. The approach also accounts for
the fact that the measurements include errors and thus must not be reproduced exactly.
One of the advantages of this approach is that it not only gives the “best” estimate, but

36
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also allows us to quantify the uncertainty through confidence intervals or through functions
that are samples from the posterior distribution (conditional realizations).

However, a major hurdle of this method is that, when the number of unknowns m to be
estimated is large, the method becomes computationally expensive. The bottleneck arises due
to the fact that storage and matrix operations involving large dense covariance matrices scale
as O(m2), making application of the approach next to impossible for large-scale problems.

There have been various approaches to circumvent this difficulty. For instance, [44, 83, 94]
make use of the fast Fourier transform to address this problem on a regular grid. The fast
Fourier transform takes advantage of the fact that for a regular grid the covariance matrix
has a Toeplitz or block-Toeplitz structure and this structure can be exploited to construct
fast matrix vector products in O(m logm). However, one of the drawbacks of the method is
that its extension to other grids is non-trivial and most often in applications, such as when
using the finite-element approach, we rely on non-uniform unstructured grids.

To deal with unstructured grids, [80] proposes an algorithm that relies on functional
parameterization of the spatial random field by the Karhunen-Loève (KL) expansion. The
spatial random field is parameterized by weighted base functions that are derived from the
covariance function. The KL expansion relies on the assumption that the covariance function
is smooth and that the correlation length is large compared to the size of the domain. In
terms of matrix algebra, the KL expansion can be interpreted as approximating the large
dense covariance matrix as a low-rank matrix. One of the drawbacks of this method is that
the assumption that the covariance matrix can be approximated by a low-rank matrix is not
always valid.

Recently, [82] circumvented the enormous computational cost by reformulating the
problem under certain assumptions and by employing a sparse formulation for the generalized
inverse of the covariance matrix, so that there is no longer a need for using the large dense
covariance matrix.

In contrast, in our work, we propose an algorithm that takes advantage of the structure
of large dense prior covariance matrices. Previously, computationally exploitable structure
of these covariance and generalized covariance matrices, like isotropy and separability, have
been studied in [121, 122]. However, the structure exploited by our proposed algorithm is a
hierarchical low-rank structure, which is different from the aforementioned studies.

As stated earlier, the main stumbling block in the application of the geostatistical theory
for inversion for large scale problems is that the cost of dense matrix vector products
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increases quadratically with the number of unknowns m. In the past, the cost of performing
dense matrix-vector products, especially in the context of boundary integral equations, have
been reduced using fast summation techniques like the fast multipole method (FMM) [8,
27, 51, 92], the Barnes-Hut algorithm [5], panel clustering [58], FFT [28], wavelet based
methods [17, 84, 85], etc. The literature on the FMM is vast and we refer the readers
to [7, 8, 25, 27, 32, 33, 39, 52, 92, 120] for more details.

Over the last decade, the fast multipole method has been studied in terms of matrices
known as hierarchical matrices. There are many different possible hierarchical structures, the
most common of them being hierarchical semiseparable matrices [119], denoted as HSS, and
hierarchical matrices [15, 49, 57, 59, 60], denoted as H and H2 matrices (where H2 requires
somewhat stricter assumptions than H, i.e., H2 ⊂ H). The FMM has been recognized as
a method that takes advantage of properties of H2 matrices to accelerate matrix-vector
products. The generalized covariance matrices, that we consider, possess this underlying
H2 structure. This is due to the fact the far field covariance can be well-represented by a
smooth function. As a result, we can employ the fast multipole method proposed in [39] to
compute matrix-vector products.

One of the main advantages of the fast multipole method discussed in [39] is that the
algorithm is applicable to a wide range of covariance and generalized covariance functions. By
using the H2 matrix structure, the computational cost of these dense matrix vector products
are reduced from O(m2) to O(m). Another desirable feature of our implementation is that
our algorithm takes into account the sparsity of the measurement operator as discussed in
section 4.3. This fact also plays a significant role in reducing the time taken to estimate the
unknowns.

Our fast, new, stable algorithm for large-scale linear inversion problem relies on H2-
matrix algebra to accelerate matrix-vector products. The algorithm is applicable when the
number of unknowns m is large — around 100, 000 — and the number of measurements is
of the order of 100–500. The algorithm is applied to a linear inversion problem arising out
of a real crosswell tomography application as discussed in [30]. The computational speedup
gained by our algorithm allows us to (i) quantify the uncertainty in the solution (ii) optimize
the capture geometry. Quantifying uncertainty is crucial in computational modeling and
simulation, especially in the context of inverse problems, to enable accurate assessment of
the solution and to take decisions. The computational speedup gained also allows us to
analyze different capture geometries and determine the optimal capture geometry. In most
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of the linear inversion problems, it is imperative to have a good capture geometry to get the
maximum possible information for a given number of measurement devices. However, the
optimization procedure involves assessing a sequence of different computational geometries.
Due to the computational expense of conventional algorithms for stochastic linear inversion,
analyzing a single capture geometry in itself is a computationally intensive task. Using
our algorithm, optimizing the capture geometry becomes tractable. We illustrate this by
optimizing the capture geometry for a real crosswell tomography application [30].

To sum up, the major contributions of our work are the following. The algorithm
proposed by us results in a significant reduction in computational cost compared to the
conventional algorithms, thus enabling the Bayesian geostatistic approach for large-scale
problems. The computational speedup gained enables us to make new estimates such as
quantifying the uncertainty in the solution and optimizing the capture geometry, which
were previously inaccessible due to its enormous computational cost. We highlight the
performance of our algorithm in section 4.5 by comparing our implementation with a
conventional algorithm for a real crosswell tomography problem discussed in [30]. The fast
algorithm enables us to provide an optimal capture geometry for this crosswell tomography
problem [30]. To give a quantitative sense of the capability and to highlight the potential of
the proposed algorithm, the proposed algorithm can solve a crosswell tomography problem
(Section 4.3) with 250, 000 unknowns on an ordinary desktop in less than 20 minutes. The
conventional algorithm on the other hand takes nearly 2 hours to solve a problem with
just 40, 000 unknowns. The algorithm was implemented in C++ and is made available at
http://sivaramambikasaran.github.io/FLIPACK2D/.

The remainder of this chapter is organized as follows. Section 4.2 introduces the prelimi-
nary ideas, i.e., stochastic linear inversion in subsection 4.2.1 and the hierarchical matrices
in subsection 4.2.2 to solve large-scale stochastic linear inversion problems. Section 4.3
discusses the crosswell tomography problem. Section 4.4 presents a discussion of the general
algorithm and its computational cost. This is then followed by Section 4.5, which explains
how the algorithm discussed in Section 4.4 is applied to solve the crosswell tomography
problem. It also presents the numerical results obtained by the algorithm both on synthetic
and real data sets.

http://sivaramambikasaran.github.io/FLIPACK2D/
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4.2 Preliminary ideas

In this section, we discuss the two key ingredients for large-scale stochastic linear inversion.

4.2.1 Stochastic linear inversion

The stochastic Bayesian approach is briefly introduced. This is a general method [77] to
solve underdetermined linear systems arising out of linear inverse problems.

4.2.1.1 Prior

Let s(x) be the function to be estimated at location x. Its “structure” is represented through
the prior probability density function. The basic model of the function to be estimated is
taken as

s(x) =
p∑

k=1
fk(x)βk + ε(x). (4.1)

The first term is the prior mean, where fk(x) are known functions, typically step functions,
polynomials, and βk are unknown coefficients where k ∈ {1, 2, . . . , p}. The second term ε(x)
is a random function with zero mean and characterized through a covariance function. In a
sense, the first part is the deterministic part and the second part is the stochastic part. This
model is especially popular in geostatistics and in other data analysis approaches. The linear
model is represented by Equation (4.1). For instance, the zonation/regression approach is
obtained by setting

fk =

 1, if in zone k
0, otherwise

,

where k ∈ {1, 2, . . . , p}, p being the number of zones. The covariance of ε is set to zero. In
the regression approach, the variability is described through deterministic functions. In
stochastic approaches, one describes at least some of the variability through the stochastic
part (while still retaining flexibility in the use of the deterministic part).
After discretization (e.g., through application of finite-difference and finite element models),
s(x) is represented by a vector s ∈ Rm. The mean of s is given by

E[s] = Xβ (notation: E is the expectation),
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where X ∈ Rm×p is the drift matrix and β ∈ Rp×1 are the p unknown drift coefficients. The
covariance matrix of s is given by

E
[
(s− µ)(s− µ)T

]
= Q.

The entries of the covariance matrix are given by Qij = K(xi, xj), where K(·, ·) is a
generalized covariance function, which must be conditionally positive definite. For a more
detailed discussion on permissible covariance kernels, we refer the reader(s) to the following
references: [14, 71, 72, 75, 110].

4.2.1.2 Measurement equation

The observation/measurement is related to the unknown by the linear relation

y = Hs+ v, (4.2)

where H ∈ Rn×m is the observation/measurement matrix, v ∈ Rn×1 is a Gaussian random
vector of observation/measurement error independent from s, with zero mean and covariance
matrix R, i.e., v ∼ N (0, R). Typically, the matrix R is a diagonal matrix since each
measurement is independent of other measurements.

The form mentioned in Equation (4.2) is encountered frequently in practice, because
many important inverse problems are linear “deconvolution problems.” Furthermore, many
nonlinear problems are solved through a succession of linearized problems.

The prior statistics of y are obtained as shown below. The mean is given by

µy = E [Hs+ v] = HE [s] + E [v] = HXβ = Φβ,

and the covariance is given by

Ψ = E
[
(H (s−Xβ) + v) (H (s−Xβ) + v)T

]
= HQHT +R.

The y to s cross-covariance

Cys = E
[
(H (s−Xβ) + v) (s−Xβ)T

]
= HQ.
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4.2.1.3 Bayesian Analysis

The prior probability distribution function is modeled as a Gaussian, i.e.,

p(s|β) ∝ exp
(
−1

2 (s−Xβ)T Q−1 (s−Xβ)
)
.

To express that β is unknown a priori, its prior probability density function is modeled
uniformly over all space, i.e.,

p(β) ∝ 1,

and thus
p(s, β) ∝ exp

(
−1

2 (s−Xβ)T Q−1 (s−Xβ)
)
.

The likelihood function is then given by

p(y|s) ∝ exp
(
−1

2 (y −Hs)T R−1 (y −Hs)
)
.

Thus, the posterior probability density function is

p(s, β) ∝ exp
(
−1

2 (s−Xβ)T Q−1 (s−Xβ)
)
×

exp
(
−1

2 (y −Hs)T R−1 (y −Hs)
)
,

which is again a Gaussian. The negative log of the posterior probability density function is

L = − ln (p(s, β))

= 1
2 (s−Xβ)T Q−1 (s−Xβ)

+ 1
2 (y −Hs)T R−1 (y −Hs) + constant.

The posterior mean values, indicated by ŝ and β̂ minimize L. Setting the partial derivative
of L with respect to s and β to zero, we get the following equations:

(ŝ−Xβ̂)TQ−1 − (y −Hŝ)T R−1H = 0

−
(
ŝ−Xβ̂

)T
Q−1X = 0 (4.3)
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To bring the solution to a computationally convenient form, we introduce a vector ξ ∈ Rn×1

defined through

y −HXβ̂ = Ψξ. (4.4)

We then have

ŝ = Xβ̂ +QHT ξ. (4.5)

Substituting the above into Equation (4.3), we get

ξTHX = 0. (4.6)

Combining the equations (4.4) and (4.6), we get that

 Ψ Φ
ΦT 0

ξ
β̂

 =

y
0

 . (4.7)

Thus, the solution is obtained by solving a system of n + p linear equations. The key
equations are Equations (4.5) and (4.7).

To quantify the uncertainty in the solution, the posterior covariance matrix is given by

V = Q−QHTPyyHQ−XPbbXT −XP TybHQ

−QHTPybX
T , (4.8)

where Pyy, Pyb, Pbb are obtained as

Pyy Pyb

P Tyb Pbb

 =

 Ψ Φ
ΦT 0

−1

. (4.9)

The diagonal entries of the matrix V enable us to quantify the uncertainty, since each
diagonal entry represents the variance of each of the unknowns.
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4.2.1.4 Computational cost

Our goal is to obtain the best estimate ŝ and the diagonal entries of the matrix V efficiently.
To do so, we first need to solve the linear system in Equation (4.7) and then obtain ŝ using
Equation (4.5). To quantify the uncertainty in the solution, we need to obtain the diagonal
entries of V using Equation (4.8) and Equation (4.9).

In all these equations, we need the matrix matrix product QHT , which is the
bottleneck in terms of computational cost. A conventional direct algorithm, where
the number of measurements, n, is much smaller than the number of unknowns, m, would
proceed as shown in Algorithm 10.

Since we have p� n� m, the total computational cost is O(nm2 + n2m).

The cost to solve Equation (4.7) is independent of m. Hence, once the linear system is
constructed, it can be solved by any conventional direct method like Gaussian elimination,
which costsO((n+p)3). Since we are interested in the case where the number of measurements
is relatively small, i.e., n ≈ 200, we are not interested in optimizing the solving phase, since
the cost is independent of m. Also, the cost to compute a single diagonal entry of V from
Equation (4.8) is independent of m. Hence, the bottleneck is the cost O(nm2), which
arises from the computation of the matrix-matrix product QH = QHT . The storage cost is
dominated by the dense matrix Q, which costs O(m2) to store. Hence, our focus will be
on efficiently storing Q and efficiently constructing QH = QHT , since this is the
bottleneck in the algorithm. Some typical values of p, n and m encountered in practice
are p ∼ 1–3, n ∼ 100–200 and m ∼ 105–106.

4.2.2 Hierarchical matrices

In this section, we briefly describe the analytic and computational foundations of hierarchical
matrices, which we will be using in this chapter. Hierarchical matrices are data-sparse
approximations of dense matrices arising in applications like boundary integral equations,
interpolation, etc. Hierarchical matrices, introduced by Hackbusch, et al. [15, 49, 57, 59, 60],
are generalizations of the class of matrices for which the fast multipole method is applicable.
An example of a hierarchical matrix arising out of a two-dimensional application is shown
in Figure 4.1. Of the class of hierarchical matrices, H2-matrices are precisely matrices for
which the fast multipole method (FMM) is applicable. The FMM is a numerical technique
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to calculate matrix-vector products (or) equivalently sums of the form

f(xi) =
N∑
j=1

K(xi, yj)σj ,

where i ∈ {1, 2, 3, . . . ,M}, in O(M+N) operations as opposed to O(MN) with a controllable
error ε. The FMM was originally introduced by Greengard and Rokhlin [51] based on
Legendre polynomial expansions and spherical harmonics for the kernel K(~x, ~y) = 1

|x− y|
.

Historically the FMM has been used for the treatment of integral operators (boundary

Full rank block Low rank block

Figure 4.1: Hierarchical matrices arising out a 2D problem at different levels in the tree.

element method) and the solution of the resulting linear systems, which arise when solving
partial differential equations, such as the Laplace, Helmholtz or Maxwell equations. It
has been applied in a variety of fields including molecular dynamics, astrophysics, elastic
materials, in graphics, etc. In all these cases, the FMM is used, as part of an iterative solution
of linear systems (GMRES, conjugate gradient), to accelerate matrix-vector products. This
is often the part of the calculation that is computationally the most expensive.

In the current context, the FMM will be used to construct the linear system, i.e., more
precisely in constructing QHT as discussed in the previous section. If the measurement
matrix H is sparse, then the FMM can also be easily adapted to exploit the sparsity of the
measurement matrix. Once the linear system has been constructed, since the size of the
linear system is relatively small, the linear system can be solved directly using conventional
direct solvers like the Gaussian elimination. One of the main advantages of FMMs, in



46 CHAPTER 4. FAST LINEAR INVERSION

general, is that they can be easily applied to non-uniform distributions of points. The FMM
also comes with sharp a-priori error bounds.

As mentioned above, the original FMM is based on certain analytical expansions of
the kernel K(r), for example with spherical harmonics, powers of r, Bessel functions, etc.
However it has since been realized that the FMM is based on a more general idea (see for
example [39]), which is that certain matrices can be well-approximated using a low-rank
matrix. More precisely, the key property behind the FMM is that the interactions K(xi, yj)
between far away clusters of points (far field interaction) can be efficiently represented
using low-rank approximations. In general, matrices from boundary element method or the
covariance matrix, Q, in our problem are full-rank. However, certain off-diagonal blocks
(associated with well-separated clusters of points) can be efficiently represented using a
low-rank matrix. This implies that the covariance matrix Q can be well-represented as a
hierarchical matrix. An example of a hierarchical matrix is shown in Figure 4.1.

