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1. Introduction
Consider a cost function f 4x1�5, where x ∈X⊆�d is a
decision variable and � ∈ã is a random variable, distributed
according to �, which describes uncertainty. Throughout,
f 4x1 �5 is assumed to be convex in x, whereas its dependence
on � is arbitrary, and X is a convex set. This paper considers
the following chance-constrained problem:

min
x∈X⊆�d1 l∈�

l

subject to: �8f 4x1�5¶ l9¾ 1 − �0
(1)

In (1), an x has to be found so as to minimize l, which is an
upper bound on function f 4x1�5 that holds with probability
1 − �.

Chance-constrained problems are quite popular in stochas-
tic optimization, see e.g., Prékopa (1995, 2003), Dentcheva
(2006), Shapiro et al. (2009), and it is well known that they
are in general difficult to solve. For this reason, sample-based
approximations of chance-constrained problems have been
considered. Letting �4151 0 0 0 1 �4N 5 be N instances, or scenar-
ios, of the uncertainty variable � independently sampled
according to the probability measure �, a sample-based
approximation to (1), the so-called “scenario program,” can
be written as

min
x∈X⊆�d1 l∈�

l

subject to: f 4x1�4i55¶ l1 i = 11 0 0 0 1N 0
(2)

This program allows one to find a feasible solution to prob-
lem (1), while also heuristically pursuing the achievement of
a satisfactory performance by optimizing over a finite sample
of � values. The feasibility of the solution of (2) with respect
to the probabilistic constraint in (1) has been theoretically
studied in Calafiore and Campi (2005, 2006), Campi and
Garatti (2008), Luedtke and Ahmed (2008), Alamo et al.
(2009, 2010), Campi and Garatti (2011), Garatti and Campi
(2013). See Bertsimas and Brown (2009), Pagnoncelli et al.
(2009), Chen et al. (2010), Hong et al. (2011), Pagnoncelli
et al. (2012) for some applications of the scenario program.
Programs incorporating a sample of the uncertainty variable
also arise in data-driven optimization where optimization
is based on historical data; see, e.g., Bertsimas and Thiele
(2006), Delage and Ye (2010).

Letting x∗
N and l∗N be the solution and the optimal value

of (2), Theorem 1 in Campi and Garatti (2008) proves that,
if N is suitably chosen, relation f 4x∗

N 1 �5¶ l∗N holds with
high probability 1 − � with respect to �, that is, 4x∗

N 1 l
∗
N 5

is feasible for problem (1). Thus, l∗N is a guaranteed cost
with probability 1 − � when decision x∗

N is applied. It turns
out that this “suitable N ” is inversely proportional to �
and is proportional to d, the number of components in the
decision variable x, i.e., N scales as 41/�5 ·d. However, as
noted in Nemirovski and Shapiro (2006), Oishi (2007), this
dependence on � and d may result in too many scenarios
for large-scale problems where d takes large values. This
fact represents a difficulty for the use of the method, and
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Figure 1. Illustration of FAST.
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Note. Each line represents a function f 4x1�4i55.

undermines its applicability when scenarios are observations
and are therefore a limited and valuable resource. In the
present paper a novel algorithm called FAST (Fast Algorithm
for the Scenario Technique) is introduced that gets around
this difficulty. FAST returns a solution 4x∗

F 1 l
∗
F 5, which is

still feasible for problem (1), with a sample complexity N
that exhibits a dependence on � and d of the form 1/�+d.
Thereby, the FAST algorithm significantly reduces the sample
complexity in large-scale optimization problems.

1.1. The Idea Behind FAST

FAST constructs a solution in two steps. First, a moderate
number N1 of scenarios �4i5 are considered and problem
(2) with N =N1 is solved so generating a decision x∗

N1
and

an optimal value l∗N1
; refer to Figure 1(a). This first step

is carried out at a low computational effort because of the
moderate number N1 of scenarios involved. On the other
hand, f 4x∗

N1
1 �5¶ l∗N1

is not guaranteed with the desired
probability 1−� since N1 is too low for this guarantee to hold.
Then, a detuning step is started where N2 additional scenarios
are sampled and the smallest value l∗F such that f 4x∗

N1
1 �4i55¶

l∗F , i= 11 0 0 0 1N1 +N2, is computed; see Figure 1(b). The
algorithm returns the solution x∗

F = x∗
N1

and the value l∗F . The
theory in §3 shows that f 4x∗

F 1 �5¶ l∗F holds with the desired
probability 1 − �. In this construction, N1 and N2 scale as
d and 1/�, respectively, leading to an overall number of
scenarios N =N1 +N2 that is typically much smaller than
that required by the “classical” scenario approach. Moreover,
choosing a small � does not affect N1 and only results in a
large N2 value, which corresponds to having many scenarios
in the computationally low-demanding detuning step.

