
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Fast and Light Bandwidth Testing for Internet Users
Xinlei Yang, Xianlong Wang, Zhenhua Li, and Yunhao Liu, Tsinghua University;

Feng Qian, University of Minnesota; Liangyi Gong, Tsinghua University;
Rui Miao, Alibaba Group; Tianyin Xu, University of Illinois Urbana-Champaign

https://www.usenix.org/conference/nsdi21/presentation/yang-xinlei

Fast and Light Bandwidth Testing for Internet Users

Xinlei Yang1⇤, Xianlong Wang1⇤, Zhenhua Li1, Yunhao Liu1

Feng Qian2, Liangyi Gong1, Rui Miao3, Tianyin Xu4

1Tsinghua University 2University of Minnesota 3Alibaba Group 4UIUC

Abstract
Bandwidth testing measures the access bandwidth of end

hosts, which is crucial to emerging Internet applications for
network-aware content delivery. However, today’s bandwidth
testing services (BTSes) are slow and costly—the tests take a
long time to run, consume excessive data usage at the client
side, and/or require large-scale test server deployments. The
inefficiency and high cost of BTSes root in their methodolo-
gies that use excessive temporal and spatial redundancies for
combating noises in Internet measurement.

This paper presents FastBTS to make BTS fast and cheap
while maintaining high accuracy. The key idea of FastBTS
is to accommodate and exploit the noise rather than repeti-
tively and exhaustively suppress the impact of noise. This is
achieved by a novel statistical sampling framework (termed
fuzzy rejection sampling). We build FastBTS as an end-to-
end BTS that implements fuzzy rejection sampling based on
elastic bandwidth probing and denoised sampling from high-
fidelity windows, together with server selection and multi-
homing support. Our evaluation shows that with only 30 test
servers, FastBTS achieves the same level of accuracy com-
pared to the state-of-the-art BTS (SpeedTest.net) that de-
ploys ⇠12,000 servers. Most importantly, FastBTS makes
bandwidth tests 5.6⇥ faster and 10.7⇥ more data-efficient.

1 Introduction

Access link bandwidth of Internet users commonly consti-
tutes the bottleneck of Internet content delivery, especially
for emerging applications like AR/VR. In traditional resi-
dential broadband networks, the access bandwidth is largely
stable and matches ISPs’ service plans [9, 14, 15]. In recent
years, however, it becomes less transparent and more dynamic,
driven by virtual network operators (VNOs), user mobility,
and infrastructure dynamics [21].

To effectively measure the access bandwidth, bandwidth
testing services (BTSes) have been widely developed and
deployed. BTSes serve as a core component of many appli-
cations that conduct network-aware content delivery [1, 31].
BTSes’ data are cited in government reports, trade press [37],
and ISPs’ advertisements [29]; they play a key role in ISP
customers’ decision making [39]. During COVID-19, BTSes
are top “home networking tips” to support telework [11, 12].
The following lists a few common use cases of BTSes:

⇤ Co-primary authors. Zhenhua Li is the corresponding author.

• VNO has been a popular operation model that resells net-
work services from base carrier(s). The shared nature of
VNOs and their complex interactions with the base carriers
make it challenging to ensure service qualities [69, 72, 78].
Many ISPs and VNOs today either build their own BT-
Ses [2], or recommend end users to use public BTSes. For
example, SpeedTest.net, a popular BTS, serves more than
500M unique visitors per year [4].

• Wireless access is becoming ubiquitous, exhibiting het-
erogeneous and dynamic performance. To assist users to
locate good coverage areas, cellular carriers offer “perfor-
mance maps” [16], and several commercial products (e.g.,
WiFiMaster used by 800M mobile devices [31]) employ
crowd-sourced measurements to probe bandwidth.

• Emerging bandwidth-hungry apps (e.g., UHD videos and
VR/AR), together with bandwidth-fluctuating access net-
works (e.g., 5G), make BTSes an integral component of
modern mobile platforms. For example, the newly released
Android 11 provides 5G apps with a bandwidth estima-
tion API that offers “a rough guide of the expected peak
bandwidth for the first hop of the given transport [20].”

Most of today’s BTSes work in three steps: (1) setup, (2)
bandwidth probing, and (3) bandwidth estimation. During the
setup process, the user client measures its latency to a num-
ber of candidate test servers and selects one or more servers
with low latency. Then, it probes the available bandwidth by
uploading and downloading large files to and from the test
server(s) and records the measured throughput as samples.
Finally, it estimates the overall downlink/uplink bandwidth.

The key challenge of BTSes is to deal with noises of Inter-
net measurements incurred by congestion control, link shar-
ing, etc. Spatially, the noise inflates as the distance (the routing
hop count) increases between the user client and test server.
Temporally, the throughput samples may be constantly fluctu-
ating over time—the shorter the test duration is, the severer
impact on throughput samples the noise can induce. An ef-
fective BTS needs to accurately and efficiently measure the
access bandwidth from noisy throughput samples.

Today’s BTSes are slow and costly. For example, a 5G
bandwidth test using SpeedTest.net for a 1.15 Gbps down-
link takes 15 seconds of time and incurs 1.94 GB of data
usage on end users in order to achieve satisfying test accuracy.
To deploy an effective BTS, hundreds to thousands of test
servers are typically needed. Such a level of cost (both at the

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1011

client and server sides) and long test duration prevent BTSes
from being a foundational, ubiquitous Internet service for
high-speed, metered networks. Based on our measurements
and reverse engineering of 20 commercial BTSes (§2), we
find that the inefficiency and cost of these BTSes fundamen-
tally root in their methodology of relying on temporal and/or
spatial redundancy to deal with noises:

• Temporally, most BTSes rely on a flooding-based band-
width probing approach, which simply injects an excessive
number of packets to ensure that the bottleneck link is sat-
urated by test data rather than noise data. Also, their test
processes often intentionally last for a long time to ensure
the convergence of the probing algorithm.

• Spatially, many BTSes deploy dense, redundant test servers
close to the probing client, in order to avoid “long-distance”
noises. For example, FAST.com and SpeedTest.net deploy
⇠1,000 and ⇠12,000 geo-distributed servers, respectively,
while WiFiMaster controversially exploits a large Internet
content provider’s CDN server pool.

In this paper, we present FastBTS to make BTS fast and
cheap while maintaining high accuracy. Our key idea is to
accommodate and exploit the noise through a novel statisti-
cal sampling framework, which eliminates the need for long
test duration and exhaustive resource usage for suppressing
the impact of noise. Our insight is that the workflow of BTS
can be modeled as a process of acceptance-rejection sam-
pling [43] (or rejection sampling for short). During a test, a
sequence of throughput samples are generated by bandwidth
probing and exhibit a measured distribution P(x), where x
denotes the throughput value of a sample. They are filtered
by the bandwidth estimation algorithm, in the form of an
acceptance-rejection function (ARF), which retains the ac-
cepted samples and discards the rejected samples to model
the target distribution T (x) for calculating the final test result.

The key challenge of FastBTS is that T (x) cannot be known
beforehand. Hence, we cannot apply traditional rejection sam-
pling algorithm that assumes a T (x) and uses it as an input. In
practice, our extensive measurement results show that, while
the noise samples are scattered across a wide throughput in-
terval, the true samples tend to concentrate within a narrow
throughput interval (termed as a crucial interval). Therefore,
one can reasonably model T (x) using the crucial interval, as
long as T (x) is persistently covered by P(x). We name the
above-described technique fuzzy rejection sampling.

FastBTS implements fuzzy rejection sampling with the
architecture shown in Figure 1. First, it narrows down P(x)
as the boundary of T (x) to bootstrap T (x) modeling. This is
done by an Elastic Bandwidth Probing (EBP) mechanism to
tune the transport-layer data probing rate based on its devi-
ation from the currently-estimated bandwidth. Second, we
design a Crucial Interval Sampling (CIS) algorithm, acting
as the ARF, to efficiently calculate the optimal crucial inter-
val with throughput samples (i.e., performing denoised sam-

Server

User Mode

Kernel

CIS

EBP

ARF

Client

Web App

Noise

DSS

AMH

Reject

P(x) Samples

Internet

Accept Result

X

T(x) ?

Figure 1: An architectural overview of FastBTS. The arrows show
the workflows of a bandwidth test in FastBTS.

pling from high-fidelity throughput windows). Also, the Data-
driven Server Selection (DSS) and Adaptive Multi-Homing
(AMH) mechanisms are used to establish multiple parallel
connections with different test servers when necessary. DSS
and AMH together can help saturate the access link, so that
T (x) can be accurately modeled in a short time, even when the
access bandwidth exceeds the capability of each test server.

We have built FastBTS as an end-to-end BTS, consisting
of the FastBTS app for clients, and a Linux kernel module
for test servers. We deploy the FastBTS backend using 30
geo-distributed budget servers, and the FastBTS app on 100+
diverse client hosts. Our key evaluation results are1:
• On the same testbed, FastBTS yields 5%–72% higher aver-

age accuracy than the other BTSes under diverse network
scenarios (including 5G), while incurring 2.3–8.5⇥ shorter
test duration and 3.7–14.2⇥ less data usage.

• Employing only 30 test servers, FastBTS achieves com-
parable accuracy compared with the production system of
SpeedTest.net with ⇠12,000 test servers, while incurring
5.6⇥ shorter test duration and 10.7⇥ less data usage.

• FastBTS flows incur little (<6%) interference to concurrent
non-BTS flows—EBP only ramps up fast when the data rate
is well below the available bandwidth; it slowly grows the
data rate when it is about to hit the bottleneck bandwidth.
To benefit the community, we have released all the source

code at https://FastBTS.github.io and an online proto-
type system at http://FastBTS.thucloud.com.

2 Understanding State-of-The-Art BTSes
2.1 Methodology
We measure a BTS using the following metrics: (1) Test Ac-
curacy measures how well the result (r) reported by a BTS
matches the ground-truth bandwidth R. We calculate the ac-
curacy as r

R . In practice, we observe that all BTSes (including
FastBTS) tend to underestimate the bottleneck bandwidth due
to factors like TCP slow start and congestion control, so the
accuracy values are less than 1.0. (2) Test Duration measures

1In this work, we focus on the downlink bandwidth test due to its impor-
tance to a typical Internet user compared to the uplink.

1012 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the time needed to perform a bandwidth test—from starting
a bandwidth test to returning the test result. (3) Data Usage
measures the consumed network traffic for a test. This metric
is of particular importance to metered LTE and 5G links.