Generally speaking, given a matrix A ∈ RM×N (in our case a sub-matrix ofQ), the optimal
rank p approximation can be obtained from its singular value decomposition (SVD) [47].
However, SVD is computationally expensive with a cost of O(MN min(M,N)). In recent
years, there has been a tremendous progress [26, 43, 54, 90] in constructing fast approximate
low-rank factorizations for matrices. Techniques like adaptive cross approximation [102]
(ACA), pseudo-skeletal approximations [48], interpolatory decomposition [39], randomized
algorithms [43, 81, 117] provide great ways for constructing efficient approximate low-rank
representations.

For smooth kernels, Chebyshev polynomials have proven to be an attractive way to
construct low-rank approximations and we refer the readers to [39, 89] for more details. In
our work, we follow the fast multipole method discussed in [39]. One of the main reasons
for choosing [39] is that the method is very general and is applicable for a wide range of
kernels/covariance functions. Another advantage of [39] is that the precomputation cost
is very small since the method is based on interpolating from Chebyshev nodes, for which
efficient numerical algorithms are available. We will be making use of this fast multipole
method coupled with the sparsity of the matrix H, to compute the product QHT .

We briefly explain why the FMM is applicable to this class of problems. Given m

points in space with position vector, {~rk}mk=1, the covariance matrix Q is typically given
as Q(i, j) = K(‖~ri − ~rj‖). For instance, some of the popular choices of K(r) are exp(−r),
1
r , exp(−r2), 1

1+r2 , etc. All the above mentioned covariance kernel functions are amenable
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to the use of the FMM, since the interaction between well-separated clusters of points can
be well captured by modeling these interactions as low-rank interactions. This low-rank
interaction enables us to reduce both the storage and computational cost. Theorems are
available [39] to determine the rank p required to achieve an accuracy ε. Roughly speaking,
the kernel K needs to be a smooth function, that is with a controllable growth in the complex
plane away from the real line [39].

4.3 Problem specification

In this section, we describe the specific problem, which we solve by large-scale linear inversion.
The problem deals with large scale crosswell tomography to monitor the CO2 plume in CO2

sequestration sites. The problem configuration is shown in Figure 4.2. The motivation for
this capture geometry stems from [30]. We will compare the results we obtain using our
fast large scale linear inversion algorithm with the results in [30], which were obtained by
running the forward model using TOUGH2, a multiphase-flow reservoir model [101] and
patchy rock physical model [115].

A crosswell tomography is setup with ns sources along the vertical line AB and nr

receivers along the vertical line CD. The sources emit a seismic wave and the receivers
measure the time taken by the seismic wave from a source to hit the receiver. This is
done for each source-receiver pair. Our goal is to image the slowness of the medium inside
the rectangular domain. Slowness is defined as the reciprocal of the speed of the seismic
wave in the medium. In the context of CO2 sequestration for example, the seismic wave
travels considerably slower through CO2 saturated rock [30, 31, 38] as opposed to the rest
of the medium. Hence by measuring the slowness in the medium, we can estimate the CO2

concentration at any point in the domain (with some uncertainty) and thereby the location
of the CO2 plume.

The above configuration is typical for most of the continuous crosswell seismic monitoring
sites. We go about modeling the problem as follows. As a first order approximation, the
seismic wave is modeled as traveling along a straight line from the sources to receivers with
no reflections/refractions. The time taken by the seismic wave to travel from the source to
the target is measured. Each source-receiver pair gives us a measurement and hence there
are a total of n = ns × nr measurements. To obtain the slowness in the domain ABDC, the
domain is discretized into m grid points (i.e., an mx ×my grid such that m = mxmy) and
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Figure 4.2: Discretization of the domain between the two wells. The line segment AB
denotes the well where the ns sources are placed, while the line segment CD denotes the
well where the nr receivers are placed. The seismic wave is generated by a source and the
receiver measures the time taken for it to receive the seismic wave. Each source-receiver
pair constitutes a measurement.

within each cell the slowness is assumed to be constant. Let yij denote the time taken by
the seismic wave to travel from source i to receiver j. Let sk be the slowness of the kth cell.
For every source-receiver (i, j) pair, we then have that

∑
k

lkijsk + vij = yij , (4.10)

where lkij denotes the length traveled by the ray from source i to the receiver j through
the kth cell and vij denotes the measurement error i ∈ {1, 2, . . . , ns}, j ∈ {1, 2, . . . , nr},
k ∈ {1, 2, . . . ,m}. Equation (4.10) can be written in a matrix-vector form:

Hs+ v = y,

where H ∈ Rn×m, s ∈ Rm×1, v ∈ Rn×1 and y ∈ Rn×1. Typically, the measurement error is
modeled as a Gaussian white-noise. For most problems of practical interest, the number
of measurements n is much smaller than the number of unknowns m, i.e., n � m. This
under-determined linear system constitutes our inverse problem.

We will now analyze the matrix H to figure out the structure of the linear system. Each
row of the matrix H corresponds to a source-receiver pair. Consider the source i and receiver
j where i ∈ {1, 2, . . . , ns} and j ∈ {1, 2, . . . , nr}. This corresponds to the ((i−1)nr+j)th row
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of the matrix H. Since we have modeled the wave traveling from a source to a receiver as a
straight line without reflections/refractions, the non-zero entries along each row correspond
to the cells hit by the ray from a source to the receiver. Since the wave from the source to
receiver travels along a straight line, only the cells that lie on this straight line contribute to
the non-zero entries. Hence, every row of H has only O(

√
m) non-zeros. Hence, the matrix

H is sparse since it has only O(n
√
m) entries as opposed to O(nm) entries. We would hence

like to take advantage of this sparsity to accelerate our computations. This underdetermined
system is solved using Bayesian approach discussed in subsection 4.2.1. Since we would
also like to characterize the fine-scale features, m can be much larger than n. Section 4.4
discusses the fast algorithm to solve the above problem using Bayesian approach.

4.4 Algorithm

In this section, we discuss in detail the fast algorithm for the large scale linear inverse problem
using Bayesian geostatistical approach and how this algorithm is applied to the crosswell
tomography problem. We would like to point out that the algorithm is far more general and
can be used for other linear inverse problems and not just the crosswell tomography case.

As discussed in section 4.2.1.4, the main bottleneck in the entire computation is construct-
ing the matrix product QHT , where Q ∈ Rm×m is the covariance matrix and H ∈ Rn×m is
the measurement matrix. Let

H =
[
h1 h2 · · · hn

]T
,

where hi ∈ Rm×1 are column vectors, each corresponding to a measurement. As mentioned
in 4.2.2, the fast multipole method can be used to accelerate matrix-vector product com-
putations, because the sub-matrices, of a dense covariance matrix Q, corresponding to the
interaction between well-separated clusters can be efficiently represented using low-rank
matrices.

Now note that
QHT =

[
Qh1 Qh2 · · · Qhn

]
.

Hence, a straight-forward way to accelerate the computation of the matrix-matrix product
QHT is to accelerate the computation of each matrix vector product Qhi, where i ∈
{1, 2, . . . , n}. The black box FMM [39] reduces the cost of computing Qhi for each i from



50 CHAPTER 4. FAST LINEAR INVERSION

O(m2) to O(m). (For more details on the algorithm, see page 8716–17 of [39].) Hence, the
total cost to compute the matrix-matrix product QHT is just O(nm) as opposed to O(nm2).
As discussed in 4.2.1.4, this step is the bottleneck in the computation, since the number of
measurements is much smaller than the number of unknowns, i.e., n� m. This is described
in Algorithm 10. With the FMM, the first step is no longer the bottleneck, while the second

Algorithm 10 Computational cost for different steps in the large scale linear inversion
problem.
Operation Computational cost using different methods

Conventional FMM FMM with sparsity

QH = QHT using the FMM O(nm2) O(nm) O(nm)
Ψ̃ = HQH O(n2m) O(n2m) O(n2√m)
Ψ = Ψ̃ +R O(n) O(n) O(n)
Φ = HX O(nmp) O(nmp) O(n

√
mp)

Solve (4.7) to get ξ and β O((n+ p)3) O((n+ p)3) O((n+ p)3)
ŝ = Xβ +QHξ O(mp+mn) O(mp+mn) O(mp+mn)
Diagonal entries of V from (4.11) O(n2m) O(n2m) O(n2m)

V (i, i) = Q(i, i)−QH(i, :)Pyy(QH(i, :))T︸ ︷︷ ︸
O(n2)

−X(i, :)Pbb(X(i, :))T︸ ︷︷ ︸
O(p2)

− 2X(i, :)P Tyb(QH(i, :))T︸ ︷︷ ︸
O(pn)

(4.11)

step becomes the limiting step. The overall computational cost scales as O(n2m). This
computational cost cannot be further reduced if the measurement matrix H is assumed to
be dense.

However, if the matrix H happens to be sparse, the fast multipole method can be easily
adapted to exploit this sparsity and thereby further reduce the computational complexity.
For instance, in the case of the crosswell tomography application, every row of H, i.e.,
{hTi }ni=1 has only O(

√
m) non-zeros as opposed to O(m) entries. This is due to the fact that

the non-zero entries along a row of the measurement matrix H are due to a seismic wave
from a source to a receiver (see explanation in the previous section).

We can take advantage of this sparsity twice. First, in the FMM, although the asymptotic
cost is O(nm) irrespective of whether H is sparse or not, the constant in front of nm is
reduced with a sparse H. This is due to the fact that many source leaves in the FMM tree
are empty (that is do not intersect the ray). Second, the computational cost for the second



4.5. NUMERICAL BENCHMARK 51

step, which was the bottleneck in algorithm 10, can be reduced from O(n2m) to O(n2√m)
using a sparse matrix-vector product technique such as the compressed sparse row (CSR)
format [35, 105] (e.g., since there are only O(

√
m) non-zero entries in each row of H). See

Algorithm 10.
Hence, the large-scale linear inversion problem has an overall computational complexity

of O(nm+ n2√m).
To quantify the uncertainty in the solution, we need to obtain the diagonal entries of V

using Equations (4.8) and (4.9). As before, once QH = QHT has been obtained, computing
the uncertainty of a single cell costs us only O(n2) from Equation (4.11). Hence, the total
cost of computing the uncertainty for all the cells grows linearly with the number of cells
and is given by O(n2m).

4.5 Numerical benchmark

We now present numerical benchmarks for two cases. The first one is a synthetic data set for
the crosswell tomography problem while the second one is a real data set for the crosswell
tomography problem. The problem set up for both the cases is similar to the one shown in
Figure 4.2, i.e., the sources are distributed along the vertical line AB and the receivers are
distributed along the vertical line CD. The goal is to image the slowness in both the cases.

4.5.1 Synthetic data set

We first present results for a synthetic data set. In the case of a synthetic data set, the
domain we consider is a 70m×40m rectangular domain, i.e., the horizontal distance between
the sources and receivers is 70m. To benchmark our algorithm, we feed in a known slowness
field as shown in Figure 4.3. We compute our measurements as follows. We distribute 12
uniformly spaced sources along AB, i.e., ns = 12 and 24 uniformly spaced receivers along
CD, i.e., nr = 24. This gives us a total of 288 measurements. We compute the time taken for
the seismic wave to travel from each source to a receiver. We add a random Gaussian noise
with mean 0 and variance 10−4 to each of the measurement to model the measurement error.
The covariance function K(r) is taken as the Gaussian covariance, i.e., K(r) = exp(−(r/θ)2)
and the matrix X is taken as a vector with all 1’s. The correlation length θ is set to 10. As
a next step, the FMM requires the number of Chebyshev nodes along each direction as an
input. In this case, for the Gaussian, the number of Chebyshev nodes in each direction is
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Figure 4.3: Left: known slowness field — synthetic data set; Right: reconstructed slowness
field for the synthetic data set using a million grid points.

taken as 5.

We now discretize the domain into
√
m ×

√
m grid points and reconstruct the image.

The number of grid points m is varied from 2, 500 to 1, 000, 000 and the time taken by the
fast algorithm to image the slowness is compared against the conventional direct algorithm.
The comparison of the time taken is tabulated in Table 4.1. For m = 1, 000, 000, the
reconstructed image using the fast algorithm is shown on the right side in Figure 4.3. Note
that there is a discrepancy between the true and reconstructed slowness for the synthetic
data set. This discrepancy shows that in case of limited source-receiver pairs, it is highly
important to optimize the capture geometry. This optimization of the capture geometry
has been done for the real data set. Once the capture geometry has been optimized, grid
refinement is crucial to study the true evolution of the plume. Also, the discrepancy between
the true and reconstructed image will further be reduced if we have more measurements,
in which case again refining the grid is important. Table 4.1 also compares the estimation
error obtained by the stochastic linear inversion using the direct algorithm and our fast
algorithm. The relative estimation error is defined as ‖sreconstructed − strue‖/‖strue‖. As the
table indicates, there is very little difference in the estimation error between the conventional
direct algorithm and our fast algorithm. This is in fact a strong argument in favor of fast
algorithms. In the presence of large modeling errors, we can afford to approximate the
covariance matrix, which is what our algorithm precisely does.

Figure 4.5 compares the time taken and storage cost of a conventional direct algorithm
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Table 4.1: Comparison of time taken and relative error for the synthetic test case shown
in Figure 4.3. The relative error is computed by comparing the reconstructed image (right
panel in Figure 4.3) and the true solution (left panel). We chose the approximation order in
the FMM such that the FMM error is small compared to the inverse algorithm error. As a
result the relative error for the direct and fast algorithms are comparable. A more complete
error convergence is shown for the real test case in Figure 4.4 and 4.9. The algorithm was
implemented in C++. All the calculations were run on a machine with a single core 2.66
GHz processor and 8 GB RAM. There was no necessity to parallelize the implementation
for the present purpose due to the speedup achieved with the proposed algorithm.

Grid size Time taken in secs Relative error

m Direct algorithm Fast algorithm Direct algorithm Fast algorithm

2, 500 2.1 · 10+1 2.3 · 10+1 4.45 · 10−1 4.39 · 10−1

10, 000 3.9 · 10+2 6.7 · 10+1 4.39 · 10−1 4.41 · 10−1

22, 500 2.0 · 10+3 1.4 · 10+2 3.82 · 10−1 3.89 · 10−1

40, 000 6.4 · 10+3 2.6 · 10+2 3.47 · 10−1 3.39 · 10−1

250, 000 − 1.3 · 10+3 − 2.85 · 10−1

1, 000, 000 − 5.1 · 10+3 − 2.69 · 10−1

with the fast algorithm proposed by us. Note that the plots are on a log-log scale and clearly
indicate that the time taken and storage cost for the conventional algorithm scales as O(m2)
whereas the time taken and storage cost for the novel fast algorithm scales as O(m). We
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Figure 4.4: Relative error in QHT versus the number of Chebyshev nodes along one direction
for the Gaussian covariance for m = 40, 000.

also perform an analysis of the time taken and the storage cost by our fast algorithm when
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Figure 4.5: Left: comparison of the time taken by the fast algorithm vs the conventional
direct algorithm; Right: comparison of the storage cost.
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Figure 4.6: Left: time taken by the fast algorithm as a function of the number of unknowns;
Right: storage cost by the fast algorithm as a function of the number of unknowns.
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Figure 4.7: The schematic on the left is the actual crosswell geometry from [30].

varying the number of measurements, n. The results are plotted in Figure 4.6. This further
validates the fact that the time taken and the storage cost scales only linearly with the
number of unknowns m, irrespective of the number of measurements n. Note that all the
plots are on a log-log scale.

4.5.2 Real data set

We now present detailed numerical benchmarking for a real data set. The linear inverse
problem arises from monitoring a CO2 plume in the subsurface for safe carbon storage. The
site is the Frio II test site in southeast Texas near the Gulf of Mexico. The experiment is
described in [30].

We briefly describe the capture geometry. There are two wells, an injection well and a
monitoring well-separated by 30 meters at a depth of around 1, 600 m. To be precise, we
consider a depth ranging from 1, 620 m to 1, 680 m. The CO2 injection occurs at 1, 665 m
underground. The experiment measures the time taken by the seismic wave from a series
of sources to the receivers. Using the seismic traveltime measured as constraints, a series
of forward flow models governing the migration are produced by a state-of-the-art model,
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the TOUGH2/ECO2N system [100, 101]. This gives us the CO2 plume induced slowness at
different time instances. We obtained this data set, i.e., the location of the CO2 plume after
120 hours, from one of our collaborators, Jonathan Ajo-Franklin, from Lawrence Berkeley
National Laboratories. The data obtained is shown in Figure 4.10. For more details on the
test site and the capture geometry, we refer the readers to [30]. A pictorial representation of
the test site is shown in Figure 4.7.