1.2. Structure of the Paper

The remainder of the paper is organized as follows. Section 2
provides background material on the classical scenario

approach. In §3, the FAST algorithm is formally presented
and its main theoretical properties are given, followed by a
discussion on the practical use of the algorithm. Section 4
extends FAST to a setup with general convex constraints,
instead of constraints of the form f 4x1�5 ¶ l as in (1).
A simulation example is presented in §5, and all proofs are
in §6.

2. Background Material on the
Scenario Approach

Throughout, we assume that problem (2) has a unique
solution for any N and any values of �4151 0 0 0 1 �4N 5. Although
this assumption can be relaxed, see, e.g., the discussion in
section 2.1 of Campi and Garatti (2008), it is here made to
streamline the presentation.

Definition 1 (Violation Probability). The violation
probability of a given 4x1 l5 ∈X×� is defined as

V 4x1 l5=�8�2 f 4x1�5 > l90

In words, V 4x1 l5 is the probability with which x attains a
cost larger than l.

The violation probability V 4x∗
N 1 l

∗
N 5, where 4x∗

N 1 l
∗
N 5 is the

solution of (2), has been studied in Campi and Garatti (2008).
The variables x∗

N and l∗N are random since they depend on
�4151 0 0 0 1 �4N 5. Thus, a statement like V 4x∗

N 1 l
∗
N 5 > � has a

probabilistic nature, i.e., V 4x∗
N 1 l

∗
N 5 > � holds with a certain

probability. An exact quantification of the probability that
V 4x∗

N 1 l
∗
N 5 > � is given in Theorem 1 of Campi and Garatti

(2008), where the following result is proved:

�N 8�41510001�4N 52 V 4x∗

N 1l
∗

N 5>�9

¶
d
∑

i=0

(

N

i

)

�i41−�5N−i0 (3)
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Equation (3) shows that the probability of seeing a “bad”
sample �4151 0 0 0 1 �4N 5 such that V 4x∗

N 1 l
∗
N 5 > � is no more

than
∑d

i=0

(

N

i

)

�i41 − �5N−i. A truly remarkable fact is that
the right-hand side of (3) is a bound valid irrespective
of �, so that an application of the result in (3) does not
require knowledge of probability �. Moreover, result (3)
is not improvable since the inequality ¶ in (3) becomes
an equality = for a whole class of problems, the so-called
fully-supported problems; see Definition 3 in Campi and
Garatti (2008). See Campi and Garatti (2008) for more
details, and a discussion on the use of (3).

The right-hand side of (3) is the so-called incomplete
beta function ratio; see, e.g., Gupta and Nadarajah (2004).
For brevity, in the sequel we shall use the notation

BN1d
� =

d
∑

i=0

(

N

i

)

�i41 − �5N−i0 (4)

When using (3), one fixes a (very small) confidence parameter
� and finds the smallest integer N such that BN1d

� ¶ �.
Because of (3), this N entails that �N 8V 4x∗

N 1 l
∗
N 5 > �9¶ �,

so that solving (2) returns a solution such that V 4x∗
N 1 l

∗
N 5¶ �

holds with (very high) confidence 1 −�.
In Alamo et al. (2010), an explicit formula for N so that

BN1d
� ¶ � is shown to be

N ¾ e

e− 1
1
�

(

d+ ln
1
�

)

0 (5)

This N scales logarithmically in 1/�, so that � can be
made so small, say 10−9, that it can be neglected in practice
without increasing N too much. On the other hand, the
dependence on d and � is of the form 41/�5 ·d.

3. FAST
The FAST algorithm is given in §3.1. In §3.2 theoretical
results are presented and a discussion about the practical use
of FAST follows in §3.3.

3.1. The FAST Algorithm

• INPUT:
• � ∈ 70116, violation parameter;
• � ∈ 70116, confidence parameter;
• N1, an integer such that N1 ¾ d+ 1.

1. Compute the smallest integer N2 such that

N2 ¾
ln�− lnBN11 d

�

ln 41 − �5
1 (6)

where B
N11 d
� is as in Equation (4).

2. Sample N1 +N2 independent constraints �4151 0 0 0 1 �4N151
�4N1+151 0 0 0 1 �4N1+N25, according to �.

3. Solve problem (2) with N =N1; let 4x∗
N1
1 l∗N1

5 be the
solution.

4. (Detuning step) Compute

l∗F = max
i=110001N1+N2

f 4x∗

N1
1 �4i550

• OUTPUT:
• 4x∗

F 1 l
∗
F 5 2= 4x∗

N1
1 l∗F 5.

3.2. Theoretical Results

The violation probability V 4x∗
F 1 l

∗
F 5 is a random variable

that depends on the sample �4151 0 0 0 1 �4N1+N25. The following
theorem bounds the probability that V 4x∗

F 1 l
∗
F 5 > �.

