
FAST: Fast Architecture Sensitive Tree Search
on Modern CPUs and GPUs

Changkyu Kim†, Jatin Chhugani†, Nadathur Satish†, Eric Sedlar!, Anthony D. Nguyen†,
Tim Kaldewey!, Victor W. Lee†, Scott A. Brandt!, and Pradeep Dubey†

changkyu.kim@intel.com

†Throughput Computing Lab,
Intel Corporation

!Special Projects Group,
Oracle Corporation

!University of California,
Santa Cruz

ABSTRACT
In-memory tree structured index search is a fundamental database
operation. Modern processors provide tremendous computing power
by integrating multiple cores, each with wide vector units. There
has been much work to exploit modern processor architectures for
database primitives like scan, sort, join and aggregation. However,
unlike other primitives, tree search presents significant challenges
due to irregular and unpredictable data accesses in tree traversal.

In this paper, we present FAST, an extremely fast architecture
sensitive layout of the index tree. FAST is a binary tree logically
organized to optimize for architecture features like page size, cache
line size, and SIMD width of the underlying hardware. FAST elimi-
nates impact of memory latency, and exploits thread-level and data-
level parallelism on both CPUs and GPUs to achieve 50 million
(CPU) and 85 million (GPU) queries per second, 5X (CPU) and
1.7X (GPU) faster than the best previously reported performance
on the same architectures. FAST supports efficient bulk updates by
rebuilding index trees in less than 0.1 seconds for datasets as large
as 64M keys and naturally integrates compression techniques, over-
coming the memory bandwidth bottleneck and achieving a 6X per-
formance improvement over uncompressed index search for large
keys on CPUs.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Performance, Algorithms

1. INTRODUCTION
Tree structured index search is a critical database primitive, used

in a wide range of applications. In today’s data warehouse systems,
many data processing tasks, such as scientific data mining, network
monitoring, and financial analysis require handling large volumes
of index search with low-latency and high-throughput.

As memory capacity has increased dramatically over the years,
many database tables now reside completely in memory, thus elim-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

inating disk I/O operations. Modern processors integrate multiple
cores in a chip, each with wide vector (SIMD) units. Although
memory bandwidth has also been increasing steadily, the band-
width to compute ratio is reducing, and eventually memory band-
width will become the bottleneck for future scalable performance.

In the database community, there is growing interest in exploit-
ing the increased compute in modern processors. Recently, re-
searchers have explored speeding up critical primitives like scan,
sort, join and aggregation [30, 11, 22, 12]. However, unlike these
primitives, index tree search presents significant challenges in uti-
lizing the high compute and bandwidth resources. Database search
typically involves long latency for the main memory access fol-
lowed by small number of arithmetic operations, leading to inef-
fective utilization of large number of cores and wider SIMD. This
main memory access latency is difficult to hide due to irregular and
unpredictable data accesses during the tree traversal.

In this paper, we present FAST (Fast Architecture Sensitive Tree)
search algorithm that exploits high compute in modern processors
for index tree traversal. FAST is a binary tree, managed as a hier-
archical tree whose elements are rearranged based on architecture
features like page size, cache line size, and SIMD width of underly-
ing hardware. We show how to eliminate the impact of latency with
hierarchically blocked tree, software pipelining, and prefetches.

Having eliminated memory latency impact, we show how to ex-
tract parallelism to achieve high throughput search on two high per-
formance commodity architectures – CPUs and GPUs. We report
the fastest search performance on both platforms by utilizing many
cores and wide SIMD units. Our CPU search performance on the
Core i7 with 64M1 32-bit (key, rid) pairs is 5X faster than the best
reported number, achieving a throughput of 50M search queries
per second. We achieve peak throughput even within a stringent
response time constraint of 1 microsecond. Our GPU search on
the GTX 280 is around 1.7X faster than the best reported num-
ber, achieving 85M search queries per second. Our high through-
put search is naturally applicable to look-up intensive applications
like On-Line Analytical Processing (OLAP), DSS and data mining.
Also, we can re-build our index trees in less than 0.1 seconds for
64M keys on both CPU and GPU, enabling fast bulk updates.

We compare CPU search and GPU search and provide analytical
models to analyze our optimized search algorithms for each plat-
form and identify the compute and bandwidth requirements. When
measured with various tree sizes from 64K elements to 64M ele-
ments, CPU search is 2X faster than GPU search for small trees
where all elements can fit in the caches, but 1.7X slower than GPU
search for large tree where memory bandwidth limits the perfor-

11M refers to 1 million.

339

mance. We also evaluate FAST search algorithm on the Intel Many-
Core Architecture Platform (MICA), a Larrabee [29] based silicon
platform for many-core research and software development. By
exploiting wider SIMD and large caches, search on the MICA plat-
form results in 2.4X - 3X higher throughput than CPU search and
1.8X - 4.4X higher than GPU search.

Search on current GPUs is compute bound and not bandwidth
bound. However, CPU search becomes close to memory bandwidth
bound as the tree size grows. Compressing the index elements will
reduce bandwidth consumption, thereby improving CPU search per-
formance. We therefore propose compression techniques for our
CPU search that seamlessly handles variable length string keys and
integer keys. Our compression extends the commonly used prefix
compression scheme to obtain order preserving partial keys with
low overhead of false positives. We exploit SSE SIMD execution
to speed up compression, compressing 512MB string keys in less
than 0.05 seconds for key sizes up to 100B on the Core i7. We in-
tegrate our fast SIMD compression technique into the FAST search
framework on CPUs and achieve up to 6X further speed up for
100B keys compared to uncompressed index search, by easing the
memory bandwidth bottleneck.

Finally, we examine four different search techniques – FAST,
FAST with compression, buffered scheme, sort-based scheme –
under the constraint of response time. For the response time of
0.001 to 25 ms, FAST on compressed keys provides the maximum
throughput of around 60M queries per second while the sort-based
scheme achieves higher throughput for the response time of greater
than 30 ms. Our architecture sensitive tree search with efficient
compression support lends itself well to exploiting the future trends
of decreasing bandwidth-to-compute ratio and increasing compute
resource with more cores and wider SIMD.

2. RELATED WORK
B+-trees [13] were designed to accelerate searches on disk-based

database systems. As main memory sizes become large enough to
store databases, T-trees [23] have been proposed as a replacement,
specifically tuned for main memory index structure. While T-trees
have less storage overhead than B+-trees, Rao et al. [25] showed
that B+-trees actually have better cache behavior on modern pro-
cessors because the data in a single cache line is utilized more effi-
ciently and used in more comparisons. They proposed a CSS-tree,
where each node has a size equal to the cache line size with no
child pointers. Later, they applied cache consciousness to B+-trees
and proposed a CSB+-tree [26] to support efficient updates. Graefe
et al. [16] summarized techniques of improving cache performance
on B-tree indexes.

Hankins et al. [18] explored the effect of node size on the perfor-
mance of CSB+-trees and found that using node sizes larger than a
cache line size (i.e., larger than 512 bytes) produces better search
performance. While trees with nodes that are of the same size as a
cache line have the minimum number of cache misses, they found
that TLB misses are much higher than on trees with large node
sizes, thus favoring large node sizes. Chen at al. [9] also concluded
that having a B+-tree node size larger than a cache line performs
better and proposed pB+-trees, which tries to minimize the increase
of cache misses of larger nodes by inserting software prefetches.
Later, they extended pB+-trees (called “fpB+-trees”) to optimize
for both disk I/O and CPU caches for disk-based DBMS [10].

While using prefetches in pB+-trees reduces cache misses in the
search within a node, all published tree structured indexes suffer
from a full cache miss latency when moving from each node to its
child. Chen at al. argue that prefetching the children is not efficient
because the tree node fanout is large and each child will be visited

with the same probability. Instead of prefetching all (or a subset
of) children speculatively, our scheme waits until we know the
correct child to move to, and only prefetches the correct child. To
increase the prefetch distance (i.e., the number of cycles between
a prefetch initiation and the use of the prefetched data), we use
software pipelining [3]. Note that we do not waste main memory
bandwidth due to the issue of unnecessary prefetches speculatively
- this is important because memory bandwidth is a critical resource.