From the data, i.e., the CO2 plume after 120 hours of injection, the measurements to
perform the linear inversion are obtained as follows. Given the CO2 plume configuration
after 120 hours, for a fixed capture geometry, we measure the time taken from a source to
a receiver by modeling that the ray from the source to the receiver travels in a straight
line. The signal to noise ratio of each of the measurements is typically around 65 dB. This
dictates the variance of the measurement error in our measurements, which is set at 10−5.
These are the diagonal entries of the matrix R. The covariance function we chose here is
K(r) = −r/θ, where the correlation length, θ, is 90 m. The matrix, X, is taken as a vector
with all 1’s. As a next step, the fast multipole method requires the number of Chebyshev
nodes along each direction as an input, which we set equal to 5. This means that the rank
of interaction between well-separated clusters is 25. We then discretize the domain into m
grid points to reconstruct the image. Once we reconstruct the image, we are able to obtain
the uncertainty in the solution.

Note that in the above procedure, optimization of the capture geometry [1], i.e., the
placement of the sources and receivers, is of prime importance in crosswell tomography
applications, especially when the number of measurements is not large, since it has a direct
bearing on the resolution of the image obtained. We place 6 sources and 48 receivers. The
source transducers are typically more expensive around $50,000. Hence, there is a large
number of receivers, in our case 48, compared to the sources. Because of this, we place the
receivers along the monitoring well such that they are uniformly spaced. However, since we
only have a few sources (6), it is important for us to choose where exactly we need to place
these 6 sources. Hence, we need to optimize the source locations. The unknown parameters
we want to optimize are the array length of the sources, a, and the location of the source
array center, b. Refer to Figure 4.7 for more details. Given this set of 6 sources and 48
receivers, for a fixed a and b, we have a total of 6× 48 = 288 measurements. We now use
these 288 measurements to perform the linear inversion for each pair (a, b).

To optimize for the parameters ‘a’ and ‘b’, we proceed as follows. We consider a 237×217
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grid. For a fixed ‘a’ and ‘b’, we estimate the relative error using

F (a, b) = ‖scomputed − strue‖ / ‖strue‖.

The above can be computed since we already have access to the true data. This is the
objective function we are minimizing, i.e.,

(aopt, bopt) = argmina,bF (a, b).

Note that in the current context, since we have access to the true slowness, we can compute
the exact relative error. In applications where we do not have access to the true slowness,
we could resort to the method of gradient desecent to find the local minimum of the relative
error. Note that in the context of gradient descent as well, different capture geometries
need to evaluated, which would be computationally impractical if we were to rely on the
conventional algorithm.

The key point of this calculation is not to demonstrate an algorithm to optimize the
placement of sensors but rather show how fast algorithms will be useful. Although computing
one solution for a mid-size problem, e.g., a grid of size 200 × 200, is feasible without a
fast algorithm, it would not be practical to calculate many solutions in the context of an
optimization loop. Without the fast algorithm, we would require close to 2 hours
to obtain the solution and evaluate the objective function for a single capture
geometry. With our fast algorithm in place, we are able to obtain the solution
and evaluate the objective function for 25 different capture geometries in the
same 2 hours. The comparison will be even starker if we want a finer resolution. To find
the optimal value for ‘a’ and ‘b’, we evaluate F (a, b) for a range of a and b. Each evaluation
requires computing QHT , which is efficiently done using the FMM. The plot of F (a, b)
versus ‘a’ and ‘b’ is shown in Figure 4.8.

We also mention that if we were to tackle three dimensional problems, the size of the 3D
mesh would probably make a single calculation using the direct method infeasible. We
obtained the optimal array length as aopt = 18 m and the center of the source array to be at
bopt = 1665 m, i.e., this choice of ‘a’ and ‘b’ minimizes the relative error F (a, b). We fixed
the center of the source array at b = 1665 m = bopt and the array length at a = 20 m (this
is very close to the optimum and there is no significant difference in the estimation relative
error), and performed the following numerical benchmarks.



58 CHAPTER 4. FAST LINEAR INVERSION

16

18

20

22

1,650
1,655

1,660
1,665

1,670
1,675

0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2

a

b

R
el
at
iv
e
er
ro
r

0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2

Figure 4.8: Relative error for the reconstructed image (compared to the exact answer in the
left panel of Fig. 4.10) as a function of a, the length of the source array, and b, the location
of the center of the source array. We used 25 evaluation points (5 along a and b).
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Figure 4.9: Relative error in QHT versus the number of Chebyshev nodes along one direction
for m = 237× 217 = 51, 429.

Table 4.2: Comparison of the computational time for the real test case of Figure 4.10
Grid size Time taken in seconds

m Conventional direct algorithm Fast algorithm

55× 59 2.7 · 10+1 3.1 · 10+1

117× 109 4.0 · 10+2 9.2 · 10+1

237× 217 6.4 · 10+3 2.8 · 10+2

500× 500 − 1.1 · 10+3
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Figure 4.10: Left: true slowness using TOUGH2/ECO2N [100, 101] simulations, 120 hours
after injection; Middle: reconstructed slowness using our proposed algorithm for the optimal
choice of a and b; Right: uncertainty in the estimated solution. All these plots are for a
237× 217 grid. Each unit of slowness corresponds to 104 sec/m.
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Figure 4.11: Left: time taken by the fast algorithm and the conventional direct algorithm;
Right: storage cost.
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First, we performed validation on the matrix matrix product obtained using the FMM.
The Figure 4.9 shows the decay in the relative error in the matrix-matrix product QHT

using the FMM and the direct matrix-matrix product vs the number of Chebyshev nodes
along one direction, i.e.,

ε = ‖QHT
computed −QHT

exact‖ / ‖QHT
exact‖,

for a 237×217 grid. The covariance kernel is given by −r/θ. In the rest of our calculation we
chose 5 Chebyshev nodes in each direction, which corresponds to an error around 10−6. This
is significantly below the reconstruction error due to the limited number of measurements.

For a = 20 m and b = 1665 m, we plot the image of the estimated slowness. This is
shown in Figure 4.10. There seems to be a good agreement with the true data shown in
Figure 4.10. The uncertainty in the image reconstructed is shown on the right panel of
Figure 4.10.

We now compare the time taken by the fast algorithm to image the slowness and the
time taken by the conventional direct algorithm for different grid sizes keeping the array
length and the center of the sources fixed at a = 20 m and b = 1665 m. The comparison of
the time taken is tabulated in Table 4.2 and the corresponding figure comparing the time
taken and storage cost is also shown.

4.6 Conclusions

We have presented a novel fast algorithm for large scale linear inversion. In particular,
we solve a problem with few measurements (n) and a large number of unknowns (m), i.e.,
n � m. The algorithm is illustrated by applying it to a synthetic data set (tomography
problem), where we estimate one million unknowns. The fast algorithm is also applied for a
real data set, from a crosswell tomography of a CO2 sequestration site, to estimate 250,000
unknowns. The reconstruction using the fast linear inversion agrees well with the actual
data. The computational speedup achieved by our algorithm allows us to, for example, (i)
quantify the uncertainty in the solution; (ii) optimize the capture geometry. Optimizing the
capture geometry would not have been possible without the fast algorithm, which highlights
the potential impact of this type of technique. Further note that the entire algorithm is
mostly a matrix-free approach, once the covariance kernel is given in an analytic form. This
is of critical importance, especially in large-scale real-time monitoring applications, where
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the measurement matrix, H, might also be given in matrix free form. The matrix-matrix
product QHT , which is all we need for the inversion, can then be obtained using a matrix-free
approach. This algorithm can also be combined with different filtering algorithms, thereby
enabling large-scale real-time data-assimilation and inversion possible, which is the subject
of our future work.

The fast algorithm for linear inversion hinges on the stochastic Bayesian approach and the
hierarchical matrix approach. The algorithm can also exploit the underlying sparsity of the
measurement operator. This in turn also results in a significant reduction in runtime. The
new algorithm wins on two important counts. The speedup gained by using this algorithm is
very significant, as demonstrated in the numerical benchmarks, and the storage is minimized
tremendously. The speedup is especially significant when the number of unknowns m is very
large.



Chapter 5

Fast Kalman filtering

Kalman filtering is frequently used in many fields for sequential data-assimilation prob-
lem. Kalman filter estimates the current state of a time evolving process based on the
measurements at each time instant and the observed history of the process. The Kalman
filtering has two significant steps: (i) Prediction step; (ii) Update step. When the covariance
matrix is dense, both these steps are computationally expensive with a computational cost
of O(nm2 + n2m), where m is the number of underlying unknowns and n is the number of
measurements. Typically, we have n� m. The computational cost becomes prohibitively
expensive when m is large, which is often the case in real sequential data-assimilation
problems, especially in the context of geosciences. In our work, we propose an O(n2m)
Kalman filter. The effectiveness of the proposed Kalman filtering algorithm is demonstrated
by solving a realistic crosswell tomography problem and a synthetic problem by formulating
them as a stochastic linear inverse problem. In both the above cases, the sparsity of the
measurement operator can be exploited to further reduce the computational time taken
though the overall complexity of the proposed Kalman filtering algorithm remains the same
as O(n2m). We perform numerical benchmarking of our algorithm by comparing it with the
conventional exact Kalman filter and the ensemble Kalman filter.

5.1 Introduction

In many fields of engineering and applied science, it is imperative to have good filtering and
estimation techniques. A good filtering technique is needed in all applications, to remove
unwanted noise from measurements. Once an efficient filtering is done, it is important to

62
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make use of the filtered data to estimate the unknowns and make good predictions. When
the underlying system can be modeled efficiently as a linear dynamical system, the Kalman
filter gives us the minimum mean-square error estimator. The Kalman filter makes use of
the underlying system dynamics and also the measurements obtained at every time instant
to form an estimate of the current state of the system. The popularity of the Kalman filter
is due to the fact on one hand it is relatively simple to understand and implement while
on the other hand, it is an extremely powerful tool. In particular, we highlight that the
proposed algorithm is much better than the ensemble Kalman filtering algorithm.

In general, any efficient data assimilation technique incorporates both the knowledge of
the system dynamics and also the observations to obtain the best estimate of the current
state of the system. However, in certain cases, for instance, when the underlying system is
too complex to model, a random walk forecast model is adopted.

Kalman filter is the most widely used filtering techniques to obtain an estimate of
the current state of a system from the observed history and measurements. Filtering is
desirable in many situations in engineering and embedded systems. For example, any
signal/measurement is corrupted with noise. A good filtering algorithm can remove the noise
from the measurements while retaining the “useful” information. The Kalman filter is a tool
that can estimate the variables of a wide range of processes. In mathematical terms, the
Kalman filter provides the “optimal” estimate of the state of a linear system. The Kalman
filter not only works well in practice, but it is theoretically attractive because it can be
shown that of all possible filters, it is the one that minimizes the variance of the estimation
error. Kalman filters are often implemented in embedded control systems because in order
to control a process an accurate estimate of the process variables is needed.

5.2 Preliminary ideas

In this section, we briefly introduce the conventional Kalman filtering algorithm for a linear
dynamical system. The overarching idea of Kalman filtering is to estimate the state of a
time evolving system based on its previous states and noisy measurements. For a linear
dynamical system, the Kalman filter provides the linear unbiased, minimum mean-square
estimator.
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5.2.1 Linear dynamical system

We will fix some notations first. Let m be the number of unknowns. Let st ∈ Rm×1 denote
the state of the system after t time-steps. A linear dynamical system with noise is of the
form

st+1 = Fst + wt (5.1)

where F ∈ Rm×m is the state transition model and wt ∈ Rm×1 is the noise which is typically
modeled as a multivariate Gaussian random vector with covariance Q ∈ Rm×m. In general,
the state transition model, F , and the covariance Q could be a functions of time as well.
However, in most applications these are independent of time. The state transition model, F ,
captures the underlying physical model of the expected evolution of the system, while the
covariance matrix Q = E

(
wtw

T
t

)
represents the state noise of the system.

5.2.2 Measurement equation

The measurement equation is modeled as a linear equation of the form

yt = Hst + vt (5.2)

where yt ∈ Rn×1 is the observation at time-step t, H ∈ Rn×m is the measurement matrix
and vt ∈ Rn×1 is the measurement error. Note that the number of measurements is n. The
measurement vt ∈ Rn×1 is often modeled as a zero mean Gaussian random vector with
covariance R. Again, in general the matrix R could be a function of time as well. However,
in most problems of practical interest, it is independent of time. The form mentioned in (5.2)
is encountered frequently in practice, because many important inverse problems are linear
“deconvolution problems.” Further, more often, many nonlinear problems are solved through
a succession of linearized problems.

The Kalman filter estimates the evolution of the state of the system, st, from the evolution
Equation (5.3) and the measurement Equation (5.2). The Kalman filter has two significant
steps: (i) Predict and (ii) Update. The prediction step, as the name suggests, predicts the
state of the system at the next time step using only information from the current time step.
The estimate obtained from the prediction step is termed as the a priori state estimate.
The update step combines this prediction with the measurements obtained at the next time
step, to refine the estimate of the state of the system at the next time step. The estimate
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obtained from the update step is termed as the a posteriori state estimate. The a posteriori
state estimate can be thought of as a weighted average of the a priori state estimate and
the estimate of the system obtained from the measurements.

5.2.3 Algorithm and computational cost

The conventional Kalman filtering algorithm gives us an estimate of the unknown state of
the system st at each time step t. The conventional algorithm, along with its computational
cost, for the linear dynamical system with random walk forecast model and time independent
measurement operator is presented in algorithm 11. In all the cases, we will be dealing with,
we have the number of measurements, n, to be much smaller than the number of unknowns,
m, i.e. n� m. Let ŝt1|t2 and P̂t1|t2 denote the estimate of the state, st1 , and the posterior
covariance, Pt1 , of the system at time-step t1, given the measurements up-to and including
the first t2 time-steps.

Algorithm 11 Conventional Kalman filtering algorithm
Predict:

Operation Cost

a priori state estimate ŝt+1|t = Ft+1ŝt|t -
a priori covariance estimate P̂t+1|t = Ft+1P̂t|tF

T
t+1 +Qt+1 O(m2)

Measurement update:

Operation Cost

Kalman gain Kt+1 = P̂t+1|tH
T
t+1

(
Ht+1P̂t+1|tH

T
t+1 +R

)−1
O(nm2 + n2m)

a posteriori state ŝt+1|t+1 = ŝt+1|t +Kt+1
(
yt+1 −Ht+1ŝt+1|t

)
O(nm)

a posteriori covariance P̂t+1|t+1 = P̂t+1|t −Kt+1Ht+1P̂t+1|t O(nm2)

5.2.4 Computationally efficient Kalman filter

In this subsection, we discuss our new computationally efficient Kalman filter algorithm.
There are couple of key observations, which we take advantage of to reduce the computational
cost of Kalman filtering for the random walk forecast model. The first observation is that
the initial covariance matrix can be well-represented as a H2-matrix. This enables us to
compute the matrix matrix product QHT in O(nm) as opposed to O(nm2) using the fast
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multipole method [39], thereby reducing the computational cost of the first step in the
Kalman filtering algorithm. The details on how to accelerate computing QHT using the
H2-matrix approach is discussed in the previous chapter 4. It is also worth noting that the
algorithm discussed in the previous chapter 4 also exploits the sparsity of the measurement
operator H in reducing the running time. The second key observation that enables us to
reduce the computational cost of the subsequent steps in the Kalman filtering algorithm is
the fact that it is enough to store and compute the cross-covariance matrices, rather than
storing and computing with the entire covariance matrices. We will explain this key fact in
the next few pages. The third key observation is that the accuracy of this cross-covariance
matrices is only as good as the accuracy of the forward model.

First we rewrite the general Kalman filter 11 as shown below. For pedagogical reasons,
we let Qk = Q and Hk = H (though the proposed fast algorithm will proceed on similar
lines even if Q and H vary at each time step). Essentially, we write 12 by merging the

Algorithm 12 Kalman filtering algorithm with the predict and update step combined
Cross-covariance Tt+1 = Ft+1Pt|tF

T
t+1H

T +QHT

Innovation covariance St+1 = HTt+1 +R

Kalman gain Kt+1 = Tt+1S
−1
t+1

Update state st+1 = Ft+1st +Kt+1(zt+1 −HFt+1st)
Update covariance Pt+1|t+1 = Ft+1Pt|tF

T
t+1 +Q−Kt+1HFt+1Pt|tF

T
t+1 −Kt+1HQ

predict and measurement updates steps. From the above recurrences, we see that the key is
to keep track of just Pt|tF Tt+1H

T and not the entire covariance matrix Pt. Keeping these in
mind, we propose a fast Kalman filtering algorithm first for the random-walk forecast model
and for a more general forecast model.