Theorem 1. The following relation holds

�N1+N28V 4x∗

F 1 l
∗

F 5 > �9¶ 41 − �5N2 ·BN11 d
� 0 (7)

The proof of Theorem 1 is given in §6.
It is a fact that the bound on the right-hand side of (7) is

not improvable. Indeed, relation (7) holds with equality for
the whole class C of optimization problems specified in the
following definition.

Definition 2. Problem (1) is said to be in class C if
(i) its sample-based approximation (2) is fully supported

according to Definition 3 in Campi and Garatti (2008) with
probability 1 for all N ¾ d+ 1;

(ii) ∀x ∈X1∀ l ∈�1 �8�2 f 4x1�5= l9= 0.

Theorem 2. Relation

�N1+N28V 4x∗

F 1 l
∗

F 5 > �9= 41 − �5N2 ·BN11 d
� (8)

holds whenever (1) is in class C.

For a proof see §6.
Note now that Equation (6) is equivalent to

41 − �5N2 ·BN11 d
� ¶ �1

so that Theorem 1 implies that

�N1+N28V 4x∗

F 1 l
∗

F 5 > �9¶ �0

On the other hand, since N2 is the smallest integer such that
(6) holds, any N ′

2 <N2 gives

41 − �5N
′
2 ·BN11 d

� >�1

and, in light of Theorem 2, this implies that

�N1+N ′
28V 4x∗

F 1 l
∗

F 5 > �9 > �

whenever (1) is in class C. This discussion establishes the
following main theorem.

Theorem 3. It holds that

�N1+N28V 4x∗

F 1 l
∗

F 5 > �9¶ �0 (9)

Moreover, the value N2 given in step 1 of the FAST algorithm
cannot be improved in the sense that there are problems for
which no N2 smaller than that given in step 1 of the FAST
algorithm makes (9) true.
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3.3. Discussion

In the FAST algorithm, the user solves problem (2) with N1

constraints, and computes N2 through (6). The number N1

is decided by the user, whereas N2 depends on N1, �, and
�. In this section, guidelines on how to select N1, and a
handier formula for N2, are provided. Additional discussion
on some advantages of using FAST is also given.

Selection of N1. Computational reasons suggest that
N1 should be chosen as small as possible, for, otherwise,
step 3 in the FAST algorithm becomes expensive, so losing
the advantages of using FAST. On the other hand, if N1 is
too small, x∗

N1
is poorly selected, and this in turn leads to a

large cost value l∗F after that the detuning step 4 in FAST is
carried out. As a rule of thumb out of empirical experience,
we suggest to take N1 = 20d. Notice that the theoretical
results in Theorem 3 remain valid for any choice of N1.

A Handier Formula for N2. In step 1 of the FAST
algorithm, Equation (6) can be substituted by the handier
formula

N2 ¾
1
�

ln
1
�
0 (10)

In fact,

ln�− lnBN11 d
�

ln41 − �5
¶ ln�

ln41 − �5
¶ 1

�
ln

1
�
1

showing that an N2 satisfying (10) also satisfies (6). (10) is
easier to apply than (6) since (6) also involves computing
the incomplete beta function ratio B

N11 d
� .

Advantages with Using FAST.
Reduced sample size requirements. The FAST algorithm

provides a cheaper way to find solutions to medium- and
large-scale problems than the classical scenario approach.
Indeed, one can choose N1 =Kd, where K is a user-selected
number normally set to 20, while, using (10), N2 can be taken
as the first integer bigger than or equal to 41/�5 ln41/�5.
Hence, a simple formula to estimate the overall number of
scenarios needed with FAST is

Kd+
1
�

ln
1
�
0

A comparison with the evaluation in (5)

e

e− 1
1
�

(

d+ ln
1
�

)

applicable to the classical scenario approach shows the key
point that, with FAST, the critical multiplicative dependence
on 41/�5 ·d is replaced by an additive dependence on 1/�
and d.

Possibility to reduce � to small values. The detuning step 4
of FAST is a simple one-dimensional maximization problem.
Therefore, running step 4 with a large N2 can be done at
low computational effort so that � can be reduced to values
much smaller than with the classical scenario approach.

Figure 2. Comparison between FAST and the classical
scenario approach.

xxN1
*

lN1

*

lF
*

Suboptimality of FAST. Figure 2 represents the solution
obtained using FAST. In the figure, l∗N1

is the cost value
for the problem with N1 scenarios, and l∗F is the cost value
after the introduction of N2 extra scenarios in the detuning
step. In white is the region above all cost functions f 4x1 �4i55,
i = 11 0 0 0 1N1 +N2. An inspection of Figure 2 reveals that the
white region contains a part that outperforms l∗F . Although
the classical approach introduces additional scenarios beyond
N1 +N2 to achieve the same level of violation as FAST,
so that the number of scenarios it uses is N ¾ N1 +N2,
still its solution can fall in the part of the white region
that outperforms l∗F . However, letting l∗N be the cost value
of the classical scenario approach, it certainly holds that
l∗F − l∗N < l∗F − l∗N1

. Consequently, the user has a simple way
to evaluate the maximum possible suboptimality of FAST
compared with the classical scenario approach as given by
l∗F − l∗N1

. Empirical evidence shows that l∗F and l∗N are often
close to each other so that suboptimality is negligible.