Obtaining ground truth. Measuring test accuracy requires
ground-truth data. However, it is challenging to know all the
ground-truth bandwidths for large measurements. We use best
possible estimations for different types of access links:

• Wired LANs for in-lab experiments. We regard the (known)
physical link bandwidth, with the impact of (our injected)
cross traffic properly considered, as the ground truth.

• Commercial residential broadband and cloud networks. We
collect the bandwidth claimed by the ISPs or cloud service
providers from the service contract, denoted as TC. We
then verify TC by conducting long-lived bulk data transfers
(average value denoted as TB) before and after a bandwidth
test. In more than 90% of our experiments, TB and TC match,
with their difference being less than 5%; thus, we regard
TC as the ground truth. Otherwise, we choose to use TB.

• Cellular networks (LTE and 5G). Due to a lack of TC and
the high dynamics of cellular links, we leverage the results
provided by SpeedTest.net as a baseline reference. Being
the state-of-the-art BTS that owns a massive number of
(⇠12,000) test servers across the globe, SpeedTest.net’s
results are widely considered as a close approximation to
the ground-truth bandwidth [33, 36, 38, 41, 50, 73].

2.2 Analyzing Deployed BTSes

We study 20 deployed BTSes, including 18 widely-used, web-
based BTSes and 2 Android 11 BTS APIs.2 We run the 20
BTSes on three different PCs and four different smartphones
listed in Table 1 (WiFiMaster and Android APIs are only run
on smartphones). To understand the implementation of these
BTSes, we jointly analyze: (1) the network traffic (recorded
during each test), (2) the client-side code, and (3) vendors’
documentation. A typical analysis workflow is as follows. We
first examine the network traffic to reveal which server(s) the
client interacts with during the test, as well as their interaction
durations. We then inspect the captured HTTP(S) transactions
to interpret the client’s interactions with the server(s) such as
server selection and file transfer. We also inspect client-side
code (typically in JavaScript). However, this attempt may not
always succeed due to code obfuscation used by some BTSes
like SpeedTest. In this case, we use the Chrome developer
tool to monitor the entire test process in the debug mode.

2The 18 web-based BTSes are ATTtest [2], BWP [5], CenturyLink [6],
Cox [7], DSLReports [8], FAST [10], NYSbroadband [17], Optimum [19],
SFtest [13], SpeakEasy [22], Spectrum [23], SpeedOf [24], SpeedTest [25],
ThinkBroadband [28], Verizon [30], Xfinity [32], XYZtest [26], and WiFi-
Master [31]. They are selected based on Alexa ranks and Google
page ranks. In addition, we also study two BTS APIs in Android 11:
getLinkDownstreamBandwidthKbps and testMobileDownload.

Device Location Network Ground Truth
PC-1 U.S. Residential broadband 100 Mbps
PC-2 Germany Residential broadband 100 Mbps
PC-3 China Residential broadband 100 Mbps

Samsung GS9 U.S. LTE (60Mhz/1.9Ghz) 60–100 Mbps
Xiaomi XM8 China LTE (40Mhz/1.8Ghz) 58–89 Mbps

Samsung GS10 U.S. 5G (400Mhz/28Ghz) 0.9–1.2 Gbps
Huawei HV30 China 5G (160Mhz/2.6Ghz) 0.4–0.7 Gbps

Table 1: Client devices used for testing the 20 BTSes. The test
results are obtained from SpeedTest.net.

With the above efforts, we are able to “reverse engineer” the
implementations of all the 20 BTSes.

Our analysis shows that a bandwidth test in these BTSes
is typically done in three phases: (1) setup, (2) bandwidth
probing, and (3) bandwidth estimation. In the setup phase, the
BTS sends a list of candidate servers (based on the client’s IP
address or geo-location) to the client who then PINGs each
candidate server over HTTP(S). Next, based on the servers’
PING latency, the client selects one or more candidate servers
to perform file transfer(s) to collect throughput samples. The
BTS processes the samples and returns the result to the user.

2.3 Measurement Results
We select 9 (out of 20) representative BTSes for more in-depth
characterizations, as listed in Table 2. These 9 selected BTSes
well cover different designs (in terms of the key bandwidth
test logic) of the remaining 11 ones. We deploy a large-scale
testbed to comprehensively profile 8 representative BTSes,
except Android API-A (we will discuss it separately). Our
testbed is deployed on 108 geo-distributed VMs from multiple
public cloud services providers (CSPs, including Azure, AWS,
Ali Cloud, Digital Ocean, Vultr, and Tencent Cloud) as the
client hosts. Note that we mainly employ VMs as client hosts
because they are globally distributed and easy to deploy. Per
their service agreements, the CSPs offer three types of access
link bandwidths: 1 Mbps, 10 Mbps, and 100 Mbps (36 VMs
each). The ground truth in Figure 2c is obtained according to
the methodology in §2.1. We denote one test group as using
one VM to run back-to-back bandwidth tests across all the
8 BTSes in a random order. We perform in one day 3,240
groups of tests, i.e., 108 VMs ⇥ 3 different time-of-day (0:00,
8:00, and 16:00) ⇥ 10 repetitions.

We summarize our results in Table 2. We discover that
all but one of the BTSes adopt flooding-based approaches to
combat the test noises from a temporal perspective, leading to
enormous data usage. Meanwhile, they differ in many aspects:
(1) bandwidth probing mechanism, (2) bandwidth estimation
algorithm, (3) connection management strategy, (4) server
selection policy, and (5) server pool size.

2.4 Case Studies
We present our case studies of five major BTSes with the
largest user bases selected from Table 2.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1013

BTS # Servers Bandwidth Test Logic Duration Accuracy (Testbed / 5G) Data Usage (Testbed / 5G)
TBB⇤ 12 average throughput in all connections 8 s 0.59 / 0.31 42 MB / 481 MB

SpeedOf 116 average throughput in the last connection 8–230 s 0.76 / 0.22 61 MB / 256 MB
BWP 18 average throughput in the fastest connection 13 s 0.81 / 0.35 74 MB / 524 MB
SFtest 19 average throughput in all connections 20 s 0.89 / 0.81 194 MB / 2,013 MB

ATTtest 75 average throughput in all connections 15–30 s 0.86 / 0.53 122 MB / 663 MB
Xfinity 28 average all throughput samples 12 s 0.82 / 0.67 107 MB / 835 MB
FAST ⇠1,000 average stable throughput samples 8–30 s 0.80 / 0.72 45 MB / 903 MB

SpeedTest ⇠12,000 average refined throughput samples 15 s 0.96 / 0.92 150 MB / 1,972 MB
Android API-A 0 directly calculate using system configs < 10 ms NA / 0.09 0 / 0

Table 2: A brief summary of the 9 representative BTSes. “Testbed” and “5G” denote the large-scale cloud-based testbed and the 5G scenario,
respectively. ⇤ means that WiFiMaster and Andriod API-B share the similar bandwidth test logic with ThinkBroadBand (TBB).

ThinkBroadBand [28]. The ThinkBroadBand BTS first
selects a test server with the lowest latency to the client among
its server pool. Then, it starts an 8-second bandwidth test by
delivering a 20-MB file towards the client; if the file trans-
fer takes less than 8 seconds, the test is repeated to collect
more data points. After the 8 seconds, it calculates the aver-
age throughput (i.e., data transfer rate) during the whole test
process as the estimated bandwidth.

WiFiMaster [31]. WiFiMaster’s BTS is largely the same
as that of ThinkBroadBand. The main difference lies in the
test server pool. Instead of deploying a dedicated test server
pool, WiFiMaster exploits the CDN servers of a large Internet
content provider (Tencent) for frequent bandwidth tests. It
directly downloads fixed-size (⇠47 MB) software packages
as the test files and measures the average download speed as
the estimated bandwidth.

Our measurements show that the accuracy of ThinkBroad-
Band and WiFiMaster is low. The accuracy is merely 0.59,
because the single HTTP connection during the test can easily
be affected by network spikes and link congestion which lead
to significant underestimation. In addition, using the aver-
age throughput for bandwidth estimation cannot rule out the
impact of slow start and thus requires a long test duration.

Android APIs [1, 3]. To cater to the needs of bandwidth
estimation for bandwidth-hungry apps (e.g., UHD videos and
VR/AR) over 5G, Android 11 offers two “Bandwidth Estima-
tor” APIs to “make it easier to check bandwidth for uploading
and downloading content [1]”.

API-A, getLinkDownstreamBandwidthKbps, stati-
cally calculates the access bandwidth by “taking into
account link parameters (radio technology, allocated
channels, etc.) [20]”. It uses a pre-defined dictionary
(KEY_BANDWIDTH_STRING_ARRAY) to map device hardware
information to bandwidth values. For example, if the end-
user’s device is connected to the new-radio non-standalone
mmWave 5G network, API-A searches the dictionary which
records NR_NSA_MMWAVE:145000,60000, indicating that
the downlink bandwidth is 145,000 Kbps and the uplink
bandwidth is 60,000 Kbps. This API provides a static
“start-up on idle” estimation [1]. We test the performance of
API-A in a similar manner as introduced in §2.3 with the 5G
phones in Table 1. The results show that API-A bears rather

poor accuracy (0.09) in realistic scenarios.
API-B, testMobileDownload, works in a similar way as

ThinkBroadBand. It requires the app developer to provide the
test servers and the test files.

FAST [10] is an advanced BTS with a pool of about 1,000
test servers. It employs a two-step server selection process:
the client first picks five nearby servers based on its IP address,
and then PINGs these five candidates to select the latency-
wise nearest server for the bandwidth probing phase.

FAST progressively increases the concurrency according
to the client network condition during the test. The client
starts with a 25-MB file over a single connection. When the
throughput reaches 0.5 Mbps, a new connection is created
to transfer another 25-MB file. Similarly, at 1 Mbps, a third
connection is established. For each connection, when the file
transfer completes, it repeatedly requests another 25-MB file
(the concurrency level never decreases).

FAST estimates the bandwidth as follows. As shown in Fig-
ure 2a, it collects a throughput sample every 200 ms, and main-
tains a 2-second window consisting of 10 most recent sam-
ples. After 5 seconds, FAST checks whether the in-window
throughput samples are stable: Smax �Smin 3% ·Savg, where
Smax, Smin, and Savg correspond to the maximum, minimum,
and average value across all samples in the window, respec-
tively. If the above inequality holds, FAST terminates the test
and returns Savg. Otherwise, the test will continue until reach-
ing a time limit of 30 seconds; at that time, the last 2-second
window’s Savg will be returned to the user.