5.2.4.1 CEKF for Random walk forecast model

In general, the state transition model is an approximation to the true evolution of the process.
In the absence of a good model or if the underlying physical system is too complex to model
or when the rate at which the data is acquired is at a much faster rate than the rate of
evolution of the system, a random walk forecast model is used. This essentially means the
only source of information we have to estimate the process are its measurements. A random
walk forecast model is of the form

st+1 = st + wt (5.3)
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Let us rewrite 12 using this forward model. Note that in 13 the most expensive steps are

Algorithm 13 Kalman filtering algorithm for the random walk forecast model
Cross-covariance Tt+1 = Pt|tH

T +QHT +O(∆t)
Innovation covariance St+1 = HTt+1 +R

Kalman gain Kt+1 = Tt+1S
−1
t+1

Update state st+1 = st +Kt+1(zt+1 −Hst)
Update covariance Pt+1|t+1 = Pt|t +Q−Kt+1HPt|t −Kt+1HQ+O(∆t)

computing the cross-covariance and updating the covariance, since both scale as O(nm2).
However, from 13 we realize that we only need to keep track of (PH)t = Pt|tH

T , we can
modify 13 as shown in 14, i.e., it is enough to propagate (PH)t only. Note that in the

Algorithm 14 CEKF for the random walk forecast model
Cross-covariance Tt+1 = (PH)t +QHT +O(∆t)
Innovation covariance St+1 = HTt+1 +R

Kalman gain Kt+1 = Tt+1S
−1
t+1

Update state st+1 = st +Kt+1(zt+1 −Hst)
Update cross-covariance (PH)t+1 = Tt+1 −Kt+1HTt+1

CEKF, we use FMM to compute QHT at a computational expense of O(n2m) and update
the cross-covariance as opposed to the covariance. The computational cost for each of the
step in 14 scales as O(n2m) (This can be further reduced if H is sparse).

5.2.4.2 CEKF for a general forecast model

Note that in general the forward operator of the forecast model is of the form

Ft = I + ∆t +O((∆t)2)

where ‖∆t‖ � 1. This is due to the fact that as the time step goes to zero, i.e., as δt→ 0,
we need Ft → I. As opposed to a random walk forecast model, the more general evolution
based on this forecast model is of the form

st+1 = st + ∆tst + wt +O((∆t)2) (5.4)

Let us rewrite 12 using this forward model. Note that in 15 the most expensive steps are
computing the cross-covariance and updating the covariance, since both scale as O(nm2).
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Algorithm 15 Kalman filtering algorithm for a general forecast model
Cross-covariance Tt+1 = FtPt|tH

T + Pt|tF
T
t H

T − Pt|tHT +QHT +O((∆t)2)
Innovation covariance St+1 = HTt+1 +R

Kalman gain Kt+1 = Tt+1S
−1
t+1

Update state st+1 = st +Kt+1(zt+1 −Hst)
Update covariance Pt+1|t+1 = (I −Kt+1H)(FtPt|t + Pt|tF

T
t − Pt|t +Q) +O((∆t)2)

However, from 15 we realize that we only need to keep track of PHt = Pt|tH
T and PFt =

Pt|tF
T
t H

T , we can modify 15 as shown in 16, i.e., it is enough to propagate PHt and PFt .
More importantly, note that 15, it is enough to propagate PFt , which has accuracy O(∆2

t ).
Note that in the CEKF, we use FMM to compute QHT at a computational expense of

Algorithm 16 CEKF for a general forecast model
Cross-covariance Tt+1 = FtP

H
t + PFt +QHT − PHt +O((∆t)2)

Innovation covariance St+1 = HTt+1 +R

Kalman gain Kt+1 = Tt+1S
−1
t+1

Update state st+1 = st +Kt+1(zt+1 −Hst)
Update covariance PHt+1 = Tt+1 −Kt+1HTt+1 +O((∆t)2)

PFt+1 = (I −Kt+1H)(FtPFt + PFt +QF Tt H
T − PHt ) +O((∆t)2)

O(n2m) and update the cross-covariance as opposed to the covariance. The computational
cost for each of the step in 16 scales as O(n2m) (Again note that, this can be further
reduced if H is sparse). The algorithm can be extended to more general forward models
where Ft can be obtain to an accuracy of O((∆t)s+1), by writing appropriate recurrences
for PHT , PF Tt H

T , P (F Tt )2HT , . . . , P (F Tt )sHT , which are O((∆t)s+1) accurate.

5.3 Validating the new filter

The evolution of the random process after non-dimensionalization is given as

∂φ

∂t
= ∇2φ+ dW

dt
(5.5)

Rewriting Equation 5.5, we get

dφ = dt∇2φ+ θ
√
dtwt
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Table 5.1: Comparison of time taken by the exact KF and CEKF

Kalman filter New filter

Pre-computation - 0.273 sec
Computation nearly 50 hours nearly 11 hours.

where wt ∼ N (0, Q), θ ∈ Θ(1) is a scaling constant, E(w2
t (i)) = 1 i.e. wt = Lvt. The

non-dimensionalized equation is solved over a unit square with Dirichlet boundary conditions
and initial φ being 0 throughout the domain. The non-dimensionalized relaxation time is 1.

We solve this on a 51× 51 grid. Hence, dx = dy = 0.02. Hence, for stability dt ≤ 4 · 10−4.
We take dt = 10−5 and run the simulation for 2 × 105 time steps i.e. for 2 seconds of
non-dimensionalized time, essentially till twice the relaxation time. θ is taken as

√
10. The

forward model is run and the head height is collected at all locations.
Now the head height is measured at 20 points in the domain. The head height is taken

as the result from the forward model plus a measurement error i.e. z(k)
i,j = φ

(k)
i,j +N (0, 1).

Hence, R = I20×20.
Discretizing 5.5 using explicit Euler in time and central difference in space, we get that

φ
(k+1)
i,j = φ

(k)
i,j + dt

(dx)2

(
φ

(k)
i+1,j − 2φ(k)

i,j + φ
(k)
i−1,j

)
+ dt

(dy)2

(
φ

(k)
i,j+1 − 2φ(k)

i,j + φ
(k)
i,j−1

)
+
√

10dtw(k)
i,j

(5.6)

We then reconstruct the image using 5.6 as the forward model. We compare the exact
Kalman filter and our new filter to construct the image. Figure 5.1 compares the relative
error, i.e., ‖φfilter − φactual‖

‖φactual‖
, obtained using the two filters. The pre-computation for the

new filter involves computing QHT and QF THT since both F and H do not change with
time. The total time taken is shown in Table 5.1.
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Figure 5.1: Comparison of relative error of the exact and fast Kalman filter



Chapter 6

Factorization based fast direct
solvers

6.1 Background and motivation

Large dense linear systems arising in engineering applications are often solved by iterative
techniques. Most iterative solvers based on Krylov subspace methods such as Arnoldi
iteration [4], Conjugate Gradient [64], GMRES [106], MINRES [96], Biconjugate Gradient
Stabilized Method [111], QMR [42], TFQMR [41], and others, rely on matrix-vector products.
The number of iterations required to achieve a target accuracy is very problem dependent. In
many instances, the large condition number of the matrix or distribution of the eigenvalues
of the matrix in the complex plane (e.g., widely spread eigenvalues) result in a large number
of iterations. Consequently, preconditioners need to be devised to improve the numerical
properties of the matrix and accelerate convergence of the iterative solver. Once such
a method is in place, the cost of performing the matrix-vector products can be reduced
using fast summation techniques like the fast multipole method (FMM) [8, 27, 92], the
Barnes-Hut algorithm [5], panel clustering [58], FFT, wavelet based methods, and others.
Of these different fast summation techniques, the FMM has often been used in the context
of linear systems arising out of boundary integral equations. This is because many kernel
functions resulting from such integral equations are amenable to the FMM. The literature
on the FMM is vast and we refer the readers to some seminal publications and our previous
work [7, 25, 32, 33, 39, 51, 52, 120]. These fast iterative solvers accelerate the solution
procedure and are able to solve (with some prescribed error tolerance ε) a system in linear

71
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or almost linear time.
In this chapter however we will focus on direct solvers, and before proceeding further, we

would like to compare some of the features of direct solvers over their iterative counterparts:

• One of the most important advantages of a direct solver is that it scales well with
multiple right hand sides. Any direct solver involves two phases: the factorization
phase and the solving phase. The factorization phase is independent of the right
hand side and is computationally more expensive than the solving phase. Hence, the
key ingredient in fast direct solvers is to accelerate the factorization phase. Once an
efficient factorization is obtained, all right hand sides can be solved with relatively low
computational cost. Iterative solvers, on the other hand, do not modify the matrix
and rely solely on matrix vector products and other basic algebra operations. Hence,
in most cases for an iterative solver, the entire procedure needs to be restarted for
each right-hand side (although this process can be optimized).

• For iterative solvers to be efficient, choosing a good preconditioner [9, 24, 56, 113] is
imperative, but in some cases finding a good preconditioner is a difficult task. Many
linear systems do not have known good preconditioners, leading to expensive linear
solves.

To overcome the disadvantages of iterative solvers and to take advantage of the desirable
features of direct solvers, there has been an increasing focus on fast direct solvers over the
last decade. Such solvers are concerned with dense matrices that have sub-blocks that can
be well-approximated by low-rank matrices. Of such class of matrices, the matrices termed
hierarchical matrices, denoted as H-matrices and which were introduced by Hackbusch et
al. [15, 49, 57, 59, 60] in the late 1990’s, are of particular interest. The basic idea is to
sub-divide a given matrix into a hierarchy of rectangular blocks and approximate them by
low-rank matrices. Due to this special structure, these dense systems are often described
as data sparse. This is because these matrices can be reconstructed approximately by
considering only a subset of their entries.

Matrices that are well approximated by this procedure occur especially in the context
of boundary integral equations, interpolation, inverse problems, and others. This class
of matrices is very broad and includes for example FMM matrices. A particular class of
H-matrices is the class of hierarchically semi-separable matrices (HSS). These matrices
were introduced by Chandrasekaran et al. [22, 23, 119] as a generalization of semi-separable
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matrices. A semi-separable matrix [112] of separability rank p is a matrix that can be written
as a sum of the lower triangular part of a rank-p matrix and the upper triangular part of
another rank-p matrix. We refer the readers to [22, 23, 119] for more details regarding the
HSS representation.

In the last few years, Greengard [53], Rokhlin [79], Martinsson [87, 88], Lexing Ying
[108, 109] et al. have proposed various fast direct solvers making use of the underlying
hierarchical low-rank structure. The common theme behind all these algorithms is to
construct a low-rank approximation for certain dense sub-blocks and perform a fast update
to the solution in a recursive manner.

In this context, the present work discusses an O(N log2N) solver for hierarchical off-
diagonal low-rank systems (HODLR) and O(N logN) solver for the class of partial hierar-
chically semi-separable systems (p-HSS, a subset of HODLR matrices). The p-HSS structure
is discussed in detail in section 6.3.3.2. Linear systems arising from the discretization of
boundary integral equations of potential theory [79, 88] in two dimensions, interpolation
by radial basis function along a curve [8, 56], and others, can be efficiently modeled by
p-HSS matrices. Many papers have proposed fast algorithms for matrices that are similar to
p-HSS matrices (some having slightly more restrictive assumptions as we will see later), in
particular Gillman et al. [45], Martinsson [87], Martinsson and Rokhlin [88], and Kong et
al. [79].

One of the advantages of this new method is its relative simplicity, resulting in a
low computational cost. We show that the computational cost of this method scales as
O(p2N logN) for partial hierarchically semi-separable matrices, where the rank of interaction
between the clusters is p. For problems arising out of one-dimensional manifolds, p can
be shown to be independent of N . In other situations, for example when considering 2D
manifolds — which are cases not covered in [45, 79, 87, 88] — the method in its current
form still applies but no longer scales as O(N logN). For example, the algorithm scales like
O(N2) for matrices arising in 3D boundary element methods. This results from the fact that
the rank of interaction between clusters, as discussed in this method, will scale as O(N1/2).

6.2 Overview of method and relation to previous work

The current work discusses a fast direct solver for a partial hierarchically semi-separable
matrix. The partial hierarchically semi-separable representation is discussed in detail in
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section 6.3.3.2. As with most of the other fast direct solvers, the current solver relies on a fast
low-rank factorization of the off-diagonal blocks of the matrix to get it into p-HSS form. Once
we have the p-HSS representation of the matrix, the solver relies on the Sherman-Morrison-
Woodbury update to solve the linear system [47, 63, 116]. The total cost to construct the
factorization and to solve the linear system is O(N logN). If the matrix is exactly p-HSS,
the factorization is exact. In most cases however, the p-HSS matrix is only an approximation
(with an error controllable by choosing appropriate ranks in the approximation), in which
case the solution produced by the fast direct solver is only approximate. To illustrate the
performance and accuracy of this algorithm, we solve a linear interpolation problem along a
one dimensional manifold using radial basis functions in section 6.5.

We now discuss our algorithm based on factorization in reference to existing ones. We
will restrict ourselves to existing methods that also take advantage of the low-rank off-
diagonal blocks. The work by Chandrasekaran et al. [23] constructs a O(N) solver for HSS
systems. It constructs a ULV H decomposition (U and V are unitary matrices, and L is lower
triangular, H is the transpose conjugate operator) of a hierarchically semi-separable matrix.
Their approach differs from ours in many ways. The starting point of their algorithm is to
recognize that when we have a low-rank approximation of the form UBV H (U and V are
thin matrices with p columns) it is possible to apply a unitary transformation so that only
the last p rows of U are non-zero. This result is then used to reduce the size of A recursively
(“bottom-up” approach) until we are left with a small enough linear system that can be
solved by a conventional method. They describe an O(N2) algorithm to construct the HSS
representation and an O(N) algorithm when the matrix is associated with a smooth kernel.
For the latter, Chebyshev polynomials are used to construct low-rank approximations, which
is similar to our approach and also Fong et al. [39]. The solver described in the present
chapter constructs a different one-sided factorization of the matrix. Further, our algorithm
is applicable for a p-HSS matrix, which is a superset of HSS matrices, as will be explained
in detail in section 6.3.3.

The work by Rokhlin and Martinsson [88] constructs an O(N) fast direct solver for
boundary integral equations in two-dimensions making use of off-diagonal low-rank blocks.
The algorithm constructs the inverse using a compressed block factorization that takes
advantage of the low-rank off-diagonal blocks to factor the matrix. A two-sided hierarchical
factorization of the inverse is constructed. The approach follows some of the ideas in [23],
and is based on applying transformations to low-rank matrices such that only p non-zero rows
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(resp. columns) remain while other rows (resp. columns) are set to 0. This allows compressing
the matrix and progressively reducing its size. The solver proposed in the present work,
on the other hand, is conceptually simple to understand and easier to implement. Further,
this paper presents a factorization of the matrix (followed by a solve) whereas [88] builds a
compressed factorization of the inverse matrix.

A recently published work, while we were working on this, by Kong et al. [79] proposes
an O(N log2N) solver for boundary integral equations in two-dimensions taking advantage
of off-diagonal low-rank blocks. Though their algorithm is similar to parts of our algorithm,
e.g., their algorithm also uses Sherman-Morrison-Woodbury updates, we proceed further and
reduce the computational complexity of the algorithm to O(N logN) with the additional
assumption of p-HSS structure. Our approach highlights the bottleneck in the O(N log2N)
algorithm, enabling us to reduce the computational complexity to O(N logN). In fact, our
O(N logN) algorithm can be viewed as an extension of the algorithm proposed by Kong
et al. [79] by making the additional assumption of p-HSS structure and thereby reducing
the cost from O(N log2N) to O(N logN). In our benchmarks, the O(N logN) resulted in
a speed-up of nearly 4 compared to the O(N log2N), even for moderately large N . The
speed-up in general depends on N and will improve even more for larger N .

The strategy is presented in such a way that it clearly indicates how the structure of
the matrix dictates the cost, i.e., the algorithm explicitly reveals how the assumption of the
p-HSS structure cuts down the cost from O(N log2N) to O(N logN). In a similar spirit,
this algorithm can be extended to an HSS structure to yield an O(N) algorithm, which will
be the subject of future work.

The structure of tis chapter is as follows. The next section discusses some of the key ideas
including the different hierarchical representations, low-rank approximations and Sherman-
Morrison-Woodbury formula that are the primary ingredients for the algorithm. Section
6.4 motivates and provides an overview of the algorithm, and discusses the computational
complexity of the algorithm. Section 6.5 discusses the applicability, performance and
accuracy of this solver by providing numerical benchmarks for an interpolation problem on
an one-dimensional manifold using radial basis functions. The final section concludes the
chapter by highlighting the capabilities of this solver.
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6.3 Preliminary ideas

In this section, we discuss the key ideas that will be of help in understanding the algorithm.

6.3.1 Sherman-Morrison-Woodbury formula

The key ingredient in our algorithm is the Sherman-Morrison-Woodbury formula [63, 116],
which provides a convenient way to update the solution of a linear system perturbed by a
low-rank update.