A Comparison with Validation Set Methods. The
approach of this paper of using a second set of N2 constraints
bears similarities with validation set methods, where a
validation set is used to evaluate the feasibility level of a
solution. Validation sets are often employed in sequential
algorithms for solving convex and nonconvex optimization
problems; see, e.g., Koltchinskii et al. (2000), Oishi (2007),
Wada and Fujisaki (2007), Alamo et al. (2009), Calafiore
et al. (2011). However, two differences between validation
set methods and FAST must be highlighted. First, with FAST,
the optimal value is updated based on the new N2 constraints,
as opposed to simply validating a given solution. Second,
Theorem 2 combines the feasibility of the original solution
based on N1 constraints with the additional information
carried by the extra N2 constraints, rather than more simply
validating the solution with the additional N2 constraints.
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4. A More General Set-Up
In previous sections, FAST was applied to problems with
constraints in the specific form f 4x1�5¶ l. Here, more
general constraints are considered. Given a constant vector
c ∈�d+1, a convex and closed set S⊆�d+1, and a family of
convex and closed sets Z� parameterized in the uncertainty
variable �, consider the following constrained convex scenario
program:

min
z∈S⊆�d+1

cT z

subject to: z ∈
⋂

i=110001N

Z�4i51
(11)

where �4151 0 0 0 1 �4N 5 are instances of � independently sampled
according to the probability measure �. Problem (11) is
meant as a sample-based approximation to the chance-
constrained problem:

min
z∈S⊆�d+1

cT z

subject to: �8z ∈Z�9¾ 1 − �0

Since every convex program can be rewritten so as it has a
linear objective, see, e.g., Boyd and Vandenberghe (2004),
linearity of the objective function in (11) is without loss of
generality. Also, note that (2) is a particular case of (11)
with z= 4x1 l5, S=X×�, Z� = 84x1 l52 f 4x1�5¶ l9, and
cT = 40101 0 0 0 10115. The notion of violation probability of
4x1 l5 given in Definition 1 is extended to the present context
as follows.

Definition 3 (Violation Probability). The violation
probability of a given point z ∈S is defined as

V 4z5=�8�2 zyZ�90

In the following, we assume that, for any N and any values
of �4151 0 0 0 1 �4N 5, problem (11) is feasible, its feasibility
domain has nonempty interior, and the solution of (11) exists
and is unique. Moreover, it is assumed that the user knows a
“robustly feasible” point.

Assumption 1. A point z̄ ∈ 4
⋂

�∈ãZ�5∩S is known to the
user.1

In §4.1 the generalized FAST algorithm is given. The
main theoretical result for the generalized FAST algorithm
is presented in §4.2, followed by a brief discussion in §4.3.

4.1. Generalized FAST Algorithm

• INPUT:
• � ∈ 70116, violation parameter;
• � ∈ 70116, confidence parameter;
• N1, an integer such that N1 ¾ d+ 1;
• z̄ ∈ 4

⋂

�∈ãZ�5∩S, a robustly feasible point.

1. Compute the smallest integer N2 such that

N2 ¾
ln�− lnBN11 d

�

ln 41 − �5
1 (12)

where B
N11 d
� is as in Equation (4).

2. Sample N1 +N2 independent constraints �4151 0 0 0 1 �4N151
�4N1+151 0 0 0 1 �4N1+N25, according to �.

3. Solve problem (11) with N =N1; let z∗
N1

be the solu-
tion.

4. (Detuning step) Let ẑ6�7 2= 41 −�5z∗
N1

+�z̄, � ∈ 6011],
i.e., ẑ6�7 describes the line segment connecting z∗

N1
with z̄.

Compute the solution �∗ to the problem

min
�∈60117

cT ẑ6�7

subject to: ẑ6�7 ∈
N1+N2
⋂

i=N1+1

Z�4i5 0
(13)

• OUTPUT:
• z∗

F 2= ẑ6�∗7.

4.2. Theoretical Results

The violation of the solution z∗
F obtained with the generalized

FAST algorithm is given in the following theorem.

Theorem 4. It holds that

�N1+N28V 4z∗

F 5 > �9¶ �0 (14)

Moreover, the value N2 given in step 1 of the generalized
FAST algorithm cannot be improved in the sense that there
are problems for which no N2 smaller than that given in
step 1 of the generalized FAST algorithm makes (14) true.

A proof is given in §6.