Another way of reducing TLB/cache miss overheads is to amor-
tize the penalties by processing data in batches [4, 32]. Buffers are
attached to nodes or sub-trees and queries are processed in batch.
These batched search schemes essentially sacrifice response time
to achieve high throughput and can only be used for applications
where a large number of query requests arrive in a short amount of
time, such as stream processing or indexed nested loop join.

Modern processors exploit SIMD execution to increase com-
pute density. Researchers have used SIMD instructions to improve
search performance in tree structured index [28, 31]. Zhou et al. [31]
employ SIMD instructions to improve binary search performance.
Instead of comparing a search key with one tree element, SIMD in-
structions allow K(=SIMD width) consecutive elements to be com-
pared simultaneously. However, their SIMD comparison in a node
only splits the search into two ranges just as in binary search. Over-
all, the total computation complexity is still log(N/K). Recently,
P-ary and K-ary search have been proposed to exploit SIMD execu-
tion on GPUs [21] and CPUs [28]. Using the GPU’s memory gather
capability, P-ary accelerates search on sorted lists. The SIMD com-
parison splits the tree into (K + 1) ranges, thus reducing the total
number of comparisons by a larger number of logK(N). To avoid
non-contiguous memory accesses at each level, they linearize the
K-ary tree in increasing order of levels by rearranging elements.
However, when the tree is large, traversing the bottom part of the
tree incurs TLB/cache misses at each level and search becomes la-
tency bound. We explore latency hiding techniques for CPUs and
GPUs to improve instruction throughput, resulting in better SIMD
utilization.

Another architectural trend affecting search is that main mem-
ory bandwidth is becoming a critical resource that can limit per-
formance scaling on future processors. Traditionally, the problem
has been disk I/O bandwidth. Compression techniques have been
used to overcome disk I/O bottleneck by increasing the effective
memory capacity [15, 17, 20]. The transfer unit between mem-
ory and processor cores is a cache line. Compression allows each
cache line to pack more data and increases the effective memory
bandwidth. This increased memory bandwidth can improve query
processing speed as long as decompression overhead is kept mini-
mal [19, 33]. Recently, SIMD execution has been applied to further
reduce decompression overhead in the context of scan operations
on compressed data [30].

While there is much research on handling numerical data in in-
dex trees [9, 18, 21, 25, 26, 28], there are relatively few studies on
handling variable length keys [5, 7, 8]. Compression techniques
can be used to shrink longer keys into smaller keys. For tree struc-
tured indexes, compressing keys increases the fanout of the tree and
decreases the tree height, thus improving search performance by
reducing cache misses. Binnig et al. [7] apply the idea of buffered
search [32] to handle variable size keys in a cache-friendly manner
when the response time is of less concern as compared to through-
put and lookups can be handled in bulk.

3. ARCHITECTURE OPTIMIZATIONS
Efficient utilization of compute resources depends on how to

extract instruction-level parallelism (ILP), thread-level parallelism

340

(TLP), and data-level parallelism (DLP) while managing usage of
external memory bandwidth judiciously.

3.1 ILP
Most CPUs and GPUs are capable of issuing one or more in-

structions per cycle. The latency of memory instructions can pre-
vent execution of other instructions. Every memory access must
go through a virtual-to-physical address translation, which is in the
critical path of program execution. To improve translation speed,
a translation look aside buffer (TLB) is used to cache translation
of most frequently accessed pages. If the translation is not found
in the TLB, processor pipeline stalls until the TLB miss is served.
Both last-level cache (LLC) and TLB misses are difficult to hide be-
cause the miss penalty reaches more than a few hundred cycles. If
the miss penalty cannot be hidden, a processor cannot fully utilize
its compute resources and applications become memory latency
bound. At this point, exploiting SIMD vector units is ineffective.

One way to reduce the memory access latency is prefetches.
However, hardware prefetcher is not effective for irregular memory
accesses like tree traversal. Software prefetch instructions are also
hard to insert for tree structured indexes. Prefetching tree nodes
close to the current node results in very short prefetch distance and
most prefetches will be too late to be effective. Tree nodes far down
from the current node can create a large fan out and prefetching all
tree elements down wastes memory bandwidth significantly since
only one of prefetches will be useful.

3.2 TLP/DLP
Once memory latency impact is minimized, we can exploit high

density compute resources in modern processors, which have in-
tegrated many cores, each with wider vector (SIMD) units. Paral-
lelization and vectorization are two key techniques to exploit com-
pute resources. Parallelization in search can be done trivially by
assigning threads to different queries. Each core executes different
search queries independently.

As for exploiting SIMD, there are multiple approaches to per-
forming search. We can use a SIMD unit to speed up a single query,
assign different queries to each SIMD lane and execute multiple
queries in parallel, or combine these two approaches by assigning a
query to a subset of SIMD lanes. The best approach depends on the
underlying hardware architectures such as the SIMD width and ef-
ficiency of gathering and scattering2 data. In Section 5, we describe
the best SIMD search mechanism for both CPUs and GPUs.

3.3 Memory Bandwidth
With the increased compute capability, the demand for data also

increases proportionally. However, main memory bandwidth is
growing at a lower rate than compute [27]. Therefore, performance
will not scale up to the number of cores and SIMD width if ap-
plications become bandwidth bound. To bridge the enormous gap
between bandwidth requirements and what the memory system can
provide, most processors are equipped with several levels of on-
chip memory storage (e.g., caches on CPUs and shared buffer on
GPUs). If data structures being accessed fit in this storage, no band-
width is utilized, thus amplifying the effective memory bandwidth.

However, if data structures are too big to fit in caches, we should
ensure that a cache line brought from the memory be fully utilized
before evicted out of caches (called “cache line blocking”). A cache
line with a typical size of 64 bytes can pack multiple data elements
in it (e.g., 16 elements of 4 byte integers). The cache line blocking

2In this paper, we use the term “gather/scatter” to represent read/write
from/to non-contiguous memory locations

technique basically rearranges data elements so that the subsequent
elements to be used also reside within the same cache line.

Finally, data compression techniques can be used to pack more
data elements into a cache line and prevent performance to be band-
width bound. In Section 6, we show integrating data compres-
sion into our index tree framework to improve performance besides
gaining more effective memory space.

4. ARCHITECTURE SENSITIVE TREE
We motivate and describe our index tree layout scheme. We also

provide analytical models highlighting the compute and memory
bandwidth requirements for traversing the resultant trees.

4.1 Motivation
Given a list of (key, rid) tuples sorted by the keys, a typical query

involves searching for tuples containing a specific key (keyq) or a
range of keys ([keyq1, keyq2]). Tree index structures are built us-
ing the underlying keys to facilitate fast search operations – with
run-time proportional to the depth of the trees. Typically, these
trees are laid out in a breadth first fashion, starting from the root
of the tree. The search algorithm involves comparing the search
key to the key stored at a specific node at every level of the tree,
and traversing a child node based on the comparison results. Only
one node at each level is actually accessed, resulting in ineffective
cache line utilization, to the linear storage of the tree. Furthermore,
as we traverse deeper into the tree, each access results in accessing
elements stored in different pages of memory, thereby incurring
TLB misses. Since the result of the comparison is required before
loading the appropriate child node, cache line prefetches cannot be
issued beforehand. On modern processors, a search operation typ-
ically involves a long-latency TLB/cache miss followed by small
number of arithmetic operations at each level of the tree, leading
to ineffective utilization of the processor resources.

Although blocking for disk/memory page size has been proposed
in the past [13], the resultant trees may reduce the TLB miss la-
tency, but do not necessarily optimize for effective cache line uti-
lization, leading to higher bandwidth requirements. Cache line
wide nodes [25] minimize the number of accessed cache lines,
but cannot utilize SIMD instructions effectively. Recently, 3-ary
trees [28] were proposed to exploit the 4-element wide SIMD of
CPUs. They rearranged the tree nodes in order to avoid expen-
sive gather/scatter operations. However, their tree structure does
not naturally incorporate cache line/page blocking and their perfor-
mance suffers for tree sizes larger than the last-level cache (LLC).
In order to efficiently use the compute performance of processors,
it is imperative to eliminate the latency stalls, and store/access trees
in a SIMD friendly fashion to further speedup the run-time.