Unfortunately, our results show that the accuracy of FAST
is still unsatisfactory. The average accuracy is 0.80, as shown
in Table 2 and Figure 2c. We ascribe this to two reasons:
(1) Though FAST owns ⇠1,000 servers, they are mostly lo-
cated in the US and Canada. Thus, FAST can hardly assign a
nearby server to clients outside North America. In fact, FAST
achieves relatively high average accuracy (0.92) when serv-
ing the clients in North America; however, it has quite low
accuracy (0.74) when measuring the access link bandwidth of
the clients in other places around the world. (2) We observe
that FAST’s window-based mechanism for early generation of
the test result is vulnerable to throughput fluctuations. Under
unstable network conditions, FAST can only use through-
put samples in the last two seconds (rather than the entire

1014 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 6 7 8
Time (s)

0

10

20

30

Th
ro

ug
hp

ut
 (M

bp
s)

2-second Window
Stable Samples
Unstable Samples

(a)

0 5 10 15
Time (s)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

bp
s)

Overall
Connection 1
Connection 2
Connection 3
Connection 4

(b)

TBB
WiFiMaster

SpeedOf
BWP

SFtest
Xfinity

ATTtest
FAST
SpeedTest

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

1Mbps 10Mbps 100Mbps

(c)

Figure 2: (a) Test logic of FAST. (b) Test logic of SpeedTest. (c) Test accuracy of nine commercial BTSes.

30-second samples) to calculate the test result.

SpeedTest [25] is considered the most advanced industrial
BTS [33, 36, 41, 50, 73]. It deploys a pool of ⇠12,000 servers.
Similar to FAST, it also employs the two-step server selection
process: it identifies 10 candidate servers based on the client’s
IP address, and then selects the latency-wise nearest from
them. It also progressively increases the concurrency level:
it begins with 4 parallel connections for quickly saturating
the available bandwidth, and establishes a new connection at
25 Mbps and 35 Mbps, respectively. It uses a fixed file size of
25 MB and a fixed test duration of 15 seconds.

SpeedTest’s bandwidth estimation algorithm is different
from FAST’s. During the bandwidth probing phase, it collects
a throughput sample every 100 ms. Since the test duration is
fixed to 15 seconds, all the 150 samples are used to construct
20 slices, each covering the same traffic volume, illustrated
as the area under the throughput curve in Figure 2b. Then, 5
slices with the lowest average throughput and 2 slices with
the highest average throughput are discarded. This leaves 13
slices remaining, whose average throughput is returned as the
final test result. This method may help mitigate the impact of
throughput fluctuations, but the two fixed thresholds for noise
filtering could be deficient under diverse network conditions.

Overall, SpeedTest exhibits the highest accuracy (0.96)
among the measured BTSes. A key contributing factor is its
large server pool, as shown in §5.2.

3 Design of FastBTS

FastBTS is a fast and lightweight BTS with a fundamen-
tally new design. FastBTS accommodates and exploits noises
(instead of suppressing them) to significantly reduce the re-
source footprint and accelerate the tests, while retaining high
test accuracy. The key technique of FastBTS is fuzzy rejec-
tion sampling which automatically identifies true samples that
represent the target distribution and filters out false samples
due to measurement noises, without apriori knowledge of the
target distribution. Figure 1 shows the main components of
FastBTS and the workflow of a bandwidth test.

• Crucial Interval Sampling (CIS) implements the accep-
tance rejection function of fuzzy rejection sampling. CIS
is built upon a key observation based on our measurement
study (see §2.3 and §2.4): while the noise samples may
be widely scattered, the desired bandwidth samples tend
to concentrate within a narrow throughput interval. CIS
searches for a dense and narrow interval that covers the
majority of the desirable samples, and uses computational
geometry to drastically reduce the searching complexity.

• Elastic Bandwidth Probing (EBP) generates throughput
samples that persistently3 obey the distribution of the tar-
get bandwidth. We design EBP by optimizing BBR’s band-
width estimation algorithm [42] – different from BBR’s
static bandwidth probing policy, EBP reaches the target
bandwidth much faster, while being non-disruptive.

• Data-driven Server Selection (DSS) selects the server(s)
with the highest bandwidth estimation(s) through a data-
driven model. We show that a simple model can signif-
icantly improve server selection results compared to the
de-facto approach that ranks servers by round-trip time.

• Adaptive Multi-Homing (AMH) adaptively establishes mul-
tiple parallel connections with different test servers. AMH
is important for saturating the access link when the last-
mile access link is not the bottleneck, e.g., 5G [67].

3.1 Crucial Interval Sampling (CIS)
CIS is designed based on the key observation: while noise
samples are scattered across a wide throughput interval, the
desirable samples tend to concentrate within a narrow interval,
referred to as the crucial interval. As shown in Figure 3, in
each subfigure, although the crucial interval is narrow, it can
cover the vast majority of the desirable samples. Thus, while
the target distribution T (x) is unknown, we can approximate
T (x) with the crucial interval. Also, as more noise samples
accumulate, the test accuracy would typically increase as

3Here “persistently” means that a certain set (or range) of samples con-
stantly recur to the measurement data during the test process [45].

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1015

Time
Vmin

Vx

Vy

Vmax

Th
ro

ug
hp

ut

Crucial Interval
Accepted Samples
Rejected Samples

K Samples Accepted

(a) SpeedTest
Time

0

Vx

Vy

V

Th
ro

ug
hp

ut

Crucial Interval
Accepted Samples
Rejected Samples

(b) ATTtest, BWP, XFinity, Android API-B
Time

0

Vx
Vy

V

Th
ro

ug
hp

ut

Crucial Interval
Accepted Samples
Rejected Samples

(c) FAST

Figure 3: Common scenarios where the true samples fall in a crucial interval. In our measurement, > 96% cases fall into the three patterns.

Time
0

Vx

Vy

V

Th
ro

ug
hp

ut Crucial Interval
Accepted Samples
Rejected Samples

Intermediate Hop
Congestion

(a) Slow start effect of sequential file transfer
in SpeedOf and TBB

Time
0

Vx

Vy

V
Th

ro
ug

hp
ut

Crucial Interval
Accepted Samples
Rejected Samples

 New File
Transfer

(b) WiFiMaster when an intermediate hop suf-
fers a temporary congestion

Time
0

Vx

Vy

V

Th
ro

ug
hp

ut

Crucial Interval
Accepted Samples
Rejected Samples

Additional Connection
Establishment

(c) SpeedTest when another connection is es-
tablished to saturate the access link

Figure 4: Pathological scenarios where the true samples are not persistently covered by the crucial interval (less than 4% in our measurements).

randomly scattered noise samples help better “contrast” the
crucial interval, leading to its improved approximation.

Crucial Interval Algorithm. Based on the above insights,
our designed bandwidth estimation approach for FastBTS
aims at finding this crucial interval ([Vx,Vy]) that has both a
high sample density and a large sample size. Assuming there
are N throughput samples ranging from Vmin to Vmax, our aim
is formulated as maximizing the product of density and size.
We denote the size as K(Vx,Vy), i.e., the number of samples
that fall into [Vx,Vy]. The density can be calculated as the
ratio between K(Vx,Vy) and N0 = N(Vy �Vx)/(Vmax �Vmin),
where N0 is the “baseline” corresponding to the number of
samples falling into [Vx,Vy] if all N samples are uniformly dis-
tributed in [Vmin,Vmax]. To prevent a pathological case where
the density is too high, we enforce a lower bound of the in-
terval: Vy �Vx should be at least Lmin, which is empirically
set to (Vmax �Vmin)/(N �1). Given the above, the objective
function to be maximized is:

F(Vx,Vy) = Density⇥Size =C ·
K2(Vx,Vy)

Vy �Vx
, (1)

where C = (Vmax �Vmin)/N is a constant. Once the optimal
[Vx,Vy] is calculated, we can derive the bandwidth estimation
by averaging all the samples falling into this interval.

FastBTS computes the crucial interval as bandwidth prob-
ing (§3.2) is in progress, which serves as the acceptance-

rejection function (ARF) of rejection sampling. When a new
sample is available, the server computes a crucial interval by
maximizing Equation (1). It thus produces a series of inter-
vals [Vx3,Vy3], [Vx4,Vy4], · · · where [Vxi,Vyi] corresponds to the
interval generated when the i-th sample is available.

Searching Crucial Interval with Convex Hull. We now
consider how to actually solve the maximization problem in
Equation (1). To enhance the readability, we use L to denote
Vy�Vx, use K to denote K(Vx,Vy), and let the maximum value
of F(Vx,Vy) be Fmax, which lies in (0, C·N2

Lmin
].

Clearly, a naïve exhaustive search takes O(N2) time. Our
key result is that this can be done much more efficiently
in O(N logN) by strategically searching on a convex hull
dynamically constructed from the samples. Our high-level
approach is to perform a binary search for Fmax. The initial
midpoint is set to b C·N2

2·Lmin
c. In each binary search iteration,

we examine whether the inequality C·K2

L �m � 0 holds for
any interval(s), where 0 < m Fmax is the current midpoint.
Based on the result, we adjust the midpoint and continue with
the next iteration.

We next see how each iteration is performed exactly. With-
out loss of generality, we assume that the throughput samples
are sorted in ascending order. Suppose we choose the i-th and
j-th samples (i < j) from the N sorted samples as the end-

1016 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

X

Y

the (j-1)-th sample

Convex Hull
Vertex Samples
Discarded Samples

(a)

X

Y

the j-th sample

Retained Samples
Appended Samples
Discarded Samples

(b)

X

B0

Bmax

Y

y(i) = k(j) x(i) + Bmax

the j-th sample

Retained Samples
Chosen Samples
Discarded Samples
Max-intercept Line

(c)

Figure 5: (a) The current convex hull under transformed coordinates, where the axes X and Y correspond to x(i) and y(i) in Equation (4)
respectively. (b) Updating the convex hull with the (j�1)-th sample. (c) Searching for the max-intercept line.

points of the interval [Vi,Vj]. Then the inequality C·K2

L �m� 0
can be transformed as:

C · (j� i+1)2

Vj �Vi
�m � 0. (2)

We further rearrange it as:

i2 �2i+
m
C

Vi �2i j � m
C

Vj �2 j� j2 �1. (3)

It is not difficult to discover that the right side of the inequality
is only associated with the variable j, while the left side just
relates to the variable i except the term �2i j. Therefore, we
adopt the following coordinate conversion:

8
>>><

>>>:

k(j) = 2 j
b(j) = m

C Vj �2 j� j2 �1
x(i) = i
y(i) = i2 �2i+ m

C Vi

(4)

With the above-mentioned coordinate conversion, the in-
equality (3) can be transformed as: y(i)� k(j) · x(i) � b(j).
Then, determining whether the inequality holds for at least
one pair of (i, j) is equivalent to finding the maximum of
f (i) = y(i)� k(j) · x(i) for each 1 < j N.