4.3. Discussion

The essential difference between the FAST algorithm of §3
and the generalized FAST algorithm of this section is in the
detuning step: the idea of lifting l∗N1

in the FAST algorithm
is replaced in the generalized FAST algorithm by the idea of
moving z∗

N1
toward z̄. This operation can be performed at low

computational effort since (13) is an optimization problem
with a scalar decision variable �, so that (13) can be solved,
e.g., by means of bisection. Moreover, all observations in
the discussion §3.3 can be carried over mutatis mutandis to
the context of the present section.

5. An Example
In this section, the classical scenario approach is compared
with FAST on an instance of the well-known weighted
distribution problem, see Ferguson et al. (1956), Dantzig
(1998).
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5.1. Problem Formulation

A company sells n products. The demand for the products
over a given period is quantified through the “demand vector”
D = 6d1 d2 · · · dn7, where dk is the demand for product k.
The company owns m different machines. Each machine
can be used to produce any of the n products, although the
efficiency varies from product to product and from machine
to machine. This is specified by the m× n “capacity matrix”
P , whose entry pjk is the quantity of product k that is
produced in a time unit when the jth machine is allocated to
that product. Moreover, each machine can only be used for
a limited amount of time over a period as specified by the
“availability vector” A= 6a1 a2 · · · am7

T . The production
costs are given by matrix C , which is again a m× n matrix
and whose entry cjk gives the cost incurred when the jth
machine is allocated to product k for a time unit. The entry
cjk takes into account the operating cost, the cost of raw
materials that are processed in a time unit, etc.

Selling a unitary quantity of product k gives a revenue
equal to uk, and U = 6u1 u2 · · · un7 is the “revenue vector.”
The total revenue achieved from the production of a quantity
qk of product k is given by uk · min4qk1dk5, where min
is because the sold product is no more than the demand
for that product. Moreover, overproduction generates an
additional cost because of inventory holding. The inventory
holding cost for a unitary quantity of product k is c̃k and
C̃ = 6c̃1 c̃2 · · · c̃n7.

The company has to allocate the production over the
available machines by choosing the m×n “allocation matrix”
X whose entry xjk represents the amount of time that the
jth machine is allocated to product k. The objective is the
minimization of the net cost, that is, the difference between
the total cost and the total revenue in the time period, given
the constraint posed by the availability vector A:

min
X∈X

{

m
∑

j=1

n
∑

k=1

cjkxjk +

n
∑

k=1

c̃k

[

m
∑

j=1

pjkxjk −dk

]

+

−

n
∑

k=1

uk min

(

m
∑

j=1

pjkxjk1 dk

)}

1 (15)

where

X=

{

X2
n
∑

k=1

xjk ¶ aj1 j = 11 0 0 0 1m1xjk ¾ 01

j = 11 0 0 0 1m1k = 11 0 0 0 1 n
}

1

and 6 · 7+ denotes positive part (6a7+ = a if a¾ 0, 6a7+ = 0
otherwise).

Formulation (15) is a deterministic model of the weighted
distribution problem. In the sequel, more realistically, we
shall view some quantities as random. Precisely, we shall
treat as random the demand vector D, due to partial unpre-
dictability of customers’ behavior, and the capacity matrix P ,

due, e.g., to the need for human intervention. Hence, we
shall adopt a chance-constrained formulation:

min
X∈X1 l

l

subject to: �

{ m
∑

j=1

n
∑

k=1

cjkxjk+
n
∑

k=1

c̃k

[ m
∑

j=1

pjkxjk−dk

]

+

−

n
∑

k=1

ukmin
( m
∑

j=1

pjkxjk1dk

)

¶ l

}

¾1−�1

and the scenario approach will be applied.

5.2. FAST vs. Classical Scenario Approach

Take m= 5 and n= 10, and let

C=













108 202 105 202 206 201 202 107 208 109
106 109 103 109 203 109 200 105 205 107
102 105 100 105 109 104 106 101 200 103
103 106 101 106 200 105 107 102 202 104
102 105 100 106 109 105 106 101 201 103













A=













10
13
22
19
21













C̃= 6103 103 103 103 103 103 103 103 103 103 7

U = 6105 108 102 109 202 108 109 104 204 106 70

Vector D takes value according to a Dirichlet distribution
Dir4251381181391601351411221741305 multiplied by 382.
Since the sum of the components of a Dirichlet distributed
vector adds up to 1, the total demand

∑n
k=1dk is equal to

382, and is not subject to stochastic fluctuations. This models
a market where products are varieties of the same good, and
the preference for a product is to the detriment of the others
(for instance, the amount of paint bought is constant, and
customers can choose among various colors). As for the
capacity matrix P , the pjk’s are assumed to be independent
of each other and uniformly distributed around nominal
values p̄jk’s, as given by the matrix