4.2 Hierarchical Blocking
We advocate building binary trees (using the keys of the tuple)

as the index structure, with a layout optimized for the specific ar-
chitectural features. For tree sizes larger than the LLC, the per-
formance is dictated by the number of cache lines loaded from the
memory, and the hardware features available to hide the latency due
to potential TLB and LLC misses. In addition, the first few levels of
the tree may be cache resident, in which case the search algorithm
should be able to exploit the SIMD architecture to speed up the
run-time. In order to optimize for all the architectural features, we
rearrange the nodes of the binary index structure and blocking in a
hierarchical fashion. Before explaining our hierarchical blocking
scheme in detail, we first define the following notation.

341

15
7 23

3 11 19 27

0 2

2925211713951

4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
1 2

3 6 9 12

15 16

141311108754

17 18 19 20 21 22 23 24 25 26 27 28 29 30

(a)

(b)

SIMD Blocking

Cache line Blocking

Page Blocking

Key1,
Rid1

Keyn,
Ridn

....

....

..

..

..

. .

.
.

Index Tree
(Only Keys)

Node Array
(Keys + Rids)

Key2,
Rid2

...
(c)

dP

dN

dL

Depth of SIMD Blocking

dK

dK
dL Depth of Cache Line Blocking
dP Depth of Page Blocking
dN Depth of Index Tree

Figure 1: (a) Node indices (=memory locations) of the binary tree (b) Rearranged nodes with SIMD blocking (c) Index tree blocked in three-level
hierarchy – first-level page blocking, second-level cache line blocking, third-level SIMD blocking.

E : Key size (in bytes).
K : SIMD width (in bytes).
L : Cache line size (in bytes).
C : Last level cache size (in bytes).
P : Memory page size (in bytes).
N : Total Number of input keys.
NK : Number of keys that can fit into a SIMD register.
NL : Number of keys that can fit into a cache line.
NP : Number of keys that can fit into a memory page.
dK : Tree depth of SIMD blocking.
dL : Tree depth of cache line blocking.
dP : Tree depth of page blocking.
dN : Tree depth of Index Tree.

In order to simplify the computation, the parameters NP , NL and
NK are set to be equal to the number of nodes in complete binary
sub-trees of appropriate depths3. For example, NP is assigned to be
equal to 2dP -1, such that E(2dP -1)≤ P and E(2dP +1-1) > P . Sim-
ilarly, NL = 2dL -1 and NK = 2dK -1. Consider Figure 1 where we
let NL= 31, dL = 5 and dK = 2. Figure 1(a) shows the indices of the
nodes of the binary tree, with the root being the key corresponding
to the 15th tuple, and its two children being the keys corresponding
to the 7th and 23rd tuples respectively, and so on for the remaining
tree. Traditionally, the tree is laid out in a breadth-first fashion in
memory, starting from the root node.

For our hierarchical blocking, we start with the root of the binary
tree and consider the sub-tree with NP elements. The first NK
elements are laid out in a breadth-first fashion. Thus, in Figure 1(b),
the first three elements are laid out, starting from position 0. Each
of the (NK + 1) children sub-trees (of depth dK) are further laid
out in the same fashion, one after another. This corresponds to the
sub-trees (of depth 2) at positions 3, 6, 9 and 12 in Figure 1(b). This
process is carried out for all sub-trees that are completely within the
first dL levels from the root. In case a sub-tree being considered
does not completely lie within the first dL levels (i.e. when dL %
dK != 0), the appropriate number of levels (dL % dK) are chosen,
and the elements laid out as described above. In Figure 1(b), since
the 16 sub-trees at depth 4 can only accommodate depth one sub-
trees within the first five (dL) levels, we lay them out contiguously
in memory, from positions 15 to 30.

After having considered the first dL levels, each of the (NL +1)
children sub-trees are laid out as described above. This is repre-
sented with the red colored sub-trees in Figure 1(c). This process is
carried out until the first dP levels of the tree are rearranged and laid
out in memory (the top green triangle). We continue the same rear-
rangement with the sub-trees at the next level and terminate when
all the nodes in the tree have been rearranged to the appropriate po-
sitions. For e.g., Fig. 1(c) shows the rearranged binary tree, with
the nodes corresponding to the keys stored in the sorted list of (key,

3By definition, tree with one node has a depth of one.

rid) tuples. Our framework for architecture optimized tree layout
preserves the structure of the binary tree, but lays it out in a fashion
optimized for efficient searches, as explained in the next section.

4.3 Compute and Bandwidth Analysis
We first analyze the memory access pattern with our hierarchi-

cally blocked index tree structure, and then discuss the instruction
overhead required for traversing the restructured tree. Let dN de-
note the depth of the index tree. Consider Figure 1(c). Assuming a
cold cache and TLB, the comparison to the root leads to a memory
page access and a TLB miss, and say a latency of lP cycles. The
appropriate cache line is fetched from the main memory into the
cache, incurring a further latency of say lL cycles. We then access
the necessary elements for the next dL levels (elements within the
top red triangle in the figure). The subsequent access incurs a cache
miss, and a latency of lL cycles. At an average, #dP /dL$ cache
lines will be accessed within the first page (the top green triangle).
Therefore, the total incurred latency for any memory page would
be (lP + #dP /dL$lL) cycles. Going to the bottom of the complete
index tree would require #dN /dP $ page accesses, for an average
incurred latency of #dN /dP $(lP + #dP /dL $lL) cycles 4.

To take into account the caching and TLB effect, say dC out of
the dN levels fit in the last level cache. Modern processors have
a reasonable size TLB, but with a random query distribution, it is
reasonable to assume just the entry for the top page to be in the
page table during the execution of a random search. Therefore, the
average incurred latency will be (1-dC /dN)(#dN /dP $#dP /dL$lL)
+ lP (#dN /dP $-1) cycles (ignoring minimal latency of accessing
cache lines from the cache). The resultant external memory band-
width will be L(1-dC /dN)(#dN /dP $#dP /dL$) bytes.

As for the computational overhead, our blocking structure in-
volves computation of the starting address of the appropriate SIMD
chunk, cache line, page block once we cross the appropriate bound-
ary. For each crossed boundary, the computation is simply an accu-
mulated scale-shift operation (multiply-add followed by add) due to
the linear address translation scheme. For example, when crossing
the cache line block, we need to multiply the relative child index
from the cache line with the size of each cache line and add it to
the starting address of that level of sub-trees.

For a given element key size (E), the number of accessed cache
lines (and memory pages) is provably minimized by the hierarchi-
cal tree structure. However, while performing a single search per
core, the compute units still do not perform any computation while
waiting for the memory requests to return, thereby under utilizing
the compute resource. In order to perform useful computation dur-
ing the memory accesses, we advocate performing multiple search
queries simultaneously on a single core/thread. We use software

4Assuming a depth of dP for the bottom most page of the index tree. For a
smaller depth, replace dP /dL with d′

P /dL for the last page, where d′
P is the

sub-tree depth for the last page.

342

pipelining, and interleave the memory access and computation for
different queries. For example, while crossing cache line blocks,
we issue a prefetch for the next cache line block to be accessed (for
a specific query), and subsequently perform comparison operations
for the other query(ies). After performing the comparison for all
the remaining queries, we access the cache line (the same address
we issued prefetch for earlier). With adequate amount of gap, the
cache line would have been brought into the cache by the prefetch,
thereby hiding memory latency. This process ensures complete
utilization of the compute units. Although modern GPUs provide
large number of threads to hide the memory access latency, the re-
sultant memory access and instruction dependency still expose the
latency, which is overcome using our layout and software pipelin-
ing schemes (Section 5.2).

In order to minimize the incurred latency during search opera-
tion, we want to increase dP (in order to reduce the number of TLB
misses) and increase dL (to reduce the number of accessed cache
lines). The only way to increase both is to reduce the element size
(E). For in-memory databases, the number of tuples is typically
less than the range of 32-bit numbers (232), and hence the keys can
be represented using 32 bits (4-byte) integers. We assume 4-byte
keys and 4-byte rid’s for algorithm description in the next section,
and provide algorithms for representing longer and variable length
keys using 4-bytes in Section 6. 32-bit keys also map well to SIMD
on modern architectures (CPU and GPU), with native instruction
support for 32-bit elements in each SIMD lane.

5. CPU SEARCH VS. GPU SEARCH
We describe in detail the complete search algorithm on CPUs and

GPUs We discuss various parameters used for our index tree layout
and the SIMDified search code, along with a detailed analysis of
performance and efficiency comparison on the two architectures.