As depicted in Figure 5a, we regard {x(i)} and {y(i)} as
coordinates of N points on a two-dimensional plane (these
points do not depend on j). It can be shown using the linear
programming theory that for any given j, the largest value
of f (i) always occurs at a point that is on the convex hull
formed by (x(i),y(i)). This dictates an algorithm where for
each 1 < j N, we check the points on the convex hull to
find the maximum of f (i).

Since i must be less than j, each time we increment j (the
outer loop), we progressively add one point (x(j�1),y(j�
1)) to the (partial) convex hull, which is shown in Figure
5b. Then among all existing points on the convex hull, we
search backward from the point with the largest x(i) value
to the smallest x(i) to find the maximum of f (i), and stops

searching when f (i) starts to decrease since the points are on
the convex hull (the inner loop).

As demonstrated in Figure 5c, an analytic geometry expla-
nation of this procedure is to determine a line with a fixed
slope y = k(j)x+B, s.t. the line intersects with a point on the
convex and the intercept B is maximized, and the maximized
intercept corresponds to the maximum of f (i).

Also, once the maximum of f (i) is found at (x(i0),y(i0))
for a given j, all points that are to the right of (x(i0),y(i0)) can
be removed from the convex hull – they must not correspond
to the maximum of f (i) for all j0 > j. This is because (1) the
slope of the convex hull’s edge decreases as i increases, and
(2) k(j) increases as j increases. Therefore, using amortized
analysis, we can show that in each binary search iteration, the
overall processing time for all points is O(N) as j grows from
1 to N. This leads to an overall complexity of O(N logN) for
the whole algorithm.

Fast Result Generation. FastBTS selects a group of sam-
ples that well fit T (x) as soon as possible while ensuring
data reliability. Given two intervals [Vxi,Vyi] and [Vx j,Vy j],
we regard their similarity as the Jaccard Coefficient [60].
FastBTS then keeps track of the similarity values of con-
secutive interval pairs i.e., S3,4,S4,5, ... If the test result stabi-
lizes, the consecutive interval pairs’ similarity value will keep
growing from a certain value b, satisfying b Si,i+1 · · ·
Si+k,i+k+1 1. If the above sequence is observed, FastBTS
determines that the result has stabilized and reports the bot-
tleneck bandwidth as the average value of the throughput
samples belonging to the most recent interval. The param-
eters b and k pose a tradeoff between accuracy and cost in
terms of test duration and data traffic. Specifically, increasing
b and k can yield a higher test accuracy while incurring a
longer test duration and more data usage. Currently, we em-
pirically set b=0.9 and k=2, which are found to well balance
the tradeoff between the test duration and accuracy. Never-
theless, when dealing with those relatively rare cases that are
not covered by this paper, BTS providers are recommended

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1017

to do pre-tests in order to find the suitable parameter settings
before putting CIS mechanism into actual use.

Solutions to Caveats. There do exist some “irregular” band-
width graphs in prior work [37, 48, 56] where CIS may lose
efficacy. For instance, due to in-network mechanisms like data
aggregation and multi-path scheduling, the millisecond-level
throughput samples can vary dramatically (i.e., sometimes the
throughput is about to reach the link capacity, and sometimes
the throughput approaches zero). To mitigate this issue, we
learn from some BTSes (e.g., SpeedTest) and use a relatively
large time interval (50 ms) to smooth the gathered throughput
samples. However, even with smoothed samples, it is still
possible that CIS may be inaccurate if the actual access band-
width is outside the crucial interval, or the interval becomes
too wide to give a meaningful bandwidth estimation. In our
experiences, such cases are rare (less than 4% in our measure-
ments in §2.3). However, to ensure that our tests are stable in
all scenarios, we design solutions to those pathological cases.

Figure 4 shows all types of the pathological cases of CIS we
observe, where P(x) deviates from T (x) over time. FastBTS
leverages three mechanisms to resolve these cases: (1) elastic
bandwidth probing (§3.2) reaches bottleneck bandwidth in
a short time, effectively alleviating the impact of slow-start
effect in Figure 4a; (2) data-driven server selection (§3.3)
picks the expected highest-throughput server(s) for bandwidth
tests, minimizing the requirement of additional connection(s)
in Figure 4c; (3) adaptive multi-homing (§3.4) establishes
concurrent connections with different servers, avoiding the
underestimations in Figures 4b and 4c. We will discuss these
mechanisms in §3.2 – §3.4.

3.2 Elastic Bandwidth Probing (EBP)
In rejection sampling, P(x) determines the boundary of T (x).
A bandwidth test measures P(x) using bandwidth probing
based on network conditions. It shares a similar principle as
congestion control at the test server’s transport layer—the
goal is to accommodate diverse noises over the live Internet,
while saturating the bandwidth of the access link. FastBTS
employs BBR [42], an advanced congestion control algorithm,
as a starting point for probing design. Specifically, FastBTS
uses BBR’s built-in bandwidth probing for bootstrapping.

On the other hand, bandwidth tests have different require-
ments compared with congestion control. For example, con-
gestion control emphasizes stable data transfers over a long
period, while a BTS focuses on obtaining accurate link capac-
ity as early as possible with the lowest data usage. Therefore,
we modify and optimize BBR to support bandwidth tests.

BBR Prime. BBR is featured by two key metrics: bottleneck
bandwidth BtlBw and round-trip propagation time RTprop. It
works in four phases: Startup, Drain, ProbeBW (probing the
bandwidth), and ProbeRTT. A key parameter pacing_gain
(PG) controls TCP pacing so that the capacity of a network
path can be fully utilized while the queuing delay is mini-

0 1
Time (s)

0

50

100

150

Th
ro

ug
hp

ut
 (M

bp
s)

B0

B1

B2
B3

B4 B5
B6

Startup
Drain

ProbeBW

Fast Probing Scheme
BBR's Original

Figure 6: Elastic bandwidth probing vs. BBR’s original scheme.

mized. BBR multiplies its measured throughput by PG to
determine the data sending rate in the subsequent RTT. After
a connection is established, BBR enters the Startup phase and
exponentially increases the sending rate (i.e., PG = 2

ln2) until
the measured throughput does not increase further, as shown
in Figure 6. At this point, the measured throughput is denoted
as B0 and a queue is already formed at the bottleneck of the
network path. Then, BBR tries to Drain it by reducing PG to
ln2
2 < 1 until there is expected to be no excess in-flight data.

Afterwards, BBR enters a (by default) 10-second ProbeBW
phase to gradually probe BtlBw in a number of cycles, each
consisting of 8 RT T s with PGs = { 5

4 ,
3
4 ,1,1,1,1,1,1}. We

plot in Figure 6 four such cycles tagged as 1� 2� 3� 4�. Fi-
nally (10 seconds later), the maximum value of the measured
throughput samples is taken as the network path’s BtlBw and
BBR enters a 200-ms ProbeRTT phase to estimate RTprop.

Limitations of BBR. Directly applying BBR’s BtlBw-based
probing method to BTSes is inefficient. First, as illustrated in
Figure 6 (where the true BtlBw is 100 Mbps), BBR’s BtlBw
probing is conservative, making the probing process unneces-
sarily slow. A straightforward idea is to remove the 6 RTTs
with PG = 1 in each cycle. Even with that, the probing pro-
cess is still inefficient when the data (sending) rate is low.
Second, when the current data rate (e.g., 95 Mbps) is close
to the true BtlBw (e.g., 100 Mbps), using the fixed PG of 5

4
causes the data rate to far overshoot its limit (e.g., to 118.75
Mbps). This may not be a severe issue for data transfers, but
may significantly slow down the convergence of BtlBw and
thus lengthen the test duration. Third, BBR takes the maxi-
mum of all throughput samples in each cycle as the estimated
BtlBw. The simple maximization operation is vulnerable to
outliers and noises (this is addressed by CIS in §3.1).

Elastic Data-rate Pacing. We design elastic pacing to make
bandwidth probing faster, more accurate, and more adaptive.
Intuitively, when the data rate is low, it ramps up quickly to
reduce the probing time; when the data rate approaches the
estimated bottleneck bandwidth, it performs fine-grained prob-
ing by reducing the step size, towards a smooth convergence.
This is in contrast to BBR’s static probing policy.

1018 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We now detail our method. As depicted in Figure 6, once
entering the ProbeBW phase, we have recorded B0 and B
where B0 is the peak data rate measured during the Startup
phase and B is the current data rate. Let the ground-truth
bottleneck bandwidth be BT . Typically, B0 is slightly higher
than BT due to queuing at the bottleneck link in the end of
the Startup phase (otherwise it will not exit Startup); also, B
is lower than BT due to the Drain phase. We adjust the value
of B by controlling the pacing gain (PG) of the data sending
rate, but the pivotal question here is the adjustment policy, i.e.,
how to make B approach BT quickly and precisely.

Our idea is inspired by the spring system [51] in physics
where the restoring force of a helical spring is proportional to
its elongation. We thus regard PG as the restoring force, and
B’s deviation from B0 as the elongation (we do not know BT
so we approximate it using B0). Therefore, the initial PG is
expected to grow to:

PGgrow�0 = (PGm �PG0)⇥
✓

1� B
B0

◆
+PG0, (5)

where 1� B
B0

denotes the normalized distance between B0
and B, and PG0 represents the default value (1.0) of PG. We
set the upper bound of PG (PGm) as 2

ln2 that matches BBR’s
PG in the (most aggressive) Startup phase. As Equation (5)
indicates, the spring system indeed realizes our idea: it in-
creases the data rate rapidly when B is well below B0, and
cautiously reduces the probing step as B grows.