Consider solving a system of the form

(
I + UV T

)
x = b (6.1)

where I ∈ RN×N is the identity matrix, U, V ∈ RN×p, x, b ∈ RN×r, and p ≤ r � N .
The Sherman-Morrison-Woodbury formula gives us

x = b− U
(
I + V TU

)−1
V T b (6.2)

The computational cost for solving (6.1) using (6.2) is O(prN). We refer the readers
to [63, 116] for the derivation of the above result and the computational cost, though the
direct proof takes only a few steps:

(
I + UV T

)
x =

(
I + UV T

)
b−

(
I + UV T

)
U
(
I + V TU

)−1
V T b [Eq. (6.2)]

=
(
I + UV T

)
b− U

(
I + V TU

) (
I + V TU

)−1
V T b [Refactor the second term]

=
(
I + UV T

)
b− UV T b = b

6.3.2 Fast low-rank factorization

Given a matrix A ∈ RM×N , the optimal rank p approximation can be obtained from
its singular value decomposition [47]. However, singular value decomposition is compu-
tationally expensive with a cost of O(MN min(M,N)). In recent years, there is an in-
creasing focus [26, 43, 54, 90] on constructing fast approximate low-rank factorizations
for matrices. Techniques like adaptive cross approximation [102] (ACA), pseudo-skeletal
approximations, [48] interpolatory decomposition, [39] randomized algorithms [43, 81, 117],
rank-revealing LU [90, 97] and QR [54] algorithms provide great ways for constructing
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efficient approximate low-rank representations. The proposed algorithm for solving the
linear system is independent of the algorithm to construct the low-rank factorizations and
therefore can be combined with any low-rank factorization technique. All these different
techniques have already been discussed in detail in chapter 2.

In the numerical illustrations discussed in section 6.5, we consider linear systems arising
from interpolation schemes based on radial basis functions such as quadrics (r2 + a2),
inverse multi-quadric (1/

√
r2 + a2), Gaussian (exp(−r2/a2)), exponential (exp(−r/a)), and

others. These radial basis functions are smooth and non-singular. For smooth kernels,
interpolation using Chebyshev polynomials is an attractive method to construct low-rank
factorizations [39, 89]. Although any interpolation scheme can be used to construct a
low-rank factorization, in the present work, the Chebyshev polynomials will serve as the
interpolation basis along with their roots as the interpolation nodes.

6.3.3 Hierarchical representations

We briefly look at the relevant hierarchical representations, which we will be dealing with in
this chapter. For more details, kindly refer to chapter 3.

6.3.3.1 Hierarchical off-diagonal low-rank matrix

A matrix, K ∈ RN×N , is termed a 2-level hierarchical off-diagonal low-rank matrix, denoted
as HODLR, if it can be written in the form shown in equation (6.3).

K =

 K
(1)
1 U

(1)
1 V

(1)T
1,2

U
(1)
2 V

(1)T
2,1 K

(1)
2

 =



 K
(2)
1 U

(2)
1 V

(2)T
1,2

U
(2)
2 V

(2)T
2,1 K

(2)
2

 U
(1)
1 V

(1)T
1,2

U
(1)
2 V

(1)T
2,1

 K
(2)
3 U

(2)
3 V

(2)T
3,4

U
(2)
4 V

(2)T
4,3 K

(2)
4




(6.3)

where K(2)
i ∈ RN/4×N/4, U (k)

2i−1, U
(k)
2i , V

(k)
2i−1,2i, V

(k)
2i,2i−1 ∈ RN/2k×p and p� N .

In general, a κ-level HODLR matrix is the one in which, the ith diagonal block at level
k, where 1 ≤ i ≤ 2k and 0 ≤ k < κ, denoted as K(k)

i , can be written as

K
(k)
i =

 K
(k+1)
2i−1 U

(k+1)
2i−1 V

(k+1)T
2i−1,2i

U
(k+1)
2i V

(k+1)T
2i,2i−1 K

(k+1)
2i

 (6.4)
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where K(k)
i ∈ RN/2k×N/2k , U (k)

2i−1, U
(k)
2i , V

(k)
2i−1,2i, V

(k)
2i,2i−1 ∈ RN/2k×p and p � N . The maxi-

mum number of levels, κ, is
⌊

log2(N/2p)
⌋
. The construction of a κ-level HODLR matrix,

using interpolation to obtain low-rank of the off-diagonal blocks, is described below.

1. Let the root level (level 0) contain the location of all the points in the domain.

2. For all the clusters at level κ, compute the interaction of each cluster with itself, i.e.,
K

(κ)
i for all i ∈ {1, 2, . . . , 2κ}.

3. At all levels, k ∈ {1, 2, . . . , κ}, for all the clusters, i ∈ {1, 2, . . . , 2k} and j ∈
{1, 2, . . . , 2k−1}, compute the interaction with its sibling, using a low-rank repre-
sentation, i.e.,

• Compute the interpolation matrices, U (k)
i , using p Chebyshev nodes for the cluster

i at level k

• Compute the interaction of the Chebyshev nodes of the cluster with its sibling
cluster, i.e., V (k)

2j−1,2j and V
(k)

2j,2j−1. Note: V (k)
a,b captures the interaction of the

Chebyshev nodes of the cluster a with its sibling cluster b at level k.

This gives the desired HODLR representation. The total cost to construct and store a
HODLR matrix is O(pN(1 + κ)).

6.3.3.2 Partial hierarchically semi-separable matrix

The partial hierarchically semi-separable matrices, denoted as p-HSS, are a subset of the
HODLR matrices and a superset of hierarchically semi-separable (HSS) matrices. Some of
the notations we use are similar to those used by Chandrasekaran et al. [22, 23] The proposed
O(N logN) algorithm is applicable for this class of matrices. The recursive hierarchical
structure of the p-HSS representation is seen when we consider the 4× 4 block partitioning
of a p-HSS matrix, K. The two-level p-HSS representation is as shown in equation (6.5).

K =
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(6.5)
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where U (k)
2i−1, U

(k)
2i , V

(k)
2i−1,2i, V

(k)
2i,2i−1 ∈ RN/2k×p, S(2)

i ∈ Rp×p and p� N .
The key feature is that U (1)

1 is defined in terms of U (2)
1 and U (2)

2 ; similarly, U (1)
2 is defined

in terms of U (2)
3 and U (2)

4 , i.e., we have

U
(1)
1 =

U (2)
1 S

(2)
1

U
(2)
2 S

(2)
2

 , U (1)
2 =

U (2)
3 S

(2)
3

U
(2)
4 S

(2)
4

 . (6.6)

An equivalent statement is that U (1)
1 lies in the span of

U (2)
1 0
0 U

(2)
2


In a κ-level p-HSS representation, if we denote the ith diagonal block at level k as K(k)

i (6.4),
then U (k)

i is constructed from U
(k+1)
2i−1 and U (k+1)

2i , i.e., we have

U
(k)
i =

U (k+1)
2i−1 S

(k+1)
2i−1

U
(k+1)
2i S

(k+1)
2i

 (6.7)

The maximum number of levels, κ, is
⌊

log2(N/2p)
⌋
. The construction of a κ-level p-HSS

matrix, using interpolation is discussed below.

1. Let the root level (level 0) contain the location of all the points in the domain.

2. For all the clusters at level κ, compute the interaction of each cluster with itself, i.e.,
K

(κ)
i for all i ∈ {1, 2, . . . , 2κ}.

3. For all the clusters at level κ, compute the interpolation matrices using p Chebyshev
nodes, i.e., U (κ)

i for all i ∈ {1, 2, . . . , 2κ}.

4. For all clusters at level k, compute the interaction of the Chebyshev nodes of the
cluster with the sibling of the cluster using p Chebyshev nodes, i.e., V (k)

2i−1,2i, V
(k)

2i,2i−1

where k ∈ {1, 2, . . . , κ} and i ∈ {1, 2, . . . , 2k−1}.

5. For all clusters at level k, compute the interpolation matrices from the cluster to its
parent using p Chebyshev nodes, i.e., S(k)

i where k ∈ {2, 3, . . . , κ} and i ∈ {1, 2, . . . , 2k}.
This is done by computing S(k)

i (r, s) = U
(
x̄

(k)
r , x̄

(k−1)
s

)
where x̄(k)

r is the rth Chebyshev
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node of cluster i at level k and x̄(k−1)
s is the sth Chebyshev node at level (k− 1) of the

parent of the ith cluster.

This gives the desired p-HSS representation. The total cost to construct and store a p-HSS
matrix is O (pN(1 + κ)).

We refer the readers to [22, 23, 119] for detailed description of hierarchically semi-
separable (HSS) matrices. These representations correspond to increasingly larger set of
matrices, i.e.,

HSS ⊂ p-HSS ⊂ HODLR

The O(N log2N) algorithm is applicable for HODLR matrices while the O(N logN) al-
gorithm is applicable for p-HSS matrices. The strategy is presented in a way that the
O(N logN) algorithm is an extension of the O(N log2N) algorithm with the additional
assumption of a p-HSS structure.

6.4 Algorithm

In this section, we present the O(N log2N) algorithm for HODLR matrices, and O(N logN)
algorithm for p-HSS matrices. As discussed in the introduction, any direct solver involves
two main steps. The first step is the factorization step and the second step is where we
use the factorization to obtain the final solution. The difference in the computational cost
between the O(N log2N) and O(N logN) algorithm is in the factorization step. Once the
desired factorization has been obtained, the computational cost of applying the factorization
to solve the system is O(N logN) irrespective of the factorization algorithm. For purposes
of illustration and analysis, we assume that the off-diagonal sub-blocks at each level are of
the same rank and the system is split into two equal halves at each level.

6.4.1 Factorization phase

In this section, we discuss the factorization of the HODLR and p-HSS matrices. The overall
idea is to factor the underlying matrix, K ∈ RN×N , into κ+ 1 block diagonal matrices as in
equation (6.8):

K = KκKκ−1Kκ−2 · · ·K1K0 (6.8)

where Kk ∈ RN×N is a block diagonal matrix with 2k diagonal blocks each of size N
2k ×

N
2k

and each of the diagonal blocks at all levels are low-rank update to the identity matrix.
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A κ-level HODLR matrix, K(κ) ∈ RN×N is presented in Equation (6.9).

K(κ) =



 K
(κ)
1 U

(κ)
1 V

(κ)T
1,2

U
(κ)
2 V

(κ)T
2,1 K

(κ)
2

 U
(κ−1)
1 V

(κ−1)T
1,2 · · · · · ·

U
(κ−1)
2 V

(κ−1)T
2,1

 K
(κ)
3 U

(κ)
3 V

(κ)T
3,4

U
(κ)
4 V

(κ)T
4,3 K

(κ)
4

 · · · · · ·

...
... . . . · · ·

...
...

...

 K
(κ)
2κ U

(κ)
2κ−1V

(κ)T
2κ−1,2κ

U
(κ)
2κ V

(κ)T
2κ,2κ−1 K

(κ)
2κ




(6.9)

where K(κ)
i ∈ RN/2κ×N/2κ , U (k)

j , V (k)
2i−1,2i, V

(k)
2i,2i−1 ∈ RN/2k×p for k ∈ {1, 2, . . . , κ}, j ∈

{1, 2, . . . , 2k} and i ∈ {1, 2, . . . , 2k−1}. Recall that a κ-level p-HSS matrix not only has the
structure described in Equation (6.9) but also has the additional structure mentioned in
Equation (6.7).

The first step in the algorithm is to factor the block diagonal matrix shown in equa-
tion (6.10).

Kκ =



K
(κ)
1 0 0 0 · · · · · ·
0 K

(κ)
2 0 0 · · · · · ·

0 0 K
(κ)
3 0 · · · · · ·

0 0 0 K
(κ)
4 · · · · · ·

...
...

...
... . . . · · ·

...
...

...
...

... K
(κ)
2κ


(6.10)

Here is the important difference between the factorization of a HODLR and a
p-HSS matrix. For the HODLR structure, when we factor Kκ, U (k)

j at all levels k, need
to be updated. However, if we have the p-HSS structure, we only need to update U (κ)

j ,
since the p-HSS representation allows us to obtain U (k)

j at all the other levels through the
recurrence (6.7).

Another key observation, valid for both the HODLR and p-HSS matrices and that enables
us to reduce the computational cost, is that we do not need to update V (k)

2i−1,2i and V
(k)

2i,2i−1

for any level.
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Now to factor out Kκ, we need to multiply by the inverse of K(κ)
i the corresponding N/2κ

rows of U (k)
i for all k ∈ {1, 2, . . . , κ} (a subset of the N/2k rows of U (k)

i ). The multiplication
by the inverse is carried out in practice by solving the appropriate linear system.

HODLR case. Since each U (k)
i has p columns, we need to apply the inverse to a total

of κp columns. The computational cost of applying the inverse of K(κ)
i to r columns is

O(p3 + rp2) and hence to factor Kκ, the total cost is O(κp2N), where κ = blog2(N/2p)c.

p-HSS case. It is sufficient to apply the inverse to only the p columns of U (κ)
i , for the

reasons explained above. Hence, the total cost becomes O(p2N).

Factoring out Kκ, we get that K(κ) = Kκ K(κ−1), where K(κ−1) is of the form in
equation (6.11).

K(κ−1) =



 I U
(κ,1)
1 V

(κ)T
1,2

U
(κ,1)
2 V

(κ)T
2,1 I

 U
(κ−1,1)
1 V

(κ−1)T
1,2 · · · · · ·

U
(κ−1,1)
2 V

(κ−1)T
2,1

 I U
(κ,1)
3 V

(κ)T
3,4

U
(κ,1)
4 V

(κ)T
4,3 I

 · · · · · ·

...
... . . . · · ·

...
...

...

 I U
(κ,1)
2κ−1V

(κ)T
2κ−1,2κ

U
(κ,1)
2κ V

(κ)T
2κ,2κ−1 I




(6.11)

Note that U (k,1)
i indicates that U (k)

i has been updated after factoring out Kκ. Now that
we have K(κ−1), the plan is to repeat this process as we go up the levels. For ease of
understanding, let’s define I U

(κ,1)
2i−1V

(κ)T
2i−1,2i

U
(κ,1)
2i V

(κ)T
2i,2i−1 I

 = K
(κ−1,1)
i , (6.12)

where I ∈ RN/2κ×N/2κ is the identity matrix and K
(κ−1,1)
i ∈ RN/2κ−1×N/2κ−1 . Hence, we
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have

K(κ−1) =


K

(κ−1,1)
1 U

(κ−1,1)
1 V

(κ−1)T
1,2 · · · · · ·

U
(κ−1,1)
2 V

(κ−1)T
2,1 K

(κ−1,1)
2 · · · · · ·

...
... . . . · · ·

...
...

... K
(κ−1,1)
2κ−1

 (6.13)

Note that K(κ−1) is a (κ − 1)-level HODLR matrix. In addition, if K(κ) had a p-HSS
structure to begin with, then K(κ−1) will also have a p-HSS structure, since U (k,1)

i is related
to U (k+1,1)

2i−1 and U (k+1,1)
2i−1 through (6.14):

U
(k,1)
i =

U (k+1,1)
2i−1 S

(k+1)
2i−1

U
(k+1,1)
2i S

(k+1)
2i

 (6.14)

Hence, let us factor K(κ−1) as Kκ−1 K
(κ−2), where Kκ−1 is a block diagonal matrix with

2κ−1 blocks each of size N/2κ−1 × N/2κ−1 as shown in equation (6.15), and K(κ−2) is a
(κ− 2)-level HODLR matrix.

Kκ−1 =


K

(κ−1,1)
1 0 0 · · ·

0 K
(κ−1,1)
2 · · · · · ·

0
... . . . · · ·

...
...

... K
(κ−1,1)
2κ−1

 (6.15)

Though the diagonal blocks of K(κ−1) are now twice in size compared to the diagonal
blocks of K(κ), all the diagonal blocks are a low-rank update to an identity matrix, i.e.,
K

(κ−1,1)
i ∈ RN/2κ−1×N/2κ−1 in equation (6.12) can be written as I + Ũ

(κ)
i Ṽ

(κ)T
i , where

Ũ
(κ)
i =

U (κ,1)
2i−1 0
0 U

(κ,1)
2i

 ∈ R(N/2κ−1)×2p

and

Ṽ
(κ)T
i =

 0 V
(κ)T

2i−1,2i

V
(κ)T

2i,2i−1 0

 ∈ R(N/2κ−1)×2p

Let us now calculate the computational complexity for the second step in the factorization,
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i.e., to obtain K(κ−1) = Kκ−1 K
(κ−2). To perform this, we first need to multiply by the

inverse of K(κ−1,1)
i the corresponding rows of U (k,1)

i for all k ∈ {1, 2, . . . , κ− 1}.

HODLR case. Since K(κ−1,1)
i = I + Ũ

(κ)
i Ṽ

(κ)T
i , by Sherman-Morrison-Woodbury

formula, the cost to apply the inverse of K(κ−1,1)
i to r columns is O(N/2κ−1 × (2p) × r).

Hence, the total cost of this step is O((κ− 1)p2N).
p-HSS case. It is sufficient to apply the inverse to just U (κ−1,1)

i . Hence, the total cost
is O(p2N).