5.1 CPU Implementation
Today’s CPUs like the Intel Core i7 have multiple cores, each

with a 128-bit SIMD (SSE) computational unit. Each SSE instruc-
tion can operate simultaneously on four 32-bit data elements. E
equals four bytes for this section. As far as exploiting SIMD is
concerned, there are multiple ways to perform searches:
(a) Searching one key, and using the SSE instructions to speedup
the search.
(b) Searching two keys, using two SIMD lanes per search.
(c) Searching four keys, one per SIMD lane.

Both options (b) and (c) would require gathering elements from
different locations. Since modern CPUs do not support an efficient
implementation of gather, the overhead of implementing these in-
structions using the current set of instructions subsumes any benefit
of using SIMD. Hence we choose option (a) for CPUs, and set dK
= 2 levels. The cache line size is 64 bytes, implying dL = 4 lev-
els. The page size used for our experimentation is 2MB (dL = 19),
although smaller pages (4KB, dL = 10) are also available.

5.1.1 Building the Tree
Given a sorted input of tuples (Ti, i∈ (1..N), each having 4-byte

(key, rid)), we layout the index tree (T') by collecting the keys
from the relevant tuples and laying them out next to each other. We
set dN = #log2(N)$. In case N is not a power of two, we still build
the perfect binary tree, and assume keys for tuples at index greater
than N to be equal to the largest key (or largest possible number),
denoted as keyL . We iterate over nodes of the tree to be created
(using index k initialized to 0). With current CPUs lacking gather
support, we layout the tree by:
(a) computing the index (say j) of the next key to be loaded from

61

7347

23

3111

41

3729192 79675343

Child Index = 2

Child Index = 3

000
100
010
110
001
101
011
111

Lookup
Index

0
N/A

1
2

N/A
N/A
N/A

3
Child
Index

Lookup Table

Search Key = 59

1

1 0

1

1 1

Key value in the
tree node

mask bit value:
set to 1

if keyq > keynode

Use mask
value as

index

Figure 2: Example of SIMD(SSE) tree search and the lookup table.

the input tuples.
(b) loading in the key : key′ ← T j .key (if j>N , key′← keyL).
(c) T'k = key′, k++.

This process is repeated till the complete tree is constructed (i.e.
k = (2dN -1)). The tree construction can be parallelized by dividing
the output equally amongst the available cores, and each core com-
puting/writing the relevant part of the output. We exploit SIMD for
step (a) by computing the index for NK (= 3) keys within the SIMD
level block simultaneously. We use appropriate SSE instructions
and achieve around 2X SIMD scaling as compared to the scalar
code. Steps (b) and (c) are still performed using scalar instructions.

For input sizes that fit in the LLC, tree construction is compute
bound, with around 20 ops5 per element, for a total construction
time of 20·2dN ops per core. For N = 2M, the total time is around
40M cycles per core, assuming the CPU can execute 1 instruction
per cycle. When the input is too large to fit into the LLC, the tree
construction needs to read data from memory, with the initial loads
reading complete cache lines but only extracting out the relevant
4 bytes. To compute the total bandwidth required, let’s start with
the leaf nodes of T'. There are a total of 2dN −1 leaf nodes. The
indices for the nodes would be the set of even indices – 0, 2, and
so on. Each cache line holds eight (key, rid) tuples of which four
tuples have even indices. Hence populating four of the leaf nodes
of T' requires reading one cache line, amounting to L/4 bytes per
node. For the level above the leaf nodes, only two leaf nodes can
be populated per cache line, leading to L/2 bytes per node. There
are 2dN −2 such nodes. For all the remaining nodes (2dN −2-1), a
complete cache line per node is read. Since there is no reuse of
the cache lines, the total amount of required bandwidth (analyti-
cally) would be 2dN −1L/4 + 2dN −2L/2 + (2dN −2-1)L ∼ (L/2)2dN

bytes, equal to 32(2dN) bytes for CPUs. Depending on the avail-
able bandwidth, this may be compute/bandwidth bound. Assuming
reasonable bandwidth (>1.6-bytes/cycle/core), our index tree con-
struction is compute bound. For N as large as 64M tuples, the
run-time is around 1.2 billion cycles (for a single core), which is
less than a 0.1 seconds on the Core i7. With such fast build times,
we can support updates to the tuples by buffering the updates and
processing them in a batch followed by a rebuild of the index tree.

5.1.2 Traversing the Tree
Given a search key (keyq), we now describe our SIMD friendly

tree traversal algorithm. For a range query ([keyq1, keyq2]), keyq
← keyq1. We begin by splatting keyq into a vector register (i.e.,
replicating keyq for each SIMD lane), denoted by Vkeyq. We start
the search by loading 3 elements from the start of the tree into the
register Vtree. At the start of a page, page_offset ← 0.
Step 1: Vtree ← sse_load(T' + page_offset).
This is followed by the vector comparison of the two registers to
set a mask register.

51 op implies 1 operation or 1 executed instruction.

343

/*
T : starting address of a tree
page_address: starting address offset of a particular page blocking sub-tree
page_offset: starting address offset of a particular cache line blocking sub-tree
cache_offset: starting address offset of a particular SIMD blocking sub-tree
*/

__m128i xmm_key_q = _mm_load1_ps(key_q);
/* xmm_key_q : vector register Vkeyq, Splat a search key (keyq) in Vkeyq */

for (i=0; i<number_of_accessed_pages_within_tree; i++) {
page_offset = 0;
page_address = Compute_page_address(child_offset);
for (j=0; j<number_of_accessed_cachelines_within_page; j++) {

/* Handle the first SIMD blocking sub-tree (=2 levels of the tree)*/

__m128i xmm_tree = _mm_loadu_ps(T + page_address + page_offset);
/* xmm_tree: vector register Vtree. Load four tree nodes in Vtree*/

__m128i xmm_mask = _mm_cmpgt_epi32(xmm_key_q, xmm_tree));
/* xmm_mask: mask register Vmask. Set the mask register Vmask*/

index = _mm_movemask_ps(_mm_castsi128_ps(xmm_mask));
/* Convert mask register into index*/

child_index = LookUp[index];

/* Likewise, handle the second SIMD blocking sub-tree (=2 levels of the tree)*/
xmm_tree = _mm_loadu_ps(T + page_address + page_offset + Nk*child_index);
xmm_mask = _mm_cmpgt_epi32(xmm_key_q, xmm_tree));
index = _mm_movemask_ps(_mm_castsi128_ps(xmm_mask));
cache_offset = child_index*4 + Lookup[index];
page_offset = page_offset*16 + cache_offset;

}
child_offset = child_offset*(2^dp) + page_offset;

}

/* child_offset is the offset into the input (Key, Rid) tuple (T) */
While (T[child_offset].key <= keq_q2)

child_offset++

Figure 3: SSE code snippet for index tree search.

Step 2: Vmask ← sse_greater(Vkeyq, Vtree).
We then compute an integer value (termed index) from the mask
register:
Step 3: index ← sse_index_generation(Vmask)
The index is then looked up into a Lookup table, that returns the lo-
cal child index(child_index), and is used to compute the offset for
the next set of load.
Step 4: page_offset ← page_offset + NK ·Lookup[index].
Since dK = 2, there are two nodes on the last level of the SIMD
block, that have a total of four child nodes, with local ids of 0, 1, 2
and 3. There are eight possible values of Vmask, which is used in de-
ciding which of the four child nodes to traverse. Hence, the lookup
table has 2NK (= 8) entries, with each entry returning a number ∈
[0..3]. Even using four-bytes per entry, this lookup table occupies
less than one cache line, and is always cache resident during the
traversal algorithm.

In Figure 2, we depict an example of our SSE tree traversal algo-
rithm. Consider the following scenario when keyq equals 59 and
(keyq > Vtree[0]), (keyq > Vtree[1]) and (keyq < Vtree[2]). In this
case, the lookup table should return 2 (the left child of the second
node on the second level, shown in the first red arrow in the figure).
For this specific example, Vmask ← [1, 1, 0] and hence index would
be 1(20) + 1(21) + 0(22) = 3. Hence Lookup[3] ← 2. The other
values in the lookup table are similarly filled up. Since the lookup
table returns 2, child_index for the next SSE tree equals 2. Then,
we compare three nodes in the next SSE tree and Vmask ← [1, 1, 1],
implying the right child of the node storing the value 53, as shown
with the second red arrow in the figure.