To accommodate a corner scenario where B0 is lower than
BT (< 1% cases in our experiments), we slightly modify Equa-
tion (5) to allow B to overshoot B0 marginally:

PGgrow�0=max{(PGm�PG0
0)⇥

✓
1� B

B0

◆
+PG0

0,PG0
0}, (6)

where PG0
0 equals 1+ e, with e being empirically set to 0.05.

When the data rate overshoots the bottleneck bandwidth
(i.e., the number of in-flight bytes exceeds the bandwidth-
delay product), we reduce the data rate to suppress the ex-
cessive in-flight bytes. This is realized by inverting PG to
PGdrop�0 =

1
PGgrow�0

. This process continues until no exces-
sive in-flight data is present. At that moment, B will again
drop below BT , so we start a new cycle to repeat the afore-
mentioned data rate growth process.

To put things together, in our design, the ProbeBW phase
consists of a series of cycles each consisting of only two
stages: growth and drop. Each stage has a variable number of
RTTs, and the six RTTs with PG = 1 in the original BBR al-
gorithm are removed. The transitions between the two stages
are triggered by the formation and disappearance of excessive
in-flight bytes (i.e., the queueing delay). In the i-th cycle, the
PGs for the two stages are:
8
<

:
PGgrow�i=max{(PGm�PG0

0)⇥
⇣
1� B

Bi

⌘
+PG0

0,PG0
0},

PGdrop�i=
1

PGgrow�i
,

(7)

Latency

Th
ro

ug
hp

ut

Latency Interval
Accepted Samples
Rejected Samples

Figure 7: Data-driven server selection that takes both historical
latency and throughput information into account.

where B is the data rate at the beginning of a growth stage,
and Bi is the peak rate in the previous cycle’s growth stage.
Interestingly, by setting B0 =+•, we can make the growth
and drop stages identical to BBR’s Startup and Drain phases,
respectively. Our final design thus only consists of a single
phase (ProbeBW) with two stages. The ProbeRTT phase is
removed because it does not help our bandwidth probing.

Compared with traditional bandwidth probing mechanisms,
EBP can saturate available bandwidth more quickly as it
ramps up the sending rate when the current rate is much lower
than the estimated bandwidth. Meanwhile, when the sending
rate is about to reach the estimated bandwidth, EBP carefully
increases the rate in order to be less aggressive to other flows
along the path than other bandwidth probing mechanisms.

3.3 Data-driven Server Selection (DSS)
FastBTS includes a new server selection method. We find
that selecting the test server(s) with the lowest PING latency,
widely used in existing BTSes, is ineffective. Our measure-
ment shows that latency and the available bandwidth are not
highly correlated—the servers yielding the highest throughput
may not always be those with the lowest PING latency.

FastBTS takes a data-driven approach for server selection
(DSS): each test server maintains a database (model) contain-
ing {latency, throughput} pairs obtained from the setup and
bandwidth probing phases of past tests. Then in a new setup
phase, the client still PINGs the test servers, while each server
returns an expected throughput value based on the PING la-
tency by looking up the database. The client will then rank the
selected server(s) based on their expected throughput values.

As demonstrated in Figure 7, the actual DSS algorithm
is conceptually similar to CIS introduced in §3.1, whereas
we empirically observe that only considering the density can
yield decent results. Specifically, given a latency measurement
l, the server searches for a width w that maximizes the density
defined as K(l,w)/2w, where K(l,w) denotes the number of
latency samples falling in the latency interval [l �w, l +w].
The expected throughput is calculated as an average of all

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1019

samples in [l �w, l +w]. In addition, the server also returns
the maximum throughput (using the 99-percentile value) be-
longing to [l�w, l+w] to the client. Both values will be used
in the bandwidth probing phase (§3.4). During bootstrapping
when servers have not yet accumulated enough samples, the
client can fallback to the traditional latency-based selection
strategy. To keep their databases up-to-date, servers can main-
tain only most recent samples.

3.4 Adaptive Multi-Homing (AMH)
For high-speed access networks like 5G, the last-mile access
link may not always be the bottleneck. To saturate the access
link, we design an adaptive multi-homing (AMH) mechanism
to dynamically adjust the concurrency level, i.e., the number
of concurrent connections between the servers and client.

AMH starts with a single connection to cope with possibly
low-speed access links. For this single connection C1, when
CIS (§3.1) has accomplished using the server S1 (the highest-
ranking server, see §3.3), the reported bottleneck bandwidth
is denoted as BW1. At this time, the client establishes an-
other connection C2 with the second highest-ranking server
S2 while retaining C1. C2 also works as described in §3.2.
Note we require S1 and S2 to be in different ASes to minimize
the likelihood that S1 and S2 share the same Internet-side bot-
tleneck. Moreover, we pick the server with the second highest
bandwidth estimation as S2 to saturate the client’s access
link bandwidth with the fewest test servers. After that, we
view C1 and C2 together as an “aggregated” connection, with
its throughput being BW2 = BW2,1 +BW2,2, where BW2,1 and
BW2,2 are the real-time throughput of C1 and C2 respectively.

By monitoring BW2,1, BW2,2, and BW2, FastBTS applies in-
telligent throughput sampling and fast result generation (§3.1)
to judge whether BW2 has become stable. Once BW2 stabi-
lizes, AMH determines whether the whole bandwidth test
process should be terminated based on the relationship be-
tween BW1 and BW2,1. If for C1 the bottleneck link is not the
access link, BW2,1 should have a value similar to or higher
than BW1 (assuming the unlikeliness of C1 and C2 sharing the
same Internet-side bottleneck [53]). In this case, the client
establishes another connection with the third highest-ranking
server S3 (with a different AS), and repeats the above process
(comparing BW3,1 and BW1 to decide whether to launch the
fourth connection, and so on). Otherwise, if BW2,1 exhibits
a noticeable decline (empirically set to > 5%) compared to
BW1, we regard that C1 and C2 saturate the access link and in-
cur cross-flow contention. In this case, the client stops probing
and reports the access bandwidth as max(BW1,BW2).

4 Implementation

As shown in Figure 1, we implement elastic bandwidth prob-
ing (EBP) and crucial interval sampling (CIS) on the server
side, because EBP works at the transport layer and thus re-
quires OS kernel modifications, and CIS needs to get fine-

grained throughput samples from EBP in real time. We im-
plement EBP and CIS in C and Node.js, respectively.

We implement data-driven server selection (DSS) and
adaptive multi-homing (AMH) on the client side. End users
can access the FastBTS service through REST APIs. We im-
plement DSS and AMH in JavaScript to make them easy to
integrate with web pages or mobile apps.

The test server is built on CentOS 7.6 with the Linux ker-
nel version of 5.0.1. As mentioned in §3.2, we develop EBP
by using BBR as the starting point. Specifically, we imple-
ment the calculation of pacing_gain according to Equation (7)
by modifying the bbr_update_bw function; we also modify
bbr_set_state and bbr_check_drain to alter BBR’s orig-
inal cycles in the ProbeBW phase, so as to realize EBP’s
two-stage cycles. EBP is implemented as a loadable kernel
module. CIS is a user-space program. To efficiently send
in-situ performance statistics including throughput samples,
Btlbw, and RTprop from EBP to CIS (both EBP and CIS are
implemented on the server side in C and Node.js), we use the
Linux Netlink Interface in netlink.h to add a raw socket and
a new packet structure bbr_info that carries the above perfor-
mance information. The performance statistics are also sent
to the client by piggybacking with probing traffic, allowing
users to examine the real-time bandwidth test progress.

5 Evaluation
5.1 Experiment Setup
We compare FastBTS with the 9 state-of-the-art BTSes stud-
ied in §2. For fair comparisons, we re-implement all the BT-
Ses based on our reverse engineering efforts and use the same
setup for all these re-implemented BTSes. To do so, we built
the following testbeds.

Large-scale Testbed. We deploy a total of 30 test servers
on 30 VMs across the globe (North America, South America,
Asia, Europe, Australia, and Africa) with the same configura-
tions (dual-core Intel CPU@2.5 GHz, 8-GB DDR memory,
and 1.5+ Gbps outgoing bandwidth). The size of the server
pool (30) is on par with 5 out of the 9 BTSes but is smaller
than those of FAST and SpeedTest (Table 2), which we as-
sume is a representative server pool size adopted by today’s
commercial BTSes. We deploy 100+ clients including 3 PCs,
4 smartphones, and 108 VMs (the same as those adopted
in §2). For a fair comparison with FastBTS, we replicate the 9
other popular BTSes: SpeedOf, BWP, SFtest, ATTtest, Xfinity,
FAST, SpeedTest, TBB, and Android API-A (see §2.3) and
deploy them on the 30 test servers and the 100+ clients. We
deploy API-A (Android specific) on 4 phones.

Tested Networks. We conduct extensive evaluations under
heterogeneous networks. We detail their setups below.
• Residential Broadband. We deploy three PCs located in

China, U.S., and Germany (Table 1). All the PCs’ access
links are 100 Mbps residential broadband. The three clients

1020 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) LAN (b) Residential (c) Data Center 1 Mbps (d) Data Center 100 Mbps

(e) LTE (f) mmWave 5G (g) sub-6Ghz 5G (h) HSR

Figure 8: Duration and test accuracy of FastBTS, compared with 9 BTSes under various networks. “API-A” refers to Android API-A (§2.4).

communicate with (a subset of) the aforementioned 30 test
servers to perform bandwidth tests. We perform in one day
90 groups of tests, consisting of 3 clients ⇥ 3 different
time-of-day (0:00, 8:00, and 16:00) ⇥ 10 repetitions.

• Data Center Networks. We deploy 108 VMs belonging to
different commercial cloud providers as the clients (§2.3).
We perform a total number of 108 VMs ⇥ 3 time-of-day
⇥ 10 repetitions = 3,240 groups of tests.

• mmWave 5G experiments were conducted at a downtown
street in a large U.S. city, with a distance from the phone
(Samsung GS10, see Table 1) to the base station of 30m.
This is a typical 5G usage scenario due to the small cover-
age of 5G base stations. The phone typically has line-of-
sight to the base station unless being blocked by passing
vehicles. The typical downlink throughput is between 0.9
and 1.2 Gbps. We perform in one day 120 groups of tests,
consisting of 4 clients ⇥ 3 time-of-day ⇥ 10 repetitions.