P̄ =













500 706 306 708 1200 700 802 404 1408 600
308 508 208 600 902 504 603 304 1104 406
203 305 106 305 505 302 307 200 607 207
206 400 109 401 603 307 403 203 708 302
204 306 107 307 507 303 309 201 700 209













1

with a variation of ±5% each.
The scenario program is

min
X∈X1l

l

subject to:
m
∑

j=1

n
∑

k=1

cjkxjk+
n
∑

k=1

c̃k

[ m
∑

j=1

p
4i5
jk xjk−d

4i5
k

]

+

−

n
∑

k=1

ukmin
( m
∑

j=1

p
4i5
jk xjk1d

4i5
k

)

¶ l1

i=110001N 1

(16)
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where �4i5=4d
4i5
1 10001d4i5

n 1p
4i5
11 10001p

4i5
1n 10001p

4i5
m110001p

4i5
mn5 is a

random extraction of the elements of D and P .
We are interested in a solution with a violation probability

no more than �=1%, with confidence 1−�=1−10−9. In
the classical scenario approach, letting BN1d

� ¶10−9, see (4),
yields N =101580. The scenario program (16) was solved
on a Windows 7 system with an Intel Core i5 (2.53 GHz)
and 4 GB of RAM. Using YALMIP, Lofberg (2004), with
the IBM ILOG CPLEX optimizer, the obtained solution was

X∗

N =













0 0 0 009579 406336 0
0 506199 0 404399 0 009391
0 0 0 0 0 300872

708225 0 0 0 0 407436
0 0 1002830 0 0 0

0 0 404086 0
200012 0 0 0

0 1006160 0 0
604339 0 0 0

0 0 0 1006304













and l∗N =−45807238, and the computation time was 7,760
seconds.

Next, we used FAST with N1 =20 ·d=11000, and, based
on (12), N2 =21062. Running (16) with N =N1 =11000 we
obtained an allocation matrix

X∗

N1
=













0 409417 0 0 0 205074
0 0 0 506812 0 0

808018 0 505402 0 0 0
009443 0 303857 0 807939 305155

0 0 003239 0 0 0

0 0 205509 0
406527 0 206661 0

0 0 0 0
203606 0 0 0

0 908523 0 1008238













with the cost value l∗N1
=−477096. Then, we solved the

detuning step with N2 =21062 additional scenarios, and the
final result was X∗

F =X∗
N1

, and l∗F =−453077. The overall
computation time was 95 seconds. Hence, a drastic reduc-
tion in computation time is obtained at the expense of a
small increase of cost. Further experiments showed that the
difference in time execution becomes rapidly larger as �
decreases, with little variation in the cost.

6. Proofs
Theorems 1 and 2 are proved in §6.1, and the proof of
Theorem 4 is given in §6.2.

6.1. Proof of Theorems 1 and 2

Define, for brevity, Än
m 2=4�4m51�4m+1510001�4n55, so that Än

m∈

ãn−m+1.

We want to compute the probability of set

H =8Ä
N1+N2
1 2 V 4x∗

F 1l
∗

F 5>�90

Given x∗
N1

, consider the set

L=8l2 V 4x∗

N1
1l5>�90

Set L is a random set, depending on Ä
N1
1 through x∗

N1
. Once

x∗
N1

is fixed, 1−V 4x∗
N1
1l5, as a function of l, is the cumulative

distribution function of the random variable f 4x∗
N1
1�5. Hence,

V 4x∗
N1
1l5 is right continuous and nonincreasing in �, entailing

that L can be written as L= 7−�1l̄6 for a suitable l̄. The
following property provides a useful characterization of
set H .

Property 1. Ä
N1+N2
1 ∈H if and only if V 4x∗

N1
1l∗N1

5>� and
f 4x∗

N1
1�4i55∈L, ∀i∈8N1 +11000N1 +N29.

Proof. At the detuning step 4, the FAST algo-
rithm computes l∗F =maxi=110001N1+N2

f 4x∗
N1
1�4i55, i.e., l∗F =

max8l∗N1
1maxi=N1+110001N1+N2

f 4x∗
N1
1�4i559. If V 4x∗

N1
1l∗N1

5>�, we
have l∗N1

<l̄. If f 4x∗
N1
1�4i55∈L, ∀i∈8N1 +110001N1 +N29, we

have maxi=N1+110001N1+N2
f 4x∗

N1
1�4i55<l̄. Thus, we have l∗F <l̄,

i.e., l∗F ∈L, when both conditions hold true simultaneously,
yielding Ä

N1+N2
1 ∈H . Vice versa, if V 4x∗

N1
1l∗N1

5¶� we have
l∗N1

>l̄, so that l∗F ¾ l∗N1
>l̄, i.e., l∗F yL and Ä

N1+N2
1 is not

in H ; on the other hand, if f 4x∗
N1
1�4ī55yL for some ī∈

8N1 +110001N1 +N29 we have f 4x∗
N1
1�4ī55>l̄, so that l∗F ¾

f 4x∗
N1
1�4ī55>l̄, i.e., l∗F yL and Ä

N1+N2
1 is not in H . �

Based on Property 1 we proceed now to evaluate the
probability of H :