We now continue with the load, compare, lookup and offset com-
putation till the end of the tree is reached. After traversing through
the index structure, we get the index of the tuple that has the largest
key less than or equal to keyq. In case of range queries, we do a
linear scan of the tuples, till we find the first key greater than keyq2.

Analysis: Figure 3 delineates our SSE tree traversal code. As

2

65

1

43

0

10987 14131211

0

1

O PM N

1 1 1 0 0 0 0

C DA B G HE F K LI J

Node Index j rest : Result of
Comparison

0
1
2
3
4
5
6
7

Node Index Common
Ancestor

Index

Lookup
Table 8

9
10
11
12
13
14

N/A
N/A
N/A
N/A
N/A
N/A
N/A
3
1
4
0
5
2
6

N/A

res j

res j+1

(a) (b)

Figure 4: Example of GPU tree search and the lookup table.

compared to a scalar code, we resolve dK (= log2(NK +1)) lev-
els simultaneously. Hence theoretically, a maximum of 2X (=dK)
speedup is possible (in terms of number of instructions). We first
analyze the case where the index tree fits in the LLC. For each level
of the index tree, the scalar code is:

child_offset ← 2·child_offset + (keyq > T'[child_offset])

The above line of code performs 5 ops (load, compare, add,
multiply and store). In comparison, the SSE code requires simi-
lar number of instructions for two levels. However, our blocking
scheme introduces some overhead. For every 4 levels of execu-
tion, there are 2 ops (multiply-add for load address computation),
another 2 ops (multiply-add for cache_offset computation), and 2
ops for multiply-add (for page_offset computation), for a total of 6
ops for 4 levels. Thus the net number of ops per level of the SSE
code is around (((10+6)/4) = 4), for a speedup of 1.25X (=5/4).
Since modern CPUs can execute multiple instructions simultane-
ously, the analytical speedup provides a high-level estimate of the
expected speedup. As far as tree sizes larger than the LLC are con-
cerned, for each cache line brought into memory, the total amount
of instructions executed is around 16 ops. The net bandwidth re-
quired would be 64/16 = 4 bytes/cycle (assuming IPC=1). Even
recent CPUs do not support such high bandwidths. Furthermore,
the computation will be bandwidth bound for the last few levels
of the tree, thereby making the actual SIMD benefit depend on the
achieved bandwidth.

5.1.3 Simultaneous Queries
For tree sizes larger than the LLC, the latency of accessing a

cache line (lL) is the order of a few hundred cycles. The total
amount of ops per cache line is around 16. To remove the depen-
dency on latency, we execute S simultaneous queries, using the
software pipelining technique. The value of S is set to be equal to
eight for our experiments, since that covers up for the cache/TLB
miss latency. In addition, for small tree sizes that fit in the LLC, our
software pipelining scheme hides the latency caused by instruction
dependency. The search code scales near linearly with multiple
cores. The Core i7 supports the total of eight threads, with four
cores and two SMT threads per each core. Therefore, we need a
total of 64 concurrent queries to achieve peak throughput.

5.2 GPU Implementation
The NVIDIA GPU architecture consists of multiple shared mul-

tiprocessors (or SMs). The GTX 280 has 30 such SMs. GPUs
hide memory latency through multi-threading. Each GPU SM is
capable of having more multiple threads of execution (up to 32 on
the GTX 280) simultaneously active. Each such thread is called a
thread block in CUDA [24].

Each GPU SM has multiple scalar processors that execute the
same instruction in parallel. In this work, we view them as SIMD
lanes. The GTX 280 has eight scalar processors per SM, and hence
an 8-element wide SIMD. However, the logical SIMD width of the
architecture is 32. Each GPU instruction works on 32 data ele-

344

ments (called a thread warp), which are executed in four cycles.
GPUs provide hardware support for gather/scatter instructions at a
half-warp granularity (16 lanes) [24], and hence we explored the
complete spectrum of exploiting SIMD:
(a) Searching 32 keys, one per SIMD lane (dK = 1).
(b) Searching one key, and exploiting the 32 element-wide SIMD
(dK = 5).
Since the GPUs do not explicitly expose caches, the cache line
width (dL) was set to be same as dK . This reduces the overhead
of computing the load address by the various SIMD lanes involved
in searching a specific key. As far as the TLB size is concerned,
NVIDIA reveals no information of page size and the existence of
TLB in the official document. With various sizes of dP , we did not
see any change in run-time. Hence, dP is assigned equal to dN .

5.2.1 Building the Tree
Similar to the CPUs, we parallelize for the GPUs by dividing

the output pages equally amongst the available SMs. On each SM,
we run the scalar version of the tree creation algorithm on one of
the threads within a half-warp (16 lanes). Only that one thread
per half-warp executes the tree creation code, and computes the in-
dex, and updates the output page. This amounts to running two
instances of tree creation per warp, with effective SIMD width of
two. Running more than two instances within the same warp leads
to gather (to read keys from multiple tuples in the SIMD opera-
tion), and scatter (to store the keys to different pages within the
SIMD operation) from/to the global memory. In our experiments,
we measured a slow down in run-time by enabling more than two
threads per warp. We execute eight blocks on the same SM to hide
the instruction/memory access latency. We assign one warp per
block for a total of 30 SMs·8 (=240) warps.

As far as the run-time is concerned, the number of ops per tree
element is similar to the CPU (∼20 ops), therefore reducing to 20/2
= 10 SIMD ops per element. Each of the executed warp takes 4 cy-
cles of execution per warp. Hence, total number of cycles is equal
to 10·4·(2dN) cycles (= 40·2dN cycles) per SM. Since GPUs pro-
vide a very high memory bandwidth, our tree creation is compute
bound. For N as large as 64 million tuples, the run-time is around
2.6 billion cycles, which is less than 0.07 seconds on GTX 280.

5.2.2 Traversing the Tree
dK equal to 1 is a straightforward implementation, with each

SIMD lane performing an independent search, and each memory
access amounting to gather operations. Any value of dK less than
4 leads to a gather operation within the half-warp, and the search
implementation is latency bound. Hence we choose dK = 4, since
it avoids gather operations, and tree node elements are fetched us-
ing a load operation. Since GPUs have a logical SIMD width of
32, we issue two independent queries per warp, each with dK =
4. Although the tree traversal code is similar to the CPUs, the cur-
rent GPUs do not expose explicit masks and mask manipulation
instructions. Hence Steps 2 and 3 (in Section 5.1.2) are modified
to compute the local child index. We exploit the available shared
buffer in the GTX 280 to facilitate inter-lane computation.

After comparing the key with the tree node element, each of the
NK SIMD lanes stores the result of the comparison (resi = 0/1) in
a pre-allocated space. Consider the eight leaf nodes in Figure 4(a)
(assume NK = 15). We need to find the largest index (say j), such
that res j = 1 and res j+1 = 0. For the figure, j = 10. Hence the child
node is either H or I. The result depends on the comparison result
of their common ancestor (node0). In case res0 = 0, keyq is less
than the key stored at node0, and hence the node belongs to its left
sub-tree, thereby setting index ← H (shown in Figure 4). In case

/* In the GPU code, we process two independent queries within a warp*/
simd_lane = threadId.x %16; // 16 threads are devoted for each search query
query_id = threadId.x / 16; // query_id, either 0 or 1
ancestor = Common_Ancester_Array [simd_lane];
base_index = 2*(simd_lane) – 13;
__shared__ int child_index [2]; // store the child index for two queries
__shared__ int shared_gt [32];

for (j=0; j<number_of_accessed_cachelines_within_page; j++) {
/* Handle the SIMD blocking sub-tree (=4 levels of the tree)*/

page_address = (2^(4*j)-1) + page_offset*15; // consume 2 ops

int v_node = (Td + page_address + simd_lane))); // consume 4 ops
/* This is actually SIMD load. Our SIMD level blocking enables this instruction to be
loading 16 consecutive values as opposed to loading 16 non-consecutive values */

int gt = (keyq > v_node); // consume 2 ops
shared_gt[threadIdx.x] = gt; // consume 2 ops
__syncthreads(); // consume 2 ops

next_gt = shared_gt[threadIdx.x + 1]; // consume 2 ops
if (threadIdx.x == 7) { // consume 2 ops

child_index[query_id] = 0; // consume 2 ops
}
if (threadIdx.x >=7) { // consume 2 ops

if (gt & !next_gt) { // consume 2 ops
/* res j = 1 && res j+1 = 0 */

child_index[query_id] = base_index + shared_gt[ancestor];
// consume 5 ops

}
}
__syncthreads(); // consume 2 ops
page_offset = page_offset*16 + child_index[query_id]; // consume 3 ops

}
child_offset = page_offset;

/* child_offset is the offset into the input (Key, Rid) tuple (T) */
While (T[child_offset].key <= keq_q2)

child_offset++

Figure 5: GPU code snippet for index tree search.

res0 = 1, index ← I. We pre-compute the common ancestor node
for each of the leaf nodes (with its successor node) into a lookup
table, and load it into the shared buffer at the start of the algorithm.
Figure 4(b) shows this lookup table for our specific example, and
similar tables can be built for other values of dK . The total size of
the lookup table is NK (=15 for our example).