• Sub-6Ghz 5G experiments were conducted in a Chinese
city using an HV30 phone over China Mobile. The setup is
similar to that of mmWave. We run 120 groups of tests.

• LTE experiments were conducted in both China (a univer-
sity campus) and U.S. (a large city’s downtown area) using
XM8 and GS9, respectively, each with 120 groups of tests.

• HSR Cellular Access. We also perform tests on high-speed
rail (HSR) trains. We take the Beijing-Shanghai HSR line
(peak speed of 350 km/h) with two HV30 phones. We
measure the LTE bandwidth from the train. We run 2 clients
⇥ 50 repetitions = 100 groups of tests.

• LAN. Besides the deployment of 30 VMs, we also create

an in-lab LAN testbed to perform controlled experiments,
where we can craft background traffic. The testbed consists
of two test servers (S1, S2) and two clients (C1, C2), each
equipping a 10 Gbps NIC. They are connected by a com-
modity switch with a 5 Gbps forwarding capability, thus
being the bottleneck. When running bandwidth tests on
this testbed, we maintain two parallel flows: one 1 Gbps
background flow between S1 and C1, and a bandwidth test
flow between S2 and C2.
We use the three metrics described in §2.1 to assess BTSes:

test duration, data usage, and accuracy. Also, the methodology
for obtaining the ground truth is described in §2.1.

5.2 End-to-End Performance
LAN and Residential Networks. As shown in Figure 8a
and 8b, FastBTS yields the highest accuracy (0.94 for LAN
and 0.96 for residential network) among the 9 BTSes, whose
accuracy lies within 0.44–0.89 for LAN, and 0.51–0.9 for
residential network. The average test duration of FastBTS for
LAN and residential network is 3.4 and 3.0 seconds respec-
tively, which are 2.4–7.4⇥ shorter than the other BTSes. The
average data usage of FastBTS is 0.9 GB for LAN and 27
MB for residential network, which are 3.1–10.5⇥ less than
the other BTSes. The short test duration and small data us-
age are attributed to EBP (§3.2), which allows a rapid data
rate increase when the current data rate is far lower than the
bottleneck bandwidth, as well as fast result generation, which
strategically trades off accuracy for a shorter test duration.

Data Center Networks. Figure 8c and 8d show the perfor-
mance of different BTSes in CSPs’ data center networks with

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1021

the bandwidth of {1,100} Mbps (per the CSPs’ service agree-
ments). FastBTS outperforms the other BTSes by yielding the
highest accuracy (0.94 on average), the shortest test duration
(2.67 seconds on average), and the smallest data usage (21
MB on average for 100-Mbps network). In contrast, the other
BTSes’ accuracy ranges between 0.46 and 0.91; their test
duration is also much longer, from 6.2 to 20.8 seconds, and
they consume much more data (from 44 to 194 MB) com-
pared to FastBTS. In particular, we find that on low-speed
network (1 Mbps), some BTSes such as Xfinity and SFtest
establish too many parallel connections. This leads to poor
performance due to the excessive contention across the con-
nections. FastBTS addresses this issue through AMH (§3.4)
that adaptively adjusts the concurrency level according to the
network condition. The results of networks with 10 Mbps
bandwidth are similar to those of 100 Mbps networks.

LTE and 5G Networks. We evaluate the BTSes’ perfor-
mance on commercial LTE and 5G networks (both mmWave
and sub-6Ghz for 5G). Over LTE, as plotted in Figure 8e,
FastBTS owns the highest accuracy (0.95 on average), the
smallest data usage (28.23 MB on average), and the shortest
test duration (2.73 seconds on average). The other 9 BTSes
are far less efficient: 0.62–0.92 for average accuracy, 41.8
to 179.3 MB for data usage, and 7.1 to 20.8 seconds for test
duration. For instance, we discover that FAST bears a quite
low accuracy (0.67) because its window-based mechanism is
very vulnerable to throughput fluctuations in LTE. SpeedTest,
despite having a decent accuracy (0.92), incurs quite high data
usage (166.3 MB) since it fixes the bandwidth test duration
to 15 seconds regardless of the stability of the network.

Figure 8f shows the results for mmWave 5G. It is also
encouraging to see that FastBTS outperforms the 9 other
BTSes across all three metrics (0.94 vs. 0.07–0.87 for average
accuracy, 194.7 vs. 101–2,749 MB for data usage, and 4.0 vs.
8.9–26.2 seconds for test duration). Most of the BTSes have
low accuracy (< 0.6); Speedtest and SFtest bear relatively
high accuracy (0.81 and 0.85). However, the high data usage
issue due to their flooding nature is drastically amplified in
mmWave 5G. For example, Speedtest incurs very high data
usage—up to 2,087 MB per test. The data usage for FAST
is even as high as 2.75 GB. FastBTS addresses this issue
through the synergy of its key features for fuzzy rejection
sampling such as EBP and CIS. We observe similar results in
the sub-6Ghz 5G experiments as shown in Figure 8g.

HSR Cellular Access. We also benchmark the BTSes on
an HSR train running at a peak speed of 350km/h from Bei-
jing to Shanghai. As shown in Figure 8h, the accuracy of all
10 BTSes decreases. This is attributed to two reasons. First,
on HSR trains, the LTE bandwidth is highly fluctuating be-
cause of, e.g., frequent handovers caused by high mobility and
the contention traffic from other passengers. Second, given
such fluctuations, performing bulk transfer before and after
a bandwidth test can hardly capture the ground truth band-

width, which varies significantly during the test. Nevertheless,
compared to the other 9 BTSes, FastBTS still achieves the
best performance (0.88 vs. 0.26–0.84 for average accuracy,
20.3 vs. 16–155 MB for data usage, and 4.6 vs. 10.6–32.4
seconds for test duration). The test duration is longer than
the stationary scenarios because under high mobility, network
condition fluctuation makes crucial intervals converge slower.

5.3 Individual Components
We evaluate the benefits of each component of FastBTS by
incrementally enabling one at a time. When EBP is not en-
abled, we use BBR. When CIS is not enabled, we average
the throughput samples to calculate the test result. When
DSS is not enabled, test server(s) are selected based on PING
latency. When AMH is not enabled, we apply SpeedTest’s
(single-homing) connection management logic.

Bandwidth Probing Schemes. We compare BBR-based
FastBTS and SpeedTest under mmWave 5G. The average
data usage of BBR per test (735 MB) is 65% less than that of
our replicated SpeedTest (2,087 MB). Meanwhile, the accu-
racy of BBR slightly reduces from 0.85 to 0.81. The results
indicate that BBR’s BtlBw estimation mechanism better bal-
ances the tradeoff between accuracy and data usage compared
to flooding-based methods. We next compare BBR and EBP.
We find that our EBP brings further improvements over BBR:
under mmWave, EBP achieves an average data usage of 419
MB (compared 735 MB in BBR, a 42% reduction) and an
average accuracy of 0.87 (compared to 0.81 in BBR, a 7%
improvement). The advantages of EBP come from its elastic
PG setting mechanism that is critical for adaptive bandwidth
probing. Next, we compare BBR and EBP under data center
networks. As shown in Figure 9a, compared to BBR, EBP
reduces the average test duration by 40% (from 11.3 to 6.6
seconds) and the data usage by 38% (from 107 to 66 MB),
while improving the average accuracy by 6%.

Probing Intrusiveness. We evaluate the probing intrusive-
ness of vanilla BBR and EBP using the LAN testbed (§5.1).
Recall that we simultaneously run a 1 Gbps background flow
and the bandwidth test flow that shares a 5 Gbps bottleneck at
the switch. Ideally, a BTS should measure the bottleneck band-
width to be 4 Gbps without interfering with the background
flow, whose average/stdev throughput is thus used as a metric
to assess the intrusiveness of BBR and EBP. Our test proce-
dure is as follows. We first run the background flow alone
for 1 minute and measure its throughput as ROrigin= 1 Gbps.
We then run BBR and EBP with the background flow and
measure the average (standard deviation) of the background
flow throughput as RBBR (SBBR) and REBP (SEBP), respectively,
during the test. We demonstrate the three groups’ through-
put samples with their timestamps normalized by BBR’s test
duration in Figure 9b. EBP incurs a much smaller impact
on the background flow compared to BBR, with REBP and
RBBR measured to be 0.97 Gbps and 0.90 Gbps, respectively.

1022 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a)
Time (s)

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (G

bp
s) start end

Original
Under EBP
Under BBR

(b)

0 0.2 0.4 0.6 0.8 1

SCC

0

0.2

0.4

0.6

0.8

1

C
D
F

Data-driven
PING-based

(c)

0 0.2 0.4 0.6 0.8 1

Portion of Clients
0.4

0.5

0.6

0.7

0.8

0.9

1

SC
C Data-driven

PING-based

(d)

Figure 9: (a) Impact of individual modules of FastBTS in 100-Mbps data center networks. (b) Comparing intrusiveness between EBP and
BBR. (c) Distributions of SCCgp (PING-based) and SCCgd (Data-driven) when P=20%; (d) P (portion of clients) vs. SCCgp and SCCgd .

Also, under EBP, the background flow’s throughput variation
is lower than under BBR: SEBP/REBP and SBBR/RBBR are cal-
culated to be 0.03 and 0.15, respectively. This suggests that
when probing the bandwidth, EBP is less intrusive than BBR.
We repeat the above test procedure under other settings, with
the background flow’s bandwidth varying from 0.5 to 4 Gbps,
and observe consistent results. The lower intrusiveness of
EBP compared with vanilla BBR probably lies in that when
the sending rate is about to hit the access link bandwidth, EBP
tends to carefully reclaim the available bandwidth; however,
vanilla BBR still increases the sending rate with a fixed step,
which is more aggressive than EBP in this scenario.

Crucial Interval Sampling (CIS). We further enable CIS.
As shown in Figure 9a, by strategically removing outliers,
CIS increases the average accuracy from 0.87 (EBP only) to
0.91. Due to the fast result generation mechanism, the test
duration is reduced from 6.8 seconds to 2.8 seconds and the
data usage is reduced by 2.8⇥ (compared with EBP only).