�N1+N28H9

= 6�8A9= indicator function of set A7

=

∫

ãN1+N2
�8V 4x∗

N1
1l∗N1

5>� and f 4x∗

N1
1�4i55∈L1

∀i∈8N1 +110001N1 +N299�
N1+N28dÄN1+N2

1 9

=

∫

ãN1+N2
�8V 4x∗

N1
1l∗N1

5>�9 ·�8f 4x∗

N1
1�4i55∈L1

∀i∈8N1 +110001N1 +N299�
N18dÄN1

1 9�N28dÄN1+N2
N1+1 9

=

∫

ãN1
�8V 4x∗

N1
1l∗N1

5>�9 6using Fubini’s theorem7

·

[

∫

ãN2
�8f 4x∗

N1
1�4i55∈L1∀i∈8N1 +110001N1 +N299

�N28dÄN1+N2
N1+1 9

]

�N18dÄN1
1 90 (17)

As we show below in this proof, the inner integral in the
square brackets is upper bounded by 41−�5N2 for any Ä

N1
1 ,

and it is exactly equal to 41−�5N2 when problem (1) is in
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class C, according to Definition 2. Whence, �N1+N28H9 is
upper bounded as follows:

�N1+N28H9

¶41−�5N2

∫

ãN1
�8V 4x∗

N1
1l∗N1

5>�9�N18dÄN1
1 90 (18)

The integral in (18) is �N18V 4x∗
N1
1l∗N1

5>�9, a quantity that,
according to the classical theory of the scenario approach
reminded in §2, is upper bounded by B

N11d
� , while it is

exactly equal to B
N11d
� whenever (1) is in class C. Thus,

from (18) we conclude that

�N1+N28H9¶41−�5N2 ·BN11d
� 1

which is the statement of Theorem 1, and, if (1) is in C, we
have equality, i.e.,

�N1+N28H9=41−�5N2 ·BN11d
� 1

and Theorem 2 is proved.
To complete the proof we have to evaluate the inner

integral in (17).
In what follows, we take a fixed Ä

N1
1 —so that x∗

N1
is

fixed—and the result is proved by working conditionally
with respect to Ä

N1
1 .

By the independence of �41510001�4N151�4N1+1510001�4N1+N25,

∫

ãN2
�8f 4x∗

N1
1�4i55∈L1∀i∈8N1 +110001N1 +N299�

N28dÄN1+N2
N1+1 9

=

(

∫

ã
�8f 4x∗

N1
1�5∈L9�8d�9

)N2

=
(

�8f 4x∗

N1
1�5∈L9

)N2

=
(

�8f 4x∗

N1
1�5<l̄9

)N2
0 (19)

When problem (1) belongs to class C, �8f 4x∗
N1
1�5= l9=0

so that V 4x∗
N1
1l5=�8f 4x∗

N1
1�5>l9 is a continuous func-

tion of l. Since l̄ is the extreme point of the set where
V 4x∗

N1
1l5>�, by continuity it follows that V 4x∗

N1
1l̄5=�.

Hence, �8f 4x∗
N1
1�5< l̄9=�8f 4x∗

N1
1�5¶ l̄9=1−�8f 4x∗

N1
1�5>

l̄9=1−V 4x∗
N 1l̄5=1−� and the right-hand side of (19) equals

41−�5N2 . If (1) is not in C, we prove that �8f 4x∗
N1
1�5< l̄9¶

1−�. To this end, define the sets Ln 2= 7−�1l̄−1/n7 for n>1.
Clearly, Ln⊆L, and �8f 4x∗

N1
1�5∈Ln9=1−V 4x∗

N1
1l̄−1/n5<

1−�. Applying the �-additivity of �, we conclude that

�8f 4x∗

N1
1�5∈L9=�

{

f 4x∗

N1
1�5∈

�
⋃

n=1

Ln

}

= lim
n→�

[

1−V

(

x∗

N1
1l̄−

1
n

)]

¶1−�

and the right-hand of (19) is upper bounded by 41−�5N2 . �

6.2. Proof of Theorem 4

The proof of Theorem 4 follows the same line of reasoning
as that of Theorems 1 and 2.

We want to compute the probability of set

H =8Ä
N1+N2
1 2 V 4z∗

F 5>�90 (20)

Given z∗
N1

, the solution z∗
F obtained by the generalized

FAST algorithm lies on the half-line defined as ẑ6�7 2=
41−�5z∗

N1
+�z̄, �∈ 7−�117: this half-line extends the line

segment at step 4 of the generalized FAST algorithm in §4.1
beyond point z∗

N1
. The set Z of points on this half-line with

a violation probability bigger than � is formally defined as

Z=8ẑ6�72 �∈7−�117 and V 4ẑ6�75>�90

Since sets Z� are convex and closed, V 4ẑ6�75 is right
continuous and nonincreasing in �∈ 7−�117. Hence, Z is an
open half-line. In formulas, by defining

�̄= sup
�∈7−�117

8�2 V 4ẑ6�75>�91 (21)

Z can then be rewritten as

Z=8ẑ6�72 �∈ 7−�1�̄690

The following property provides a useful characterization of
set H .