Figure 5 shows the CUDA code for GPU search. __syncthreads()
is required to ensure that the shared buffer is updated before being
accessed in the subsequent line of code (for inter-lane communi-
cation). child_index is also stored in the shared buffer so that the
relevant SIMD threads can access it for subsequent loads. This re-
quires another __syncthreads() instruction. We also show the num-
ber of ops for each line of code in the figure. The total number of
executed ops is 32. Since dK = 4, the average number of executed
ops per level is 8 ops for two queries within the 32-wide SIMD.

5.2.3 Simultaneous Queries
Although the GPU architecture is designed to hide latency, our

implementation was still not completely compute bound. There-
fore, we implemented our software pipelining technique by varying
S from 1 to 2. This further reduced the latency, and our resultant
run-time were within 5%–10% of the compute bound timings.

In order to exploit the GPU architecture, we execute independent
queries on each SM. In order to hide the latency, we issue one warp
per block, with eight blocks per SM, for a total of 240 blocks on
the GTX 280 architecture. Since we execute 2 queries in SIMD,
and S queries per warp, a total of 480S queries are required. With
S being equal to 2, we operate the GPU at full throttle with 960
concurrent queries.

5.3 Performance Evaluation
We now evaluate the performance of FAST on an quad-core Core

i7 CPU and an GTX 280 GPU. Peak flops (computed as frequency
· core count · SIMD width), peak bandwidth, and total frequency

345

Platform Peak GFlops Peak BW Total Frequency
Core i7 103.0 30 12.8

GTX 280 933.3 141.7 39

Table 1: Peak compute (GFlops), bandwidth (GB/sec), and total fre-
quency (Cores * GHz) on the Core i7 and the GTX 280.

Figure 6: Normalized search time with various architectural opti-
mization techniques (lower is faster). The fastest reported performance
on CPUs [28] and GPUs [2] is also shown (for comparison).

(core count · frequency) of the two platforms are shown in Table 1.
We generate 32-bit (key, rid) tuples, with both keys and rids gen-
erated randomly. The tuples are sorted based on the key value and
we vary the number of tuples from 64K to 64M6. The search keys
are also 32-bit wide, and generated uniformly at random. Random
search keys exercise the worst case for index tree search with no
coherence between tree traversals of subsequent queries.

We first show the impact of various architecture techniques on
search performance for both CPUs and GPUs and compare search
performance with the best reported number on each architecture.
Then, we compare the throughput of CPU search and GPU search
and analyze the performance bottlenecks for each architecture.

5.3.1 Impact of Various Optimizations
Figure 6 shows the normalized search time, measured in cycles

per query on CPUs and GPUs by applying optimization techniques
one by one. We first show the default search when no optimiza-
tion technique is applied and a simple binary search is used. Then,
we incrementally apply page blocking, cache line blocking, SIMD
blocking, and software pipelining with prefetch. The label of “+SW
Pipelining” shows the final relative search time when all optimiza-
tion techniques are applied. We report our timings on the two ex-
treme cases – small trees (with 64K keys) and large trees (with 64M
keys). The relative performance for intermediate tree sizes fall in
between the two analyzed cases, and are not reported.

For CPU search, the benefit of each architecture technique is
more noticeable for large trees than small trees because large trees
are more latency bound. First, we observe that search gets 33%
faster with page blocking, which translates to around 1.5X speedup
in throughput. Adding cache line blocking on top of page blocking
results in an overall speedup of 2.2X. This reduction of search time
comes from reducing the average TLB misses and LLC misses sig-
nificantly – especially when traversing the lower levels of the tree.
However, page blocking and cache line blocking do not help small
trees because there are no TLB and cache misses in the first place;
in fact, cache line blocking results in a slight increase of instruc-
tions with extra address computations. Once the impact of latency
is reduced, SIMD blocking exploits data-level parallelism and pro-
vides an additional 20% – 30% gain for both small and large trees.

664M is the max. number of tuples that fit in GTX 280 memory of 1GB.

Figure 7: Comparison between the CPU search and the GPU search.
”CPU-BW” shows the throughput projection when CPU search be-
comes memory bandwidth bound

Finally, the software pipelining technique with prefetch relaxes the
impact of instruction dependency and further hides cache misses.

Our final search performance is 4.8X faster for large trees and
2.5X faster for small trees than the best reported numbers [28]. As
shown in Figure 6, our scalar performance with page and cache line
blocking outperforms the best reported SIMD search by around
1.6X. This emphasizes the fact that SIMD is only beneficial once
the search algorithm is compute bound, and not bound by various
other architectural latencies. Applications that are latency bound
do not exploit the additional compute resources provided by SIMD
instructions. Also note that our comparison numbers are based on a
single-thread execution (for fair comparison with the best reported
CPU number). When we execute independent search queries on
multiple cores, we achieve near-linear speedup (3.9X on 4-cores).
The default GPU search (Fig. 6) executes one independent binary
search per SIMD lane, for a total of 32 searches for SIMD execu-
tion. Unlike CPU search, GPU search is less sensitive to blocking
for latency. We do not report the number for cache line blocking
since the cache line size is not disclosed. While the default GPU
search suffers from gathering 32 tree elements, SIMD blocking al-
lows reading data from contiguous memory locations thus remov-
ing the overhead of gather. Since the overhead of gather is more sig-
nificant for large trees, our GPU search obtains 1.7X performance
improvement for large trees, and 1.4X improvement for small trees
with SIMD blocking. Our GPU implementation is compute bound.

5.3.2 CPU search VS. GPU search
We compare the performance of search optimized for CPU and

GPU architectures. Figure 7 shows the throughput of search with
various tree sizes from 64K keys to 64M keys. When the tree fits
in the LLC, CPUs outperform GPUs by around 2X. This result
matches well with analytically computed performance difference.
As described in the previous subsections, our optimized search re-
quires 4 ops per level per query for both CPUs and GPUs. Since
GPUs take 4 cycles per op, they consume 4X more cycles per op
as compared to the CPU. On the other hand, GPUs have 3X more
total frequency than CPUs (Table 1). On small trees, CPUs are not
bound by memory latency and can operate on the maximum in-
struction throughput rate. Unlike GPUs, CPUs can issue multiple
instructions per cycle and we observe an IPC of around 1.5. There-
fore, the total throughout ratio evaluates to around (1.5*4/3) ∼2X
in the favor of CPUs.

As the tree size grows, CPUs suffer from TLB/LLC misses and
get lower instruction throughput rate. The dotted line, labeled “CPU-
BW” shows the throughput projection when CPU search becomes
memory bandwidth bound. This projection shows that CPUs are
compute bound on small trees and become closer to bandwidth
bound on large trees. GPUs provide 4.6X higher memory band-
width than CPUs and are far from bandwidth bound. In the next

346

Throughput (million queries per sec)
Small Tree (64K keys) Large Tree (16M keys)

CPU 280 60
GPU 150 100

MICA 667 183

Table 2: Measured performance comparison across three different
platforms – CPU, GPU, and MICA.

section, we show how to further improve CPU search performance
by easing bandwidth bottleneck with compression techniques.