We next compare CIS with the sampling approaches used
by the other 9 BTSes (§5.1), which use a total of five band-
width sampling algorithms because SFtest, ATTtest, and Xfin-
ity employ the same trivial approach of simply averaging
the throughput samples. To fairly compare them with CIS,
we take a replay-based approach. Specifically, we select one
“template” BTS from which we collect the network traces
during the bandwidth probing phase; the time series of the
aggregated throughput across all connections is then obtained
from the traces and fed to all the sampling algorithms. We
exclude SpeedOf and BWP from this experiment because
they calculate the bandwidth based on the last or fastest con-
nection that cannot be precisely reconstructed by our replay
approach. We next show the results by using SpeedTest as the
template BTS. The simplest algorithm (averaging) bears the
lowest accuracy (0.81) because it is poor at eliminating the
noises caused by, for example, TCP congestion control; the
accuracy values of FAST, and SpeedTest are 0.82 and 0.84, re-
spectively. In contrast, CIS owns the highest accuracy (0.91).
This confirms the effectiveness of CIS’s sampling approach.
The efficiency and effectiveness of CIS lies in that, instead of
incurring much redundancy in test duration and data usage

to achieve a decent test accuracy, CIS keeps calculating the
crucial interval of the gathered throughput samples. Once the
crucial interval stabilizes, CIS immediately stops the test, thus
significantly saving test duration and data usage.

Adaptive Multi-Homing (AMH). When AMH is further
enabled, the test accuracy increases from 0.91 (EBP+CIS) to
0.93 (EBP+CIS+AMH), as shown in Figure 9a. Meanwhile,
since testing over more connections takes additional time,
AMH slightly lengthens the average test duration from 2.8
to 3.1 seconds, with the average data usage increased from
23 MB to 28 MB. We repeat the above experiments over
mmWave 5G networks where the bottleneck is more likely to
shift to the Internet side. The results show that AMH improves
the average accuracy from 0.84 to 0.91, while incurring mod-
erate overhead by increasing the average data usage from
148 MB to 206 MB and the average test duration from 3.3
to 4.1 seconds. The results suggest that AMH is essential for
high-speed networks such as mmWave 5G.

Data-driven Server Selection (DSS). We employ cross-
validation for a fair comparison between the PING-based
method and DSS in three steps: (1) We do file transfers be-
tween every server and a randomly selected portion (P) of
all clients to gather throughput samples. (2) Each client C
runs a bandwidth test towards every server. In each test, the
clients’ historical test records (excluding the record of C)
gathered in the previous step is utilized by each server to cal-
culate the expected bandwidth, which is then returned to C.
(3) Each client calculates three rankings of the servers based
on the server-returned expected bandwidth: Rankg, Rankp,
and Rankd . Rankg refers to the server ranking based on the
ground truth. Rankp is the ranking calculated based on PING
latency; and Rankd is the ranking computed by DSS. We use
the Spearman Correlation Coefficient (SCC [59]) to calculate
the similarity SCCgp between Rankg and Rankp, as well as
the similarity SCCgd between Rankg and Rankd .

The distributions of SCCgp and SCCgd when P = 20% are
shown in Figure 9c. We find that SCCgd is much higher than
SCCgp in terms of the median (0.81 vs. 0.63), average (0.80
vs. 0.50), and maximum (0.93 vs. 0.88) values. Further, Fig-
ure 9d shows that SCCgd drops as P decreases; however, even

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1023

when P decreases to 5%, SCCgd (0.62) is still 24% larger
than SCCgp (0.5). These results show that even with limited
historical data, DSS works reasonably well. We enable DSS
in our experiments of Figure 9a with P = 20%. Compared to
EBP+CIS+AMH, enabling DSS improves the average accu-
racy from 0.93 to 0.94; the test duration slightly reduces.

Overall Runtime Overhead. The client-side overhead of
FastBTS is negligible based on our measurement on Samsung
Galaxy S9, S10, Xiaomi M8, and Huawei Honor V30. On the
server side, the incurred overhead is also low. When Btlbw is
100 Mbps, the CPU overhead is measured to be lower than 5%
(single core, tested on Intel CPU@2.5 GHz, 8-GB memory).
The CPU overhead is only 12% when Btlbw is 5 Gbps.

6 Related Work

Bandwidth Measurement. Bandwidth measurement is an
essential component for many networked systems that em-
power many important applications and use cases [46, 61,
62, 75]. Apart from the BTSes described in §2, other band-
width measurement methods mostly target specific types
of networks (e.g., datacenter [44], LTE [56, 71], and wire-
less [74, 77]) and require special support from the deployed
infrastructure. For example, AuTO [44] conducts bandwidth
estimation over DCTCP in data centers; it needs switch sup-
port to tag ECN marks on the data packets, and thus is chal-
lenging to be applied in WAN. Huang et al. [56] propose to de-
ploy monitors inside the cellular core network for bandwidth
measurement. Dischinger et al. [47] devise a bandwidth mea-
surement tool which concurrently leverages multiple packet
trains with different sending rates to measure the link band-
width of residential broadband network.

While almost all commercial BTSes employ flooding-based
methods to combat measurement noises, there exists quite a
few non-flooding methods [55, 65, 68, 70] in academia, which
indirectly infer the available bandwidth based on timing infor-
mation of crafted packets (including packet pairs and packet
trains). Unfortunately, these methods are highly sensitive to
timing information, and thus can be easily disrupted by many
factors like packet loss [54,64], queueing [54], and data/ACK
aggregation [64], especially in high-speed networks.

Designed as a generic network service for Internet users,
FastBTS differs from and complements the above work.
FastBTS targets at conducting fast and light bandwidth tests
especially for high-speed wide-area networks (e.g., 5G), sig-
nificantly reducing data usage and test duration for clients.
It does not require any hardware support at the client side.
On the server side, we show that FastBTS requires a much
smaller deployment to achieve the same level of effectiveness
of existing large-scale commercial BTSes (e.g., SpeedTest).

Congestion Control. FastBTS’s elastic bandwidth probing
is inspired by congestion control algorithms [63, 66, 79]. We
categorize congestion control algorithms based on the conges-

tion indicators: (1) Loss-based CCs (e.g., BIC-TCP [76] and
CUBIC [52]) which take packet loss as the indicator. They are
vulnerable to bufferbloat and random losses [34]. (2) Delay-
based CCs (e.g., TCP FAST [58] and TCP Vegas [40]) which
take transmission delay as the indicator. They are known to
under-utilize the available bandwidth as the Internet latency
is inherently noisy and fluctuating. (3) Rate-based CCs (e.g.,
BBR [42], PCC [48] and PCC Vivace [49]) which directly
estimate the available bandwidth and accordingly adjust data
sending rate, typically via a feedback loop. We choose to
design elastic bandwidth probing based on BBR, because
BBR is mature with large-scale deployment on WAN [18],
edge [27, 57], and cellular networks [35].

7 Concluding Remarks

We present FastBTS, a novel bandwidth testing system, to
make bandwidth testing fast and light as well as accurate.
By accommodating and exploiting the test noises, FastBTS
achieves the highest level of accuracy among commercial
BTSes, while significantly reducing data usage and test dura-
tion. Further, FastBTS only employs 30 servers, 2–3 orders
of magnitude fewer than the state of the arts.

Despite the above merits, FastBTS still bears several lim-
itations at the moment. First, when testing a client’s uplink
bandwidth, FastBTS requires extra deployment efforts (in
particular a kernel module of EBP, as demonstrated in Fig-
ure 1) at the client side. Second, the performance of the data-
driven server selection (DSS) mechanism can be affected by
its cold start phase as well as the specific deployment of test
servers. Third, when the selected test servers cannot saturate
the client’s downlink bandwidth, the adaptive multi-homing
(AMH) mechanism may need several rounds to make the
bandwidth probing process converge, thus leading to a rela-
tively long test duration. We have been exploring practical
ways to overcome these limitations.

Acknowledgements

We sincerely thank the anonymous reviewers for their valu-
able comments, and our shepherd Prof. Andreas Haeberlen for
guiding us through the revision process. Also, we appreciate
the generous help from Hongzhe Yang and Jiaxing Qiu in sys-
tem deployment and text proofreading. This work is supported
in part by the National Key R&D Program of China under
grant 2018YFB1004700, the National Natural Science Foun-
dation of China (NSFC) under grants 61822205, 61902211,
61632020 and 61632013, and the Beijing National Research
Center for Information Science and Technology (BNRist).

References

[1] Add 5G capabilities to your app. https://developer.an
droid.com/about/versions/11/features/5g.

1024 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[2] AT&T BTS. http://speedtest.att.com/speedtest/.
[3] BandwidthTest API in Android. https://cs.an

droid.com/android/platform/superproject/+/master:
frameworks/base/core/tests/bandwidthtests/src/

com/android/bandwidthtest/BandwidthTest.java.
[4] BTS Insights. https://www.speedtest.net/insights.
[5] BWP BTS. https://www.bandwidthplace.com/.
[6] Centurylink BTS. https://www.centurylink.com/home/he

lp/internet/internet-speed-test.html/.
[7] Cox BTS. https://www.cox.com/residential/support/

internet/speedtest.html.
[8] DSLReports. http://www.dslreports.com/speedtest/.
[9] Eighth Measuring Broadband America Fixed Broadband Re-

port: A Report on Consumer Fixed Broadband Performance in
the United States by (2018). Technical report, Federal Com-
munications Commission.

[10] FAST BTS. https://fast.com/.
[11] Home Network Tips for the Coronavirus Pandemic.

https://www.fcc.gov/home-network-tips-coron
avirus-pandemic.

[12] How Coronavirus Affects Internet Usage and What
You Can Do to Make Your Wi-Fi Faster. https:

//www.nbcnewyork.com/news/local/how-coronavirus-
affects-internet-usage-and-what-you-can-do-to-

make-your-wi-fi-faster/2332117/.
[13] HTML5 Speed Test by SourceForge. https://sourceforg

e.net/speedtest/.
[14] Measuring Broadband America Fixed Broadband Report

(2016). Technical report, Federal Communications Commis-
sion.

[15] Measuring Broadband America Fixed Broadband Report: A
Report on Consumer Fixed Broadband Performance in the
US by (2014). Technical report, Federal Communications
Commission.

[16] Nperf BTS. https://www.nperf.com/en
/map/US/-/2420.ATT-Mobility/signal/?ll=
37.59682400108367&lg=-109.44030761718751&zoom=8.

[17] NYSbroadband BTS. http://nysbroadband.speedte
stcustom.com/.

[18] Optimizing HTTP/2 Prioritization with BBR and
Tcp_notsent_lowat. https://blog.cloudflare.com/
http-2-prioritization-with-nginx/.