Property 2. Ä
N1+N2
1 ∈H if and only if V 4z∗

N1
5>� and

Z∩Z�4i5 6=�, ∀i∈8N1 +110001N1 +N29.

Figure 3. Optimization domain for problem (13) in
step 4 of the generalized FAST algorithm.

Optimization
direction

Z: V(z[�]) > � zF
*

��(i)

z = z[1]

zN1
= z[0]*

Notes. The algorithm returns the point z∗

F closest to z∗

N1
and such that

z∗

F ∈Z�4i5 1∀i∈8N1 +110001N1 +N29. In this figure, set Z�4i5 is the region
above the shaded area, and Z∩Z�4i5 6=�.
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This Property 2 can be proved similarly to Property 1 in
§6.1, by observing that Z has here the same role as L in
§6.1. Refer to Figure 3 for a geometrical visualization of the
various objects involved.

Based on Property 2 and mimicking (17), the probability
of H can be written as

�N1+N28H9

=

∫

ãN1
�8V 4z∗

N1
5>�9

[

∫

ãN2
�8Z∩Z�4i5 6=�1

∀i∈8N1 +110001N1 +N299�
N28dÄN1+N2

N1+1 9

]

�N18dÄN1
1 90

By the independence of �41510001�4N151�4N1+1510001�4N1+N25,
the inner integral in this latter equation can be written as

∫

ãN2
�8Z∩Z�4i5 6=�1∀i∈8N1 +110001N1 +N299�

N28dÄN1+N2
N1+1 9

=4�8Z∩Z� 6=�95N21

which, as we shall show below in this proof, is upper
bounded by 41−�5N2 for every Ä

N1
1 . Thus, we conclude that

�N1+N28H9¶41−�5N2

∫

ãN1
�8V 4z∗

N1
5>�9�N18dÄN1

1 9

¶41−�5N2BN11d
� 1 (22)

where the last equality follows from the classical theory
of the scenario approach; see Campi and Garatti (2008).
Theorem 4 follows by substituting in (22) the expression for
N2 given in (12).

The fact that 4�8Z∩Z� 6=�95N2 ¶41−�5N2 is now proved
by working conditionally on a fixed Ä

N1
1 , so that ẑ6�7,

�∈ 7−�117 has to be thought of as a fixed half-line. Define
the sets

Zn=
{

ẑ6�72 �∈ 7−�1�̄−1/n7
}

1

for n>1. Clearly, 8�∈ã2 Zn∩Z� 6=�9=8�∈ã2 ẑ6�̄−1/n7∈
Z�9, that is, for Zn∩Z� to be nonempty, the extreme point
ẑ6�̄−1/n7 of Zn must be in Z�. Now, by the Definition 3 of
violation probability, �8�∈ã2 ẑ6�̄−1/n7∈Z�9=1−V 4ẑ6�̄−

1/n75, and by the �-additivity of � we have that

�8Z∩Z� 6=�9=�

{

�
⋃

n=1

8Zn∩Z� 6=�9

}

= lim
n→�

61−V 4ẑ6�̄−1/n757¶1−�1

where the last inequality follows from the fact that
V 4ẑ6�̄−1/n75>�, ∀n; see (21). Thus, 4�8Z∩Z� 6=�95N2 ¶
41−�5N2 , and the theorem is proved. �

Endnote

1. This assumption is satisfied in many situations of interest. For
example, in robust feedback controller synthesis one can take
the z̄ corresponding to the zero controller, Campi et al. (2009b).
Similarly, a suitable z̄ can be easily determined in applications as
IPMs (interval predictor models) with bounded noise, Campi et al.
(2009a), and robust Chebyshev FIR equalization, Mutapčić et al.
(2007). One way to search for a robustly feasible z̄ in more general
contexts is by robust optimization techniques; see, e.g., Ben-Tal
and Nemirovski (1998), El Ghaoui and Lebret (1998), Ben-Tal and
Nemirovski (1999), El Ghaoui and Niculescu (2000), Bertsimas
and Sim (2004), or by sequential randomized algorithms; see, e.g.,
Polyak and Tempo (2001), Fujisaki et al. (2003), Oishi (2007),
Wada and Fujisaki (2007), Calafiore et al. (2011).
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eds. Stochastic Programming, Handbooks in Operations Research and
Management Science, Vol. 10 (Elsevier, London, UK), 267–351.
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