Recent work [21] has shown that GPUs can improve search per-
formance by an order of magnitude over CPUs and combining Fig. 6
and 7 confirms that unoptimized GPU search outperforms unop-
timized CPU search by 8X for large trees. However, proper ar-
chitecture optimizations reduced the gap and CPUs are only 1.7X
slower on large trees, and in fact 2X faster on smaller trees. Note
that GPUs provide much higher compute flops and bandwidth (Ta-
ble 1). Thus optimized CPU search is much better than optimized
GPU search in terms of architecture efficiency.

5.3.3 Search on MICA
We study how FAST would perform on the Intel Many-Core

Architecture Platform (MICA), a Larrabee [29] based silicon plat-
form for many-core research and software development.7 Larrabee
is an x86-based many-core processor architecture based on small
in-order cores that uniquely combines full programmability of to-
day’s general-purpose CPU architecture with compute-throughput
and memory bandwidth capabilities of modern GPU architectures.
Each core is a general-purpose processor, which has a scalar unit
based on the Pentium processor design, as well as a vector unit that
supports 16 32-bit float or integer operations per clock. Larrabee
has two levels of cache: low latency 32KB L1 data cache and larger
globally coherent L2 cache that is partitioned among the cores.
Each core has a 256KB partitioned L2 cache. To further hide la-
tency, each core is augmented with 4-way multi-threading.

Since Larrabee features a 16-wide SIMD, we set dK = 4 levels,
enabling sub-tree traversal of four levels with SIMD operations.
Unlike GPUs, Larrabee SIMD operation supports inter-lane com-
putation. Therefore, SIMD tree traversal code is similar to SSE tree
traversal code (Figure 3). The only difference is that dK = 4 lev-
els is used while SSE has dK = 2 levels and no separate cache line
blocking is necessary since we set dL is assigned equal to dK .

To compare search throughput with CPU/GPU search, we mea-
sure the performance on the MICA platform for small trees (with
64K keys) and large trees (with 16M keys). Table 2 shows search
throughput on three different platforms – CPU, GPU, and MICA.
As shown in the table, Larrabee takes the best of both architectures
– a large cache in CPUs and high compute/bandwidth in GPUs.
For small trees, Larrabee is able to store the entire tree within L2
cache, and is therefore compute bound. Compared to CPU and
GPU, search on the MICA platform obtains a speed up of 2.4X and
4.4X respectively. The speedup numbers over CPUs are in line with
the peak computational power of these devices, after accounting
for the fact that search can only obtain a speedup of log(K) using
K -wide SIMD. The high speedup over GPUs comes from the inef-
ficiency of performing horizontal SIMD operations on GPUs. For
large trees (16M entries – depth 24), the first 16 levels are cached
in L2 and hence the first 16-level traversal is compute bound while
the remaining 8-level traversal is bandwidth bound. We observe a
speedup of 3X and 1.8X over CPUs and GPUs, respectively.
7All results reported in this section are based on Intel’s internal research
configurations of the Intel Many-Core Architecture Platform (MICA),
which is designed by Intel for research and software development.

5.3.4 Limited Search Queries
Research on search generally assumes the availability of a large

number of queries. This may be the case either when a large num-
ber of users concurrently submit searches or a database optimizer
chooses multiple index probes for a join operation. However, in
some cases, there are limited number of concurrent searches that
are available to schedule. In addition, response time may become
more important than throughput when search queries cannot be
buffered beyond some threshold of response time. To operate on
the maximum throughput, our CPU search requires 64 concurrent
queries to be available while our GPU search requires 960 concur-
rent queries once the overheads of thread spawning and instruction
cache miss have been amortized over a few thousand queries.

6. COMPRESSING KEYS
In the previous section, we presented run-times with key size (E)

equal to 4 bytes. For some databases, the keys can be much larger in
length, and also vary in length with the tuples. The larger the key
size in the index tree, the smaller the number of levels per cache
line and per memory page, leading to more cache lines and pages
being read from main memory, and increased bandwidth/latency
requirements per query. With the total number of tuples being less
than the range of numbers represented by 4 bytes, it is possible
(theoretically) to map the variable length keys to a fixed length of 4
bytes (for use in the index tree), and achieve maximum throughput.

In this section, we use compression techniques to ease mem-
ory bandwidth bottleneck and obtain further speedup for index tree
search. Note that we focus on compressing the keys in the index
tree8 for CPUs. Since CPU search is memory bandwidth bound
for last few levels of large trees, compressing the keys reduces
the number of accessed cache lines, thereby reducing the latency
/bandwidth, translating to improved performance. The GPU search
is compute bound for 4-byte keys, and will continue to be compute
bound for larger keys, with proportional decrease in throughput.
Although the compression scheme developed in this section is ap-
plicable to GPUs too, we focus on CPUs and provide analysis and
results for the same in the rest of the section.

6.1 Handling Variable Length Keys
We first present computationally simple compression scheme that

maps variable input length data to an appropriate fixed length with
small number of false positives, and incurs negligible construction
and decompression overhead. Our scheme exploits SIMD for fast
compression and supports order-preserving compression, leading
to significant reduction in run-time for large keys.

6.1.1 Compression Algorithm
We compute a fixed length (Ep bits) partial key (pkeyi) for a

given key (keyi). In order to support range queries, it is imperative
to preserve the relative order of the keys, i.e. if (key j ≤ keyk), then
(pkey j ≤ pkeyk). The cases where (pkey j = pkeyk) but (key j
< keyk) are still admissible, but constitute the set of false posi-
tives, and should be minimal to reduce the overhead of redundant
key comparisons during the search. Although there exist various
hashing schemes to map the keys to a fixed length [6], the order
preserving hash functions require O(N log2N) storage and com-
pute time [14]. However, we need to compute and evaluate such
functions in constant (and small) time.

We extend the prefix compression scheme [5] to obtain order
preserving partial keys. These schemes compute a contiguous com-

8The original tuple data may be be independently compressed using other
techniques [1] and used in conjunction with our scheme.

347

1111 0000 1101 0110

1111 0010 1101 1001

1111 0101 1101 0000

1111 1100 1101 0110

1111 0100 1101 0010

key0

key1

key2

key3

key4

MSB LSB...

g = 4 bits

...

...

...

...

0000 0110

8-bit partial keyFull Keys

0010 1001

0101 0000

1100 0110

0100 0010

MSB : Most Significant Byte
LSB : Least Significant Byte

Figure 8: Example of extracting 8-bit partial keys in five keys.

mon prefix of the set of keys, and store the subsequent part of the
keys as the partial key. Instead, we compute a prefix such that the
bits at which the keys differ constitute the partial key.

Let K represent the list of keys. We define a granularity factor
(G), a number between 1 to 32. The partial key for all the keys is
initialized to 0. We start by extracting and comparing the first G
bits from all the keys. In case all the keys have the same G bits,
we consider the next G bits, and repeat the process. In case they
are different, we append these G bits to the partial key computed
so far. We repreat this process and keep appending the set of G
bits until a Ep bit partial key is obtained. Note that by construction,
the prefix bits not appended to the partial key so far are the same
for all the keys. Figure 8 shows an example for computing an 8-
bit partial key for five keys with G = 4. Note that our scheme is a
generalization of computing the common prefix – we extract a non-
contiguous common prefix, with the discarded intermediate Ep bit
positions forming the partial key. Our scheme is order preserving
since we start with the most significant bit. It is indeed possible to
get the same partial key for two different keys.

Setting the value of G: Databases storing variable length keys
usually store low entropy values in each byte of the key. For ex-
ample, keys representing the telephone numbers consist of only ten
unique values in each byte. Similarly the name/address/url has the
range of alphabets (52 values) in each byte. As far as setting G is
concerned, it is affected by two competing factors: (a) the smaller
the value of G , the higher the chances of forming partial keys with
few false positives. (b) the larger the value of G , the lower the cost
of computing the partial key from the original key. Furthermore,
too small a G may require high cost of bit manipulation functions,
thereby increasing the overhead of compressing/decompressing the
keys. We choose G = 4 bits, which provide the right balance be-
tween the two factors described above.