[19] Optimum BTS. https://www.optimum.net/pages/spe
edtest.html.

[20] Source of Android / NetworkCapabilities.java. https:

//cs.android.com/android/platform/superproject/
+/master:frameworks/base/packages/Connectivity/

framework/src/android/net/NetworkCapabilitie

s.java.
[21] SpaceX Starlink Speeds Revealed as Beta Users Get Down-

loads of 11 to 60Mbps. https://arstechnica.com/in
formation-technology/2020/08/spacex-starlink-be

ta-tests-show-speeds-up-to-60mbps-latency-as-

low-as-31ms/.

[22] Speakeasy. https://www.speakeasy.net/speedtest/.

[23] Spectrum BTS. https://www.spectrum.com/internet/
speedtest-only/.

[24] Speedof.me BTS. https://www.speedof.me/.

[25] SpeedTest BTS. https://www.speedtest.net.

[26] Speedtest.xyz BTS. https://speedtest.xyz/.

[27] TCP BBR Congestion Control Comes to GCP – Your
Internet Just Got Faster. https://cloud.google.com/blog
/products/gcp/tcp-bbr-congestion-control-comes-

to-gcp-your-internet-just-got-faster.

[28] ThinkBroadband BTS. https://www.thinkbroadband.com/
speedtest/.

[29] Understanding Internet Speeds. https://www.att.com/
support/article/u-verse-high-speed-internet/

KM1010095.

[30] Verizon BTS. https://www.verizon.com/speedtest/.

[31] WiFiMaster. https://en.wifi.com/wifimaster/.

[32] Xfinity BTS. http://speedtest.xfinity.com/.

[33] E. Alimpertis, A. Markopoulou, and U. Irvine. A System for
Crowdsourcing Passive Mobile Network Measurements. In
Proc. of NSDI (2017). USENIX.

[34] V. Arun and H. Balakrishnan. Copa: Practical Delay-based
Congestion Control for the Internet. In Proc. of NSDI (2018),
pages 329–342. USENIX.

[35] E. Atxutegi, F. Liberal, H. K. Haile, et al. On the Use of TCP
BBR in Cellular Networks. IEEE Communications Magazine
(2018), 56(3):172–179.

[36] V. Bajpai and J. Schönwälder. A Survey on Internet Perfor-
mance Measurement Platforms and Related Standardization
Efforts. IEEE Communications Surveys & Tutorials (2015),
17(3):1313–1341.

[37] S. Bauer, D. Clark, and W. Lehr. Understanding Broadband
Speed Measurements. MIT Computer Science & Artificial
Intelligence Lab, Tech. Rep. (2010).

[38] S. Bauer et al. Improving the Measurement and Analysis of
Gigabit Broadband Networks. SSRN 2757050 (2016).

[39] Z. S. Bischof, J. S. Otto, M. A. Sánchez, et al. Crowdsourcing
isp characterization to the network edge. In Proc. of SIG-
COMM W-MUST workshop (2011), pages 61–66. ACM.

[40] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas:
New Techniques for Congestion Detection and Avoidance. In
Proc. of SIGCOMM (1994), pages 24–35. ACM.

[41] I. Canadi, P. Barford, and J. Sommers. Revisiting Broadband
Performance. In Proc. of IMC (2012), pages 273–286. ACM.

[42] N. Cardwell, Y. Cheng, C. S. Gunn, et al. BBR: Congestion-
based Congestion Control. Communications of the ACM
(2017), 60(2):58–66.

[43] G. Casella, C. P. Robert, M. T. Wells, et al. Generalized Accept-
reject Sampling Schemes. A Festschrift for Herman Rubin
(2004), pages 342–347.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 1025

[44] L. Chen et al. Auto: Scaling Deep Reinforcement Learning for
Datacenter-scale Automatic Traffic Optimization. In Proc. of
SIGCOMM (2018), pages 191–205. USENIX.

[45] H. Dai, M. Shahzad, A. X. Liu, et al. Finding Persistent Items
in Data Streams. In Proc. of VLDB (2016), pages 289–300.
VLDB Endowment.

[46] H. Deng, C. Peng, A. Fida, et al. Mobility Support in Cellular
Networks: A Measurement Study on Its Configurations and
Implications. In Proc. of IMC (2018), pages 147–160. ACM.

[47] M. Dischinger, A. Haeberlen, K. P. Gummadi, et al. Charac-
terizing Residential Broadband Networks. In Proc. of IMC
(2007), pages 43–56. ACM.

[48] M. Dong, Q. Li, D. Zarchy, et al. PCC: Re-architecting Con-
gestion Control for Consistent High Performance. In Proc. of
NSDI (2015), pages 395–408. USENIX.

[49] M. Dong, T. Meng, D. Zarchy, et al. PCC Vivace: Online-
Learning Congestion Control. In Proc. of NSDI (2018), pages
343–356. USENIX.

[50] O. Goga et al. Speed Measurements of Residential Internet
Access. In Proc. of PAM (2012), pages 168–178. Springer.

[51] H. Goldstein, C. Poole, and J. Safko. Classical mechanics.
American Association of Physics Teachers, 2002.

[52] S. Ha et al. CUBIC: a New TCP-friendly High-speed TCP
Variant. In Proc. of SIGOPS (2008), pages 64–74. ACM.

[53] N. Hu, L. Li, Z. M. Mao, et al. A Measurement Study of
Internet Bottlenecks. In Proc. of INFOCOM (2005), pages
1689–1700. IEEE.

[54] N. Hu, L. E. Li, Z. Mao, et al. Locating Internet Bottlenecks:
Algorithms, Measurements, and Implications. In Proc. of SIG-
COMM (2004), pages 41–54. ACM.

[55] N. Hu and P. Steenkiste. Evaluation and Characterization of
Available Bandwidth Probing Techniques. IEEE Journal on
Selected Areas in Communications (2003), 21(6):879–894.

[56] J. Huang et al. An In-depth Study of LTE: Effect of Network
Protocol and Application Behavior on Performance. In Proc.
of SIGCOMM (2013), pages 363–374. ACM.

[57] A. Ivanov. Evaluating BBRv2 on the Dropbox Edge Network.
arXiv preprint arXiv:2008.07699 (2020).

[58] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: Motivation,
Architecture, Algorithms, Performance. In Proc. of INFOCOM
(2004), pages 2490–2501. IEEE.

[59] A. Lehman. JMP for Basic Univariate and Multivariate Statis-
tics: a Step-by-step Guide. SAS Institute, 2005.

[60] M. Levandowsky and D. Winter. Distance Between Sets. Na-
ture, 234(5323):34–35, 1971.

[61] F. Li, A. A. Niaki, D. Choffnes, et al. A Large-scale Analysis
of Deployed Traffic Differentiation Practices. In Proc. of
SIGCOMM (2019), pages 130–144. ACM.

[62] Y. Li, H. Deng, C. Peng, et al. icellular: Device-customized
Cellular Network Access on Commodity Smartphones. In
Proc. of NSDI (2016), pages 643–656. USENIX.

[63] Y. Li et al. HPCC: High Precision Congestion Control. In
Proc. of SIGCOMM (2019), pages 44–58. ACM.

[64] B. Melander, M. Bjorkman, and P. Gunningberg. Regression-
based Available Bandwidth Measurements. In Proc. of Inter-
national Symposium on Performance Evaluation of Computer
& Telecommunication Systems Conference (SPECTS) (2002),
pages 14–19. IEEE.

[65] B. Melander et al. A New End-to-End Probing and Analysis
Method for Estimating Bandwidth Bottlenecks. In Proc. of
GlobeCom (2000), pages 415–420. IEEE.

[66] R. Mittal, V. T. Lam, N. Dukkipati, et al. TIMELY: RTT-based
Congestion Control for the Datacenter. In Proc. of SIGCOMM
(2015), pages 537–550. ACM.

[67] A. Narayanan, J. Carpenter, E. Ramadan, et al. A First Mea-
surement Study of Commercial mmWave 5G Performance on
Smartphones. arXiv preprint arXiv:1909.07532 (2019).

[68] J. Navratil and R. L. Cottrell. ABwE: A Practical Approach
to Available Bandwidth Estimation. In Proc. of PAM (2003),
pages 14–19. Springer.

[69] T. Oshiba. Accurate Available Bandwidth Estimation Robust
against Traffic Differentiation in Operational MVNO Networks.
In Proc. of ISCC (2018), pages 694–700. IEEE.

[70] V. Ribeiro, R. Riedi, R. Baraniuk, et al. pathChirp: Efficient
Available Bandwidth Estimation for Network Paths. In Proc.
of PAM workshop (2003). Springer.

[71] N. Sato, T. Oshiba, K. Nogami, et al. Experimental Comparison
of Machine Learning-based Available Bandwidth Estimation
Methods over Operational LTE Networks. In Proc. of ISCC
(2017), pages 339–346. IEEE.

[72] P. Schmitt et al. A Study of MVNO Data Paths and Perfor-
mance. In Proc. of PAM (2016), pages 83–94. Springer.

[73] J. Sommers and P. Barford. Cell vs. WiFi: On the Performance
of Metro area Mobile Connections. In Proc. of IMC (2012),
pages 301–314. ACM.

[74] L. Song and A. Striegel. Leveraging Frame Aggregation for
Estimating Wifi Available Bandwidth. In Proc. of SECON
(2017), pages 1–9. IEEE.

[75] S. Sundaresan, X. Deng, Y. Feng, et al. Challenges in Inferring
Internet Congestion using Throughput Measurements. In Proc.
of IMC (2017), pages 43–56. ACM.

[76] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion
Control (BIC) for Fast Long-distance Networks. In Proc. of
INFOCOM (2004), pages 2514–2524. IEEE.

[77] T. Yang, Y. Jin, Y. Chen, et al. RT-WABest: A Novel End-to-end
Bandwidth Estimation Tool in IEEE 802.11 Wireless Network.
International Journal of Distributed Sensor Networks (2017),
13(2):1550147717694889.

[78] F. Zarinni, A. Chakraborty, V. Sekar, et al. A First Look at
Performance in Mobile Virtual Network Operators. In Proc. of
IMC (2014), pages 165–172. ACM.

[79] Y. Zhu, H. Eran, D. Firestone, et al. Congestion Control for
Large-scale RDMA Deployments. In Proc. of SIGCOMM
(2015), pages 523–536. ACM.

1026 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