This is repeated till we reach level 0 to get a factorization of the form

K = KκKκ−1 · · ·K0 (6.16)

where Kk is a block diagonal matrix with 2k diagonal blocks each of size N/2k × N/2k.
Note that for all k, except κ, all the block diagonal matrices in Kk can be written as a rank
2p update to a

(
N/2k ×N/2k

)
identity matrix. Hence, the computational complexity at

level k for factorizing K(k) as Kk K
(k−1), for a HODLR matrix is O(p2Nk) and for a p-HSS

matrix is O(p2N). It is important to note that the computational cost for the factorization
at level k depends on k for a HODLR matrix, whereas it is independent of k for a p-HSS
matrix. Hence, the computational complexity for the factorization is: Figure 6.1 provides a

Matrix Computational complexity

HODLR
κ∑
k=1
O(kp2N) = O(κ2p2N) = O(p2N log2N)

p-HSS matrix
κ∑
k=1
O(p2N) = O(κp2N) = O(p2N logN)

pictorial description of this factorization.

6.4.2 Solving phase

The solving phase is independent of the factorization phase and is the same for both the
algorithms. Once we have the factorization of the matrix K in the form KκKκ−1Kκ−2 . . .K0,
then the solution to Kx = b where K ∈ RN×N , b ∈ RN×r is given by x = K−1

0 K−1
1 . . .K−1

κ b.
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K

≈

K(3)

=

K3

×

K2

×

K1

×

K0

Full rank; Low-rank; Identity matrix; Zero matrix;

Figure 6.1: Factorization of a three level HODLR/p-HSS matrix

Hence, we need to first apply the inverse of Kκ followed by Kκ−1 all the way up to K0.
All these inverses need to be applied to an N × r matrix, where r is the number of right
hand sides. In our implementation, the solving phase and factorization phase proceed
simultaneously. Hence, in the benchmarks presented the factorization is not constructed
explicitly. For instance, in the first step of the factorization phase of both algorithms, when
we apply the inverse of Kκ to K(κ) to get K(κ−1), we also apply the inverse to the r right
hand sides. Similarly, at every step k, when we apply the inverse of Kk to K(k) to get
K(k−1), the inverse is also applied to the corresponding r right hand sides. This is analogous
to Gaussian elimination where the LU factorization and back substitution proceed together.
The additional cost of applying these inverses at each step to the r right hand sides is
O(rpN). Hence, the total cost of the solve phase is O(rpN log(N)).

The computational complexity for the algorithms discussed are summarized in Table 6.1.

Table 6.1: Computational complexity; p: rank; r: number of right-hand sides; N : size of
matrix

Phase HODLR p-HSS

Factorization O(p2N log2N) O(p2N logN)
Solving O(prN logN) O(prN logN)

6.5 Numerical benchmark

In this section, we present results obtained for our test case. The test case considered is a
contour deformation problem using radial basis functions.
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6.5.1 Interpolation using radial basis functions

We briefly discuss interpolation using radial basis functions. The literature on interpolation
using radial basis function is vast and we refer the reader to a few [12, 16, 36, 107, 114, 118].
As with other interpolation techniques, the motivation behind interpolation based on radial
basis functions is to approximate the given data by a function defined on a large set, ensuring
that the function passes through the data points. Let {fk}Nk=1 be the given values of the
data observed at N distinct points say {xk}Nk=1. We consider the case when xk’s lie on a
one-dimensional manifold. The motivation behind interpolation using radial basis functions
is to find a smooth function s(x) such that s(xk) = fk, for all k ∈ {1, 2, . . . , N}. To achieve
this, the interpolant s(x) is considered to be of the form,

s(x) =
N∑
k=1

λkφ(x− xk) + p(x)

where p(x) is a polynomial of degree l, λk are a set of weights and φ is a function from
R → R. We set φ(0) = 0. This is termed the nugget effect [3, 6, 34, 37, 95] and helps in
making the system reasonably well-conditioned. Without the nugget effect, some of the
systems arising out of radial basis interpolation are singular or very close to being singular
and hence for most practical applications, a nugget is always chosen.

We have that p(x) ∈ P l, where P l is the space of polynomials with degree l. Let
{p0(x), p1(x), . . . , pl(x)} be a basis for P l. Hence, p(x) can be written as

p(x) =
l∑

j=0
ajpj(x).

This gives us that the interpolant s(x) must be of the form

s(x) =
N∑
k=1

λkφ(x− xk) +
l∑

j=0
ajpj(x) (6.17)

The polynomial p(x) is most often taken to be constant (l = 0), linear (l = 1) (or) cubic
(l = 3). Further, in case of interpolation by radial basis functions, φ(x− y) is a function of
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‖x− y‖2. In which case, equation (6.17) can be rewritten as

s(x) =
N∑
k=1

λkφ (‖x− xk‖2) +
l∑

j=0
ajpj(x) (6.18)

To determine the interpolant, we need to determine the λk’s and the aj ’s, a total of N + l+ 1
unknowns. The interpolant in equation (6.18) is required to satisfy the interpolation
conditions.

s(xk) = fk, ∀k ∈ {1, 2, . . . , n} (6.19)

Equation (6.19) ensures that the interpolant passes through the data points. The remaining
equations are obtained through the side conditions given in equation (6.20).

N∑
k=1

λkpj(xk) = 0, ∀j ∈ {0, 1, . . . , l} (6.20)

The side conditions in equation (6.20) ensure polynomial reproduction, i.e., if the data arises
from a polynomial q(x) ∈ P l, then the interpolant is also q(x). In addition, this condition
results in the fact that away from the interpolation points xk, the interpolation function will
be approximated by

∑l
j=0 ajpj(x).

Hence, we now have N + l + 1 equations and N + l + 1 unknowns to be determined.
These equations can be written as a linear system as shown below Φ P

P T 0

λ
a

 =

f
0

 (6.21)

where Φ(i, j) = φ (‖xi − xj‖2), P (k, j) = pj−1(xk), λ(i) = λi, a(i) = ai−1, f(i) = fi.

6.5.2 Problem specification

Given the mapping of points from the boundary of a disc of unit radius to the boundary
of the wiggly surface, the goal is to map the interior of the unit disc to the interior of the
wiggly surface. The displacement of a set of N points on the unit circle are specified. These
N points are chosen uniformly at random on the unit circle, i.e., we sample θ from a uniform
distribution in the interval [0, 2π).
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Figure 6.2: Deformation of a one dimensional manifold

The bottleneck in solving these linear interpolation problems using radial basis functions
is the solution of the dense linear systems

Φλ1 = P, Φλ2 = f (6.22)

where Φ ∈ RN×N . To benchmark our algorithm, we compare the time taken by different
algorithms to solve equation (6.22) for a variety of commonly used radial basis functions.
All the algorithms were implemented in C++. The time taken by the O(N logN) and
O(N log2N) algorithms to solve a linear system with one right hand side are compared
against the time taken to solve one right hand side using a partially pivoted LU decomposition
routine in Eigen [55], to highlight the speedup attained using the proposed algorithm. The
relative error was computed by feeding in a known (λexact, aexact) and comparing these with
the results obtained by different algorithms. All the illustrations were run on a machine
with a single core 2.66 GHz processor and 8 GB RAM. There was no necessity to parallelize
the implementation for the present purpose due to the speedup achieved with the proposed
algorithm.
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6.5.3 Results and discussion

We present a detailed numerical benchmark for the radial basis functions listed in Table 6.2.
For all these different radial basis functions, the parameter a was chosen to be the radius
of the circle, which in our case is 1. The points on the unit circle are parameterized
as (x, y) = (cos(θ), sin(θ)); r denotes the Euclidean distance between two points on the
unit circle, i.e., the distance between the points i and j on the circle is given by rij =

‖xi − xj‖2 = 2
∣∣∣ sin (θi − θj2

)∣∣∣. Consider for example an off-diagonal block in the matrix

Table 6.2: Radial basis functions φ(r) considered for numerical benchmarking.
Quadric Multi-quadric Inverse quadric Inverse multi-quadric

1 + (r/a)2 √
1 + (r/a)2 1/(1 + (r/a)2) 1/

√
1 + (r/a)2

Exponential Gaussian Logarithm
exp(−r/a) exp(−r2/a2) log(1 + r/a)

with entries of the form Φij = φ(rij) = φ(‖xi − xj‖2) = φ
(
2
∣∣∣ sin (θi − θj2

)∣∣∣) = ψ(θi − θj),
where θi, θj ∈ I = [0, 2π). The low-rank approximations are constructed by using Chebyshev
polynomials that are functions of θ.

In [39, 89], an analysis is presented where the order of Chebyshev polynomials required
to build a low-rank approximation is estimated based on the growth of the kernel ψ in
the complex plane along an ellipse containing I = [0, 2π). The rank can be shown to be
determined primarily by two factors: the distance between the poles of ψ in the complex
plane and the interval I, and the growth of ψ in the complex plane. As we chose a = 1
(which determines the location of the poles), we therefore expect a rapid decay of the error
with the rank.

We performed the following series of tests for each of the radial basis functions in
table (6.2). In order to reduce the number of pages, not all our results are shown in the
thesis. We, however, ran all the calculations and analyzed all the plots. In cases where many
plots were similar, we selected a few representative ones for inclusion. The details of the
tests that were performed are given below.

• We looked at how the rank of the off-diagonal blocks grows with N for all the radial
basis functions in table (6.2). The system size was made to increase from 1024 to 8192.
The decay of the singular-values for the off-diagonal blocks can be found in figure (6.3).
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There was no noticeable growth of the rank of the off-diagonal blocks with N .
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Figure 6.3: Decay of singular values of the off-diagonal blocks for different radial basis
functions. The singular values are normalized using the largest singular-value. Left: system
size 1024× 1024; Right: system size 8192× 8192.

• We then considered 8192× 8192 matrices. We computed the condition number of the
system and the decay of the singular values of the largest off-diagonal block, which is
of size 4096× 4096. The condition numbers ranged from 3 · 103 to 2 · 107 as shown
in table (6.3). Although a wide range of condition numbers were observed for these
matrices, the accuracy of our algorithm was found to be largely independent of the
condition number. As explained previously, the accuracy is determined by the decay
of the singular values, whose behavior is different from the condition number.

Table 6.3: Condition number of a 8192× 8192 system for different kernels where the points
are distributed randomly on a unit circle.

Kernel 1 + r2 √
1 + r2 1/(1 + r2) 1/

√
1 + r2 exp(−r) exp(−r2) log(1 + r)

Cond # 2.5 · 104 1.4 · 104 1.0 · 104 1.5 · 104 1.2 · 106 3.4 · 103 1.7 · 107

• For the 8192× 8192 linear system, we computed:

– The relative error in the solution obtained by using theO(N log2N) andO(N logN)
algorithms as a function of the rank of the off-diagonal blocks. As explained
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above, the right-hand-side of the system was computed from a known (λ, a), so
that the exact solution is known.

– The assembly time and solve time taken for both algorithms as a function of the
rank.

∗ Assembly time denotes the time taken to compute the desired entries in
the matrix and the desired low-rank factorizations to set up the hierarchical
structure. Specifically, this includes the time taken to compute K(κ)

i ∈
RN/2κ×N/2κ , U (κ)

i ∈ RN/2κ×p where i ∈ {1, 2, 3, . . . , 2κ}, V (k)
2i−1,2i, V

(k)
2i,2i−1 ∈

RN/2k×p at all levels, k ∈ {1, 2, 3, . . . , κ}, i ∈ {1, 2, 3, . . . , 2k−1} and S
(k)
i ∈

Rp×p at all levels where k ∈ {2, 3, . . . , κ} and i ∈ {1, 2, 3, . . . , 2k}.

∗ Solve time denotes the time taken to compute the solution to the linear
system, which includes both the time taken to obtain the factorization (sec-
tion 6.4.1) and perform the solve (section 6.4.2). Recall that the factorization
phase and the solve phase proceed together as mentioned in section 6.4.2.

• Next for all the radial basis functions, we fixed the off-diagonal rank at 30 and used
Chebyshev interpolation [39] for θ, to construct a low-rank representation of the
off-diagonal blocks. For the O(N log2N) and O(N logN) algorithms, we increase the
system size from 128 to 1048576. We compared the two algorithms with the partially
pivoted LU algorithm. For the partially pivoted LU algorithm, we increased the system
size from 128 to 8192. Beyond this, the partially pivoted LU algorithm took too much
time. The following comparisons were made:

– Relative error in the solution obtained by using the fast algorithms and the
partially pivoted LU algorithms as a function of the system size.

– Assembly time taken for the fast algorithms and the partially pivoted LU algo-
rithms as a function of the system size.

– Solve time taken for the fast algorithms and the partially pivoted LU algorithms
as a function of the system size.

• Next we also analyzed how the cost at each level varied for the two fast algorithms.
To do this, we considered a system size of 131072× 131072 and fixed the rank of the
off-diagonal blocks at 20. The total number of levels in this case is 13. We measured
the time taken to assemble and solve at each level.
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All the time taken shown in the figures and tables are in seconds. Most of the tests returned
similar results in terms of accuracy and performance. In order to reduce the number of
numerical results included, we present detailed tests for exp(−r2) only.

6.5.3.1 Gaussian

The Gaussian radial basis function is given by φ(r) = exp(−r2). We present detailed results
for this function as it is widely used in many radial basis function interpolation. Another
reason is that among all the radial basis functions we considered, the Gaussian and the
inverse quadric show the slowest decay of singular-values of the off-diagonal block. For all
the radial basis functions, the relative error obtained using the N log2N algorithm is nearly
the same as the relative error obtained using the N logN algorithm. This highlights the
fact that in our case the HODLR systems are in fact p-HSS systems as well.

The comparison of these fast algorithms with eigen [55], an efficient C++ linear algebra
package, highlights the performance of these fast algorithms. Since we use a partially pivoted
LU factorization to solve the linear system using eigen, the total time scales as O(N3). We
observe a huge reduction in running time with these fast new algorithms. The relative error
between eigen and the proposed algorithm is also very small because of the rapid decay of
the singular values (6.3). Further, between the fast algorithms, the difference in asymptotic
scaling between O(N logN) and O(N log2N) is rather important as the figures (6.4), (6.5)
and table (6.4) indicate. A detailed analysis of the assembly time and solve time at each
level for the fast algorithms is shown in figure (6.6). Level 0 is the root and level 16 is the
leaf. This clearly highlights the difference in the computational cost between the two fast
algorithms. For the O(N log2N) algorithm, the assembly time remains nearly the same
across all levels. However, the solve time grows linearly with the number of levels. This
is consistent with our analysis in section 6.4.1. In the case of the O(N logN) algorithm,
the assembly time (except for the last few levels close to the leaf) and the solve time both
remain the same at all levels. The fact that the time taken at all levels is almost the same,
is again consistent with our analysis in section 6.4.1. The increase in assembly time for the
last few levels is due to the fact that there is a proliferation of small problems and hence
hardware effects such as the size of the memory cache play a role. Also, at the leaf level, few
additional computations are needed to assemble the system and hence this too increases the
computation time at the leaf level.
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Figure 6.4: Keeping the system size fixed at 8192; Left: Relative error; Middle: Time taken
to assemble in seconds; Right: Time taken to solve in seconds; versus rank of the off-diagonal
blocks
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Table 6.4: Time taken to solve a linear system as a function of the system size holding the
rank of the off-diagonal blocks fixed at 30.

System
Size

Time taken

Eigen N log2N N logN

Assembly Solve Total Assembly Solve Total Assembly Solve Total

256 1.5 · 10−2 1.1 · 10−1 1.2 · 10−1 7.1 · 10−2 5.1 · 10−1 5.8 · 10−1 2.0 · 10−2 2.4 · 10−1 2.6 · 10−1

512 7.5 · 10−2 8.0 · 10−1 8.7 · 10−1 2.1 · 10−1 1.3 · 10+0 1.5 · 10+0 6.2 · 10−2 5.6 · 10−1 6.3 · 10−1

1024 3.5 · 10−1 5.9 · 10+0 6.2 · 10+0 7.8 · 10−1 3.7 · 10+0 4.5 · 10+0 2.5 · 10−1 1.2 · 10+0 1.5 · 10+0

2048 1.4 · 10+0 4.4 · 10+1 4.5 · 10+1 2.0 · 10+0 9.1 · 10+0 1.1 · 10+1 6.6 · 10−1 2.7 · 10+0 3.3 · 10+0

4096 5.6 · 10+0 3.4 · 10+2 3.4 · 10+2 4.5 · 10+0 2.1 · 10+1 2.5 · 10+1 1.6 · 10+0 5.9 · 10+0 7.5 · 10+0

8192 2.3 · 10+1 2.7 · 10+3 2.7 · 10+3 1.0 · 10+1 4.7 · 10+1 5.7 · 10+1 3.6 · 10+0 1.3 · 10+1 1.7 · 10+1

16384 − − − 2.2 · 10+1 1.0 · 10+2 1.3 · 10+2 7.9 · 10+0 2.8 · 10+1 3.6 · 10+1

32768 − − − 4.7 · 10+1 2.3 · 10+2 2.7 · 10+2 1.7 · 10+1 6.1 · 10+1 7.9 · 10+1

65536 − − − 1.0 · 10+2 4.9 · 10+2 5.9 · 10+2 3.7 · 10+1 1.3 · 10+2 1.7 · 10+2

131072 − − − 2.2 · 10+2 1.1 · 10+3 1.3 · 10+3 8.1 · 10+1 2.8 · 10+2 3.6 · 10+2

262144 − − − 4.7 · 10+2 2.2 · 10+3 2.7 · 10+3 1.7 · 10+2 6.1 · 10+2 7.8 · 10+2

524288 − − − 1.0 · 10+3 4.8 · 10+3 5.8 · 10+3 3.7 · 10+2 1.3 · 10+3 1.7 · 10+3

1048576 − − − 2.1 · 10+3 1.0 · 10+4 1.2 · 10+4 7.8 · 10+2 2.7 · 10+3 3.5 · 10+3
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Figure 6.6: Split up of the time taken by the algorithms at each level for a 1, 048, 576 ×
1, 048, 576 system. Left: N log2N algorithm; Right: N logN algorithm
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6.5.3.2 Quadric biharmonic

The quadric biharmonic radial basis function is given by φ(r) = 1 + (r/a)2. The exact rank
of the off-diagonal blocks is 3 since the radial basis function is a quadratic polynomial in
r, which can also be seen in figure (6.3). However, since we are constructing the low-rank
using θ, we have that φ(rij) = 1 + 4 sin2 ((θi − θj)/2) and hence around 15 terms are needed
to construct a good low-rank approximation. The relative error as a function of rank and
system size are plotted in figure (6.7).
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Figure 6.7: Relative error for 1 + (r/a)2. Left: versus rank for a system size of 8192 (the
green and blue curves overlap); Right: versus system size keeping the off-diagonal rank as
30.

6.5.3.3 Multi-quadric biharmonic

The radial basis function is given by φ(r) =
√

1 + (r/a)2. The decay of the singular-values of
the off-diagonal blocks is moderate and the 25th singular-value is close to machine precision
as seen in figure (6.3). The relative error as a function of rank and system size are plotted
in figure (6.8).

6.5.3.4 Inverse quadric biharmonic

The radial basis function is given by φ(r) = 1
1+(r/a)2 . The decay of the singular-values of

the off-diagonal blocks is very similar to the decay of the Gaussian. As before, the 25th
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Figure 6.8: Relative error for
√

1 + (r/a)2. Left: versus rank for a system size of 8192;
Right: versus system size keeping the off-diagonal rank as 30.

singular-value is close to machine precision as seen in figure (6.3). The relative error as a
function of rank and system size are plotted in figure (6.9).
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Figure 6.9: Relative error for 1
1+(r/a)2 . Left: versus rank for a system size of 8192; Right:

versus system size keeping the off-diagonal rank as 30.
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6.5.3.5 Inverse multi-quadric biharmonic

The radial basis function is given by φ(r) = 1√
1+(r/a)2 . The decay of the singular-values of

the off-diagonal blocks is slightly faster than inverse quadric biharmonic but slower than
multi-quadric biharmonic. As before, the 25th singular-value is close to machine precision as
seen in figure (6.3). The relative error as a function of rank and system size are plotted in
figure (6.10).
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Figure 6.10: Relative error for 1√
1+(r/a)2 . Left: versus rank for a system size of 8192; Right:

versus system size keeping the off-diagonal rank as 30.

6.5.3.6 Exponential

The radial basis function is given by φ(r) = exp(−r/a). The decay of the singular-values
of the off-diagonal blocks is rapid. The 15th singular-value is close to machine precision as
seen in figure (6.3). It is to be noted that even though the condition number of the system
formed using the exponential radial basis function is relatively large, i.e., around 2 · 106, this
does not seem to affect the relative error of the solution obtained using the fast algorithm as
seen in figure (6.11).

6.5.3.7 Logarithm

The radial basis function is given by φ(r) = log(1 + r/a). The decay of the singular-values of
the off-diagonal blocks is similar to exp(−r/a). The 15th singular-value is close to machine
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Figure 6.11: Relative error for exp(−r/a). Left: versus rank for a system size of 8192; Right:
versus system size keeping the off-diagonal rank as 30.

precision as seen in figure (6.3). It is also to be noted that, similar to the exponential radial
basis function, the condition number for the system formed using the logarithm radial basis
function is also large, i.e., around 2 · 107. However, this does not seem to affect the relative
error of the solution obtained using the fast algorithm as seen in figure (6.12).
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Figure 6.12: Relative error for log(1 + r/a). Left: versus rank for a system size of 8192;
Right: versus system size keeping the off-diagonal rank as 30.
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6.6 Conclusions

We have presented a new algorithm for solving linear systems that have a partial hierarchically
semi-separable structure. Such systems occur frequently in many applications, for example
when the underlying kernel is smooth and non-oscillatory. The algorithm presented has
a computational complexity of O(N logN) and a storage cost of O(N logN). We have
illustrated the application of the solver with detailed numerical benchmarks. These numerical
benchmarks validate the fact that the computational complexity is O(N logN) and the
robustness of the method. The main advantage of this algorithm is that it is not only
conceptually easy to understand and implement, but also quite general and robust as
the numerical benchmarks indicate. The algorithm was implemented both in C++ and
MATLAB.



Chapter 7

Extended sparsification based fast
direct solvers

7.1 Introduction

In this chapter, we discuss another new approach to solve HODLR and HSS matrices. This
new approach is promising since it not only constructs an O(N) linear solver for the HSS
linear system but also could also be extended to more general H and H2 linear systems. As
discussed in chapter 3, all the different hierarchical structures fall into four main classes:

1. Hierarchically Off-Diagonal Low-Rank, abbreviated as HODLR.

2. Hierarchically Semi-Separable, abbreviated as HSS.

3. Generic hierarchical matrix, denoted as H matrix.

4. Generic hierarchical matrix with nested low-rank structure, H2 matrix.

Matrix vector products for the above hierarchical matrices can be computed in almost
linear complexity 7.1. Also as discussed in chapter 3 matrices arising out of the fast
multipole [50, 51] algorithm are a strict subclass of the H2 matrices. Recently, there has
been an increasing focus on constructing fast direct solvers for these hierarchical matrices.
This endeavor has been fruitful in the case of HODLR and HSS matrices [2, 21, 23, 65, 79, 88].
Fast direct solvers for H and H2 matrices is still active research area and we refer the readers
to [59–62] for some progress in this direction.

100
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Table 7.1: Computational cost for matrix vector product for different hierarchical structures.

HODLR HSS H H2

O(N logN) O(N) O(N logN) O(N)

The present work attempts to present a unified approach for solving all these different
hierarchical matrices. The key, new idea behind this approach is that one form of sparsity
can be converted into another form of sparsity, which can then be exploited. To be specific,
the data-sparse hierarchical matrix can exactly be represented as a larger structured sparse
matrix. (We use the term sparse matrix to mean zero fill-in. This should not be confused
with data-sparsity.) The structure of the larger sparse matrix can then be exploited to
solve the linear system in almost linear complexity. Table 7.2 presents the computational
complexity of the fast direct solvers discussed in this chapter. We also illustrate the algorithm

Table 7.2: Computational cost for the fast direct solver discussed in this chapter.

HODLR HSS
O(N log2N) O(N)

by benchmarking it for the different hierarchical structures. The next section is the core
of the work. It presents the different hierarchical structures, discusses the algorithm for
solving these systems in almost linear complexity and provides numerical benchmark. We
briefly discuss constructing the different hierarchical matrices, but we keep the discussion to
a minimum and provide references so that the reader can look up constructing the dense
hierarchical structures in almost linear complexity. The main focus of this chapter are the
following:

1. Converting a hierarchical structure into a larger sparser matrix.

2. Universality of the self-similar sparse matrix structure for a given hierarchical
matrix.

3. Pattern of fill-in during fast LU factorization of the larger sparse matrix (equivalently,
a fast direct solver for the original hierarchical matrix) by optimal ordering of the
unknowns and equations of the larger sparse matrix.
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7.2 Extended sparsification approach

As shown in the Euler diagram in Figure 3.1, there are different hierarchical structures
depending on the tree structure and algorithms to obtain low-rank different matrix. In
this chapter, we shall focus on constructing fast solvers for hierarchical matrices with weak
admissibility criteria, i.e., HSS and HODLR matrices. It is to be noted that the technique
discussed in the next few sections can be extended to hierarchical matrix with strong
admissibility criteria, i.e., H and H2 matrices, as well. This is the subject of my current
work.

Before discussing our algorithm, we present a brief discussion of previous works in this
direction and our new contribution. The idea of extended sparsification has been considered
before in the article by Chandrasekaran et al. [23], though only in the context of HSS
matrices. The algorithm for HSS matrices is fairly easier since in the elimination process
there are no new fill-ins. In our approach, we also deal with a slightly larger class of HODLR
matrices.

It is also to be noted that Greengard et al. [53] present the idea of representing the
dense matrix as an extended sparse matrix. The article presents a single-level fast solver
whose scaling is not O(N) and due to which compressing the fill-ins, which is important
to extend the strategy in a multi-level setting, is not discussed in detail. In the figures
discussed in the next few sub-section, the following color code will be followed. Red color
will be used to denote matrices capturing the self-self interaction and the translation (M2L)
matrices. Green color will be used to denote the gather/anterpolation/M2M operator and
the scatter/interpolation/L2L matrices. Blue color will denote the negative identity matrix.

7.2.1 Fast direct solver for HODLR matrices

We are interested in solving an equation of the form

K
(0)
1 x(0) = b(0)

where K(0)
1 ∈ HODLR(N, r, κ), x(0), b(0) ∈ RN×1. We refer the readers to [2, 79] and the

earlier chapters 3 and 6, where this structure has been discussed in more detail. This dense
HODLR linear system is converted into a larger sparse structured system as follows. Let us
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proceed one level into the tree, we then have K
(1)
1 U

(1)
1 K

(1)
1,2V

(1)T
2

U
(1)
2 K

(1)
2,1V

(1)T
1 K

(1)
2

x(1)
1

x
(1)
2

 =

b(1)
1

b
(1)
2

 (7.1)

Now introduce the following new variables:

y
(1)
1 = V

(1)T
1 x

(1)
1 ; y(1)

2 = V
(1)T

2 x
(1)
2 ; z(1)

1 = K
(1)
1,2y

(1)
2 ; z(1)

2 = K
(1)
2,1y

(1)
1

For those familiar, with the FMM, y(k)
i ’s account for the particle to multipole tranfer, and

z
(k)
i ’s account for the multipole to local transfer. In the context of FMM, the y(k)

i ’s are
termed the multipole coefficients and z(k)

i ’s are termed the local coefficients. We shall borrow
the terminology. Introducing these new variables and reordering the variables and equations
appropriately, we see that (7.1) can be rewritten as (7.4). Now stepping one more level
into the tree, we see that Equation (7.4) becomes (7.5). As with the previous level, let
us introduce the following new variables; The variables that account for the particle to
multipole transfer:

y
(2)
1 = V

(2)T
1 x

(2)
1 ; y(2)

2 = V
(2)T

2 x
(2)
2 ; y(2)

3 = V
(2)T

3 x
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3 ; y(2)

4 = V
(2)T

4 x
(2)
4 ;

and the variables that account for the multipole to local transfer:

z
(2)
1 = K

(2)
1,2y

(2)
2 ; z(2)

2 = K
(2)
2,1y

(2)
1 ; z(2)

3 = K
(2)
3,4y

(2)
4 ; z(2)

4 = K
(2)
4,3y

(2)
3 ;

Again, with these new variables, reordering the equations and variables, we see that (7.5)
can be written as (7.6). Hence, solving the linear system K

(0)
1 x

(0)
1 = b

(0)
1 is equivalent to

solving the new sparser system in Equation (7.2).

Ksparsexnew = bnew (7.2)

where Ksparse is the sparsified new matrix as seen in Equations (7.4)– (7.6) and Figure 7.1,

xnew =
[
x

(0)T
1 z(κ)T y(κ)T z(κ−1)T y(κ−1)T · · · z(1)T y(1)T

]T
and bnew =

b(0)
1

0

 ,
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The vectors z(k) and y(k) consists of all the local and multipole coefficients, respectively, at
level k, i.e.,

z(k)T =
[
z

(k)
1 z

(k)
2 · · · z

(k)
2k

]
and y(k)T =

[
y

(k)
1 y

(k)
2 · · · y

(k)
2k

]
.

We can see the pattern arising by looking at Equations (7.4) and (7.6). We will now pictorially
describe the pattern of a κ level HODLR matrix, i.e, K(0)

1 ∈ HODLR(N, r, κ). In all the

pictorial illustration, we will assume that r = N

2κ+1 . Figure 7.1 presents the pictorial pattern
in the sparse equivalent of the hierarchical matrix (we have taken κ = 4). The variables
and equations are reordered in such a way that the elimination proceeds from the top-left
and proceeds along the south-east direction, as shown in the set of figures. To be specific,
the ordering of the variables and equations in the matrix are as described in Table 7.3 and
Table 7.4 respectively. It is to be noted that the ordering of the variables and equations

Table 7.3: Ordering of unknowns

• The first set of variables are the unknowns of the original dense matrix, i.e., x(κ)
i ,

where i ∈ {1, 2, . . . , 2κ}. These variables are then followed by

• For level k = κ→ 1,

– The z(k)
i ’s: The local coefficients at level k, where i ∈ {1, 2, . . . , 2k}.

– The y(k)
i ’s: The multipole coefficients at level k, where i ∈ {1, 2, . . . , 2k}.

is crucial not only to maintain the self-similar sparsity pattern as we proceed through the
elimination process but more importantly to minimize the fill-in. Another important aspect is
that this ordering of unknowns and equations —to minize the fill-in and gain computational
mileage —is universal for all hierarchical matrices, irrespective of them being HODLR or
HSS or H or H2. We will return to this when we discuss the other hierarchical structures.

The elimination process —the self-similar sparsity structure and the fill-in—is pictorially
represented through Figures 7.1– 7.9. Note that after the first set of eliminations, there is a
fill-in of O(rN log2(N)) as seen in Figure 7.2. However, in the subsequent steps, there are
no additional fill-ins. From the set of figures, it is also clear that the computational cost can
be obtained using the recurrence (7.3), where C(N ; k, r) denotes the computational cost for
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Table 7.4: Ordering of equations

• The first set of equations contain the x(κ)
i ’s and the local coefficients at all levels, i.e.,

z
(k)
i ’s, where k ∈ {1, 2, . . . , κ} and i ∈ {1, 2, . . . , 2k}, i.e., the particle to local transfer
at all levels. This is followed by the equations capturing the relation between

• For level k = κ→ 1

– The x(κ)
i ’s and the multipole coefficients, y(k)

i , where i ∈ {1, 2, . . . , 2k}, i.e., the
particle to multipole transfer at level k.

– The local coefficients, z(k)
i and the multipole coefficients, y(k)

i , where i ∈
{1, 2, . . . , 2k}, i.e., the multipole to local transfer at level k.

the factorization of a k–level N ×N HODLR matrix and r is the rank of the off-diagonal
blocks at each level.

C(N ; k, r) = C

(
N

2 ; k − 1, r
)

+O(Nk2r2) (7.3)

where N is the size of the matrix at level k. Solving the recurence gives us

C(N ;κ, r) = O
(
Nκ2r2

)
+O

(
N

2 (κ− 1)2r2
)

+ · · ·

where κ = log2

(
N

2r

)
. Hence,

C(N ;κ, r) = O
(

κ∑
k=1

N

2κ−k k
2r2
)

= O
(
N

2κ 2κκ2r2
)

= O
(
r2N log2(N)

)
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(1)
1 0 U

(1)
1 0 0 0

0 K
(1)
2 0 U

(1)
2 0 0

V
(1)T

1 0 0 0 −I 0
0 V

(1)T
2 0 0 0 −I

0 0 −I 0 0 K
(1)
1,2

0 0 0 −I K
(1)
2,1 0





x
(1)
1

x
(1)
2

z
(1)
1

z
(1)
2

y
(1)
1

y
(1)
2


=



b
(1)
1

b
(1)
2

0
0
0
0


(7.4)



 K
(2)
1 U

(2)
1 K

(2)
1,2V

(2)T
2

U
(2)
2 K

(2)
2,1V

(2)T
1 K

(2)
2

 0 U
(1)
1 0 0 0

0

 K
(2)
3 U

(2)
3 K

(2)
3,4V

(2)T
4

U
(2)
4 K

(2)
4,3V

(2)T
3 K

(2)
4

 0 U
(1)
2 0 0

V
(1)T

1 0 0 0 −I 0
0 V

(1)T
2 0 0 0 −I

0 0 −I 0 0 K
(1)
1,2

0 0 0 −I K
(1)
2,1 0





x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
4

z
(1)T
1

z
(1)T
2

y
(1)T
1

y
(1)T
2



=



b
(2)
1

b
(2)
2

b
(2)
3

b
(2)
4

0
0
0
0



(7.5)
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

K
(2)
1 0 0 0 U

(2)
1 0 0 0 0 0 0 0

U
(1)
1 0 0 0

0 K
(2)
2 0 0 0 U

(2)
2 0 0 0 0 0 0

0 0 K
(2)
3 0 0 0 U

(2)
3 0 0 0 0 0

0 U
(1)
2 0 0

0 0 0 K
(2)
4 0 0 0 U

(2)
4 0 0 0 0

V
(2)T

1 0 0 0 0 0 0 0 −I 0 0 0
0 0 0 0

0 V
(2)T

2 0 0 0 0 0 0 0 −I 0 0
0 0 V

(2)T
3 0 0 0 0 0 0 0 −I 0

0 0 0 0
0 0 0 V

(2)T
4 0 0 0 0 0 0 0 −I

0 0 0 0 −I 0 0 0 0 K
(2)
1,2 0 0

0 0 0 0
0 0 0 0 0 −I 0 0 K

(2)
2,1 0 0 0

0 0 0 0 0 0 −I 0 0 0 0 K
(2)
3,4 0 0 0 0

0 0 0 0 0 0 0 −I 0 0 K
(2)
4,3 0

V
(1)T

1 0 0 0 0 0 0 0 −I 0
0 V

(1)T
2 0 0 0 0 0 0 0 −I

0 0 0 0 0 0 −I 0 0 K
(1)
1,2

0 0 0 0 0 0 0 −I K
(1)
2,1 0





x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
4

z
(2)
1

z
(2)
2

z
(2)
3

z
(2)
4

y
(2)
1

y
(2)
2

y
(2)
3

y
(2)
4

z
(1)T
1

z
(1)T
2

y
(1)T
1

y
(1)T
2



=



b
(2)
1

b
(2)
2

b
(2)
3

b
(2)
4

0
0
0
0
0
0
0
0
0
0
0
0


(7.6)
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Figure 7.1: The sparsified matrix at the lowest level
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Figure 7.2: The sparsified matrix: After the first set of eliminations.
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Figure 7.3: The sparsified matrix: After the second set of eliminations.
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Figure 7.4: The sparsified matrix: After the third set of eliminations.

Figure 7.5: The sparsified matrix: After the fourth set of eliminations.
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Figure 7.6: The sparsified matrix: After the fifth set of eliminations.

Figure 7.7: The sparsified matrix: After the sixth set of eliminations.

Figure 7.8: The sparsified matrix: After the seventh set of eliminations.

Figure 7.9: The sparsified matrix: After the eigth set of eliminations.
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7.2.2 Numerical benchmark

We present a numerical benchmark for the above algorithm on HODLR matrices. We
consider a set of points distributed uniformly at random in the interval [−1, 1]. The matrix
of interaction is given by the kernel K(xi, xj) = exp(−|xi−xj |). The rank of the off-diagonal
blocks is taken as 8 at all levels.
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Figure 7.10: Left: Comparison of relative error versus system size; Right: Comparison of
time taken versus system size.

7.2.3 Fast direct solver for HSS matrices

Consider K(0)
1 x

(0)
1 = b

(0)
1 , where K(0)

1 ∈ HSS(N, r, κ),
x =

[
x

(κ)
1 x

(κ)
2 x

(κ)
3 · · · x

(κ)
2κ
]T

and b =
[
b
(κ)
1 b

(κ)
2 b

(κ)
3 · · · b

(κ)
2κ
]T

. Refer the earlier
chapters 3 and 6 for a discussion of HSS matrices. As with the HODLR matrices, let us
introduce the new variables. In the HSS case, the new variables will take into account: the
particle to multipole transfer at the lowest level, the multipole to multipole transfer at the
rest of the levels and the multipole to local/particle transfer at the different levels.

1. Particle to multipole at the leaf level:

y
(κ)
` = V

(κ)T
` x

(κ)
` ,

where ` ∈ {1, 2, . . . , 2κ}. y(κ)
` ’s are the multipole coefficients at the κth level and take

into account the particle to multipole tranfer.
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2. Multipole to Multipole:

y
(k)
` = R

(k+1)T
2`−1 y

(k+1)
2`−1 +R

(k+1)T
2` y

(k+1)
2` ,

where ` ∈ {1, 2, . . . , 2k} and k ∈ {κ−1, κ−2, . . . , 1}. y(k)
` ’s are the multipole coefficients

at the kth level and take into account the multipole to multipole tranfer.

3. Multipole to Local and Local to local:

z
(1)
1 = K

(1)
1,2y

(1)
2 ; z(1)

2 = K
(1)
2,1y

(1)
1

z
(k)
2`−1 = K

(k)
2`−1,2`y

(k)
2`︸ ︷︷ ︸

Multipole to local

+S
(k)
2`−1z

(k−1)
`︸ ︷︷ ︸

Local to local

; z(k)
2` = K

(k)
2`,2`−1y

(k)
2`−1︸ ︷︷ ︸

Multipole to local

+ S
(k)
2` z

(k−1)
`︸ ︷︷ ︸

Local to local

4. Local to particle at the leaf level:

b
(κ)
` = K

(κ)
` x

(κ)
` + U

(κ)
` z

(κ)
`

where ` ∈ {1, 2, . . . , 2κ}.

7.2.3.1 Sparse representation of HSS matrices

Let us illustrate this in detail for a 2 level HSS tree and pictorially explain this for a 4 level
HSS tree.

K =

 K
(1)
1 U

(1)
1 K

(1)
1,2V

(1)T
2

U
(1)
2 K

(1)
2,1V

(1)T
1 K

(1)
2



=



 K
(2)
1 U

(2)
1 K

(2)
1,2V

(2)T
2

U
(2)
2 K

(2)
2,1V

(2)T
1 K

(2)
2

 U (2)
1 S

(2)
1

U
(2)
2 S

(2)
2

K(1)
1,2

V (2)
3 R

(2)
3

V
(2)

4 R
(2)
4

T
U (2)

3 S
(2)
3

U
(2)
4 S

(2)
4

K(1)
2,1

V (2)
1 R

(2)
1

V
(2)

2 R
(2)
2

T  K
(2)
3 U

(2)
3 K

(2)
3,4V

(2)T
4

U
(2)
4 K

(2)
4,3V

(2)T
3 K

(2)
4




1. Particle to multipole tranfer:

y
(2)
1 = V

(2)T
1 x

(2)
1 ; y(2)

2 = V
(2)T

2 x
(2)
2 ; y(2)

3 = V
(2)T

3 x
(2)
3 ; y(2)

4 = V
(2)T

4 x
(2)
4
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2. Multipole to multipole tranfer:

y
(1)
1 = R

(2)T
1 y

(2)
1 +R

(2)T
2 y

(2)
2 ; y(1)

2 = R
(2)T
3 y

(2)
3 +R

(2)T
4 y

(2)
4

3. Multipole to local and local to local transfers:

z
(1)
1 = K

(1)
1,2y

(1)
2 ; z(1)

2 = K
(1)
2,1y

(1)
1

z
(2)
1 = K

(2)
1,2y

(2)
2 + S

(2)
1 z

(1)
1 ; z(2)

2 = K
(2)
2,1y

(2)
1 + S

(2)
2 z

(1)
1 ;

z
(2)
3 = K

(2)
3,4y

(2)
4 + S

(2)
3 z

(1)
2 ; z(2)

4 = K
(2)
4,3y

(2)
3 + S

(2)
4 z

(1)
2

4. Local to particle transfer:

b
(2)
1 = K

(2)
1 x

(2)
1 + U

(2)
1 z

(2)
1 ; b(2)

2 = K
(2)
2 x

(2)
2 + U

(2)
2 z

(2)
2 ;

b
(2)
3 = K

(2)
3 x

(2)
3 + U

(2)
3 z

(2)
3 ; b(2)

4 = K
(2)
4 x

(2)
4 + U

(2)
4 z

(2)
4

Introducing these variables and with appropriate ordering of equations and unknowns we
obtain the Equation (7.8). The ordering of the variables remains the same as shown in
Table 7.3. The ordering of the equations remain more or less the same and this has been
discussed in Table 7.5. It is to be noted that, as in the HODLR case, the ordering of the
variables and equations is crucial for the same reasons. Hence, solving K(0)

1 x
(0)
1 = b

(0)
1 is

equivalent to solving Ksparsexnew = bnew, where a 2-level Ksparse is as shown in Equation (7.8)
and a 4-level Ksparse is as shown in Figure 7.11,

xnew =
[
x

(0)T
1 z(κ)T y(κ)T z(κ−1)T y(κ−1)T · · · z(1)T y(1)T

]T
and bnew =

b(0)
1

0

 ,
The vectors z(k) and y(k) consists of all the local and multipole coefficients, respectively, at
level k, i.e.,

z(k)T =
[
z

(k)
1 z

(k)
2 · · · z

(k)
2k

]
and y(k)T =

[
y

(k)
1 y

(k)
2 · · · y

(k)
2k

]
.
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Table 7.5: Ordering of equations

• The first set of equations contain the x(κ)
i ’s and the local coefficients at all levels, i.e.,

z
(k)
i ’s, where k ∈ {1, 2, . . . , κ} and i ∈ {1, 2, . . . , 2k}, i.e., the local to particle tranfer.

• This is followed by the equations capturing the relation between x(κ)
i ’s and the multipole

coefficients, y(k)
i , where i ∈ {1, 2, . . . , 2k}, i.e, the particle to multipole tranfer. This is

then followed by the equation capturing the relation between

• For level k = κ→ 2

– The local coefficients, z(k)
i and the multipole coefficients, y(k)

i , and the local
coefficients z(k−1)

j , where i ∈ {1, 2, . . . , 2k} and j ∈ {1, 2, . . . , 2k−1}, i.e., the
multipole to local and local to local transfers at level k.

– The multipole coefficients, y(k)
i and the multipole coefficients, y(k−1)

i , i.e., the
multipole to multipole transfers at level k.

• The local coefficients z(1)
i at level 1 and the multipole coefficients at level 1, where

i ∈ {1, 2}, i.e., the multipole to local transfers at level 1.
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The elimination is explained pictorially through Figures 7.11 – 7.19. As with the sparse
HODLR matrix, the elimination proceeds from the top-left and proceeds along the south-east
direction, as shown in Figures 7.11– 7.19.

Note that as the elimination proceeds the self-similar sparsity structure and the fill-in
is preserved. There is no additional fill-in as we proceed through the elimination process
as shown in Figure 7.11 through Figure 7.19. From the set of Figures 7.11– 7.19, the
computational cost can be obtained through the recurrence (7.7), where C(N ; k, r) denotes
the computational cost for the factorization of a k-level N ×N HSS matrix and r is the
rank of the off-diagonal blocks at each level.

C(N ; k, r) = C

(
N

2 ; k − 1, r
)

+O(Nr2) (7.7)

Solving the above recurence with κ = log2

(
N

2r

)
gives us

C(N ;κ, r) = O
(
Nr2

)
+O

(
N

2 r
2
)

+O
(
N

4 r
2
)

+ · · · = O
(

κ∑
k=1

N

2κ−k r
2
)

= O(r2N)
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

b
(2)
1

b
(2)
2

b
(2)
3

b
(2)
4

0
0
0
0
0
0
0
0
0
0
0
0



=



K
(2)
1 0 0 0 U

(2)
1 0 0 0 0 0 0 0 0 0 0 0

0 K
(2)
2 0 0 0 U

(2)
2 0 0 0 0 0 0 0 0 0 0

0 0 K
(2)
3 0 0 0 U

(2)
3 0 0 0 0 0 0 0 0 0

0 0 0 K
(2)
4 0 0 0 U

(2)
4 0 0 0 0 0 0 0 0

V
(2)T

1 0 0 0 0 0 0 0 −I 0 0 0 0 0 0 0
0 V

(2)T
2 0 0 0 0 0 0 0 −I 0 0 0 0 0 0

0 0 V
(2)T

3 0 0 0 0 0 0 0 −I 0 0 0 0 0
0 0 0 V

(2)T
4 0 0 0 0 0 0 0 −I 0 0 0 0

0 0 0 0 −I 0 0 0 0 K1,2 0 0 S
(2)
1 0 0 0

0 0 0 0 0 −I 0 0 K2,1 0 0 0 S
(2)
2 0 0 0

0 0 0 0 0 0 −I 0 0 0 0 K3,4 0 S
(2)
3 0 0

0 0 0 0 0 0 0 −I 0 0 K4,3 0 0 S
(2)
4 0 0

0 0 0 0 0 0 0 0 R
(2)T
1 R

(2)T
2 0 0 0 0 −I 0

0 0 0 0 0 0 0 0 0 0 R
(2)T
3 R

(2)T
4 0 0 0 −I

0 0 0 0 0 0 0 0 0 0 0 0 −I 0 0 K
(1)
1,2

0 0 0 0 0 0 0 0 0 0 0 0 0 −I K
(1)
2,1 0


︸ ︷︷ ︸

The matrix A



x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
4

z
(2)
1

z
(2)
2
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Figure 7.11: The sparsified matrix at the lowest level
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Figure 7.12: The sparsified matrix: After the first set of eliminations.



7.2.
EX

T
EN

D
ED

SPA
R

SIFIC
AT

IO
N

A
PPR

O
A

C
H

121

Figure 7.13: The sparsified matrix: After the second set of eliminations.
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Figure 7.14: The sparsified matrix: After the third set of eliminations.

Figure 7.15: The sparsified matrix: After the fourth set of eliminations.
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Figure 7.16: The sparsified matrix: After the fifth set of eliminations.

Figure 7.17: The sparsified matrix: After the sixth set of eliminations.

Figure 7.18: The sparsified matrix: After the seventh set of eliminations.

Figure 7.19: The sparsified matrix: After the eigth set of eliminations.
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7.2.4 Numerical benchmark

We present a numerical benchmark for the above algorithm on HSS matrices. We consider
a set of points distributed uniformly at random in the interval [−1, 1]. The matrix of
interaction is given by the kernel K(xi, xj) = exp(−|xi − xj |). The rank of the off-diagonal
blocks is taken as 8 at all levels.
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Figure 7.20: Left: Comparison of relative error versus system size; Right: Comparison of
time taken versus system size.

7.3 Conclusions

In this chapter, we presented a new algorithm based on extended sparsification approach
for constructing fast direct solvers. The algorithm was presented in the context of HSS
and HODLR matrices. The advantage of this approach as opposed to the factorization
based fast direct solvers is that this can be extended to the more general class of H and
H2 matrices, though this is slightly non-trivial. To achieve linear complexity for H and H2

matrices, it is to be emphasized that, when performing the elimination of unknowns to solve
the extended sparse linear system, the interaction between the unknowns corresponding to the
well-separated clusters at all stages in the elimination process can be efficiently compressed
as low-rank. This implies, after an appropriate ordering of equations and unknowns, while
we perform the elimination, the fill-in that occurs in the elimination process corresponding
to well-separated clusters can be compressed and efficiently represented as a low-rank matrix.



Chapter 8

Summary and Conclusions

The main contribution of the thesis is the pleasure I derived from working on these problems
and algorithms. The other contributions of the thesis include a new set of fast direct
solvers for hierarchical matrices with weak admissibility criteria, addressing challenging
computational issues in the context of large-scale linear inverse problems and a novel
computationally efficient Kalman filtering algorithm. All the fast algorithms discussed in
this thesis rely on exploiting the underlying symmetry and hierarchical nature of problems
arising from physical applications.

The idea of extended sparsification in constructing fast direct solvers for hierarchical
matrices with weak admissibility criteria can also be extended to the more general class
of hierarchical matrices, i.e., H and H2 matrices. However, there are a few additional
operations involved. For instance, as we proceed through with the elimination, fill-ins
occur at blocks, where ideally we do not want fill-ins. However, these fill-ins are low-rank,
i.e., can be compressed again. This is because these fill-ins occur at blocks corresponding
to well-separated clusters. The extended sparse matrix approach of viewing hierarchical
matrices is a promising approach and could probably be extended to perform all H-matrix
operations in (almost) linear complexity. In general, hierarchical matrices open up new
paths to many of the dense matrix algebra problems, which were inaccessible before. More
over, the sparse matrix approach based on extended variables provides a:

• New conceptual framework to view hierarchical matrices.

• Interesting interplay between low-rank sparsity and zero fill-in sparsity.

• Template for different dense hierarchical systems
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• Ideal platform for developing linear algebra packages.

• More scalable approach on parallel machines than recursive algorithms.

The key take home ideas from this dissertation are the following: Low-rank, Hierarchical
structure, and extended sparsity. The motivation for the research in the dissertation is the
following mantra:

“A good computation is one that does the least computation to obtain the right answer.”
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