Compression Cost: We exploit SSE instructions by loading 128-
bits at a time for each key. We maintain a register Vres initialized
to 0. We start by loading the first 128-bits of K0 into register VK0.
For each key Ki, we load the relevant 128-bits (into VKi) and com-
pute the bitwise exclusive-or operation, Vxor = _mm_xor_ps(VK0 ,
VKi). We then bitwise or the result with the Vres register, Vres =
_mm_or_ps(Vxor , Vres). After iterating over all the keys, we an-
alyze the Vres register by considering G bits at a time. If the G
bits are all 0, then the result of all exclusive-or operations was 0,
and hence all the keys have the relevant G bits the same. In case
any of the bits is 1, then that relevant chunk becomes part of the
partial key. We maintain a mask (termed as pmask) that stores a 0
or 1 for each G bit. We iterate over the remaining key (16-bytes
at a time) to compute the bits contributing towards the partial key.
As far as the total cost is concerned, we require 3 ops for every 16
bytes – for a total of 3#E/16$ ops (in the worst case). For 16-byte
keys, this amounts to only 3 ops, and ∼21 ops per element for as
long as 100-byte keys. All the keys now need to packed into their
respective partial keys with the same pmask.

Consider the first 16-bytes of the key, loaded into the register

Figure 9: Relative increase in computation with respect to various al-
phabet sizes (2entropy) per byte. For example, 52 means that we generate
random keys for each byte among 52 values.

VKi. This consists of 32 4-bit chunks, with a 32-bit pmask. pmaski
= 1 implies the ith chunk needs to be appended with the previously
set 4-bit chunk. SSE provides for a general permute instruction
(_mm_shuffle_eip8) that permutes the 16 1-byte values to any loca-
tion within the register (using a control register as the second argu-
ment). However, no such instruction exists at 4-bit granularity. We
however reduce our problem to permuting 8-bit data elements to
achieve fast partial key computation. Each byte (say B7..0) of data
consists of two 4-bit elements (B7..4 and B3..0). Consider B7..4.
If chosen by the mask register, it can either end up as the 4 most
significant bits in a certain byte of the output or in the 4 least signif-
icant bits of one of the bytes. Similar observation holds for B3..0.
Each of these 4-bit values within a byte can be 0 padded by 4 bits
(at left or right) to create four 8-bit values: namely (B3..0 0000),
(0000 B3..0), (B7..4 0000) and (0000 B7..4). We create four tem-
porary registers for VKi, where each byte has been transformed as
described. We can now permute each of the four registers (using
the appropriate control registers), and bitwise or the result to ob-
tain the desired result. Thus, the cost for partial key computation is
4 ops (for creating the temporary registers), 4 ops for permute, and
4 for oring the result, for a total of 12#E/16$ ops per key. Includ-
ing the cost to compute the pmask, the total cost for compression is
15#E/16$ ops. For a 512MB tree structure with 16-byte keys, our
compression algorithm takes only 0.05 seconds on Core i7.

6.1.2 Building the Compressed Tree
We compute the partial keys for each page separately to increase

the probability of forming effective partial keys with low false pos-
itives. As we traverse down the tree, it is important to have few (if
any) false positives towards the top of the tree, since that increases
the number of redundant searches expontentially. For example, say
there are two leaf nodes (out of the first page) with the same par-
tial key, and the actual search would have led through the second
key. Since we only store the partial keys, the actual search leads
through the first of these matches, and we traverse down that sub-
tree and end up on a tuple that is 2(dN −dP) tuples to the left of the
actual match – leading to large slowdowns. Although Bohannon et
al. [8] propose storing links to the actual keys, this leads to further
TLB/LLC misses. Instead, we solve the problem by computing an
Ep that leads to less than 0.01% false positives for the keys in the
first page. We start with Ep = 32 bits, and compute the partial keys,
and continue doubling Ep until our criterion for false positives is
satisfied. In practice, with Ep = 128 bits (16-bytes), we saw no
false postives for the first page of the tree (for E ≤ 100).

For all subsequent pages, we use partial keys of length (Ep = 32
bits). The keys are compressed in the same fashion and each page
stores the pmask that enables in fast extraction of the partial key.
Since the time taken for building the index tree is around 20 ops
per key (Section 5.1.1), the total time for building compressed index
tree increases to (20 + 15#E/16$) ops per key. The compressed tree

348

Figure 10: Throughput comparison between no compression and
compression with key size from 4 to 128 bytes.

construction is still compute bound, and only around 75% slower
than the uncompressed case (for E ≤ 16).

6.1.3 Traversing the Compressed Tree
During the tree traversal, we do not decompress the stored partial

keys for comparsion. Instead we compress keyq (the query key) for
each new page, and compare it with the partial keys, which enables
search on compressed tuples. The cost of compressing the query
key is around 12#E/16$ ops per page. The key length is a mul-
tiple of 16 bytes for the first page, and 4 bytes for all subsequent
page accesses. For Steps 2 and 3 of the traversal algorithm (Sec-
tion 5.1.2) on the first page, we need to compare in multiples of
16-byte keys and generate the appropriate index. We implement
16-byte key comparison in SSE using the native 8-byte comparison
instruction (_mm_cmpgt_epi64), and use the corresponding mask-
to-index generation instruction (_mm_movemask_pd) to generate
index into a lookup table. The total cost of tree traversal for the
first page increases to around 10 ops per level. For all subsequent
pages, it is 4 ops per level (similar to analysis in Section 5.1).

As far as the bandwidth requirements are concerned, for tree
sizes larger than the LLC, we now access one cache line for four
levels. In comparison, for E = 16, we would have accessed one
cache line for 2 levels, and hence the bandwidth requirement is re-
duced by ∼2X by storing the order-preserving partial keys. For
E ≥ 32, the bandwidth reduction is 4X and beyond. This translates
to significant speedups in run-time over using long(er) keys.

6.1.4 Performance Evaluation
We implemented our compression algorithm on keys generated

with varying entropy per byte, chosen from a set of 1 value (1-
bit) to 128 values (7-bits), including cases like 10 (numeral keys)
and 52 (range of alphabets). The key size varied from 4 to 128
bytes. The varying entropy per byte (especially low entropy) is the
most challenging case for effective partial key computation. The
distribution of the value within each byte does not affect the results,
and we report data for values chosen uniformly at random (within
the appropriate entropy). We also report results for 15-byte keys on
phone number data collected from CUSTOMER table in TPC-H.

In Figure 9, we compare our compression scheme, non-contiguous
common prefix (NCCP) with the previous scheme, contiguous com-
mon prefix (CCP) and report the relative increase in computaton
for searching 16-byte keys with various entropies. The increase in
computation is an indicative of the number of false positives, which
increases the amount of redundant work done, and thereby increas-
ing the run-time. A value of 1 imples no false positives. Even
for very low entropy (choices per key ≤ 4), we perform relatively
low extra computation, with total work less than 1.9X as compared
to no false positives. For all other entropies, we measure less than
5% excess work, signifying the effectiveness of our low cost partial
key computation. A similar overhead of around 5.2% is obesrved
for the TPC-H data using our scheme, with the competing scheme
reporting around 12X increase.

Figure 10 shows the relative throughput with varying key sizes
(and fixed entropy per byte: log2(10) bits). The number of keys
for each case is varied so that the total tree size of the uncom-
pressed keys is ∼1GB. All numbers are normalized to the through-
put achieved using 4-byte keys. Without our compression scheme,
the througput reduces to around 50% for 16-byte keys, and as low
as 30% and 18% for key sizes 64 and 128 bytes respectively. This
is due to the reduced effectiveness of cache lines read from main
memory, and therefore increase in the latency/bandwidth. In con-
trast, our compression scheme utlizes cache lines more effectively
by choosing 4-byte partial keys. The throughput drops marginally
to around 80% for 16-byte keys (drop is due to the increase in cost
for comparing 16-byte keys in the first page (Section 6.1.3)) and
varies between 70%-80% for key sizes varying between 16 and
128 bytes. The overall run-time speedup is around 1.5X for 16-
byte keys, and increases to around 6X for 128-byte keys.

6.2 Compressing Integer Keys
In the previous section, we described our algorithm for com-

pressing large variable length keys. Apart from the first page, we
store 4-byte partial keys for all other pages. Although the partial
keys within each page are sorted, there does not exist a lot of co-
herence between the 32-bit data elements – as they are computed
from longer original keys. However, for cases where the original
key length is small (integer keys), there is coherence in the data
that can be exploited, and the keys further compressed. This leads
to further reduction in run-time – since run-time for the last few lev-
els in trees is dependent on the available memory bandwidth. We
now describe a light-weight compression scheme for such integer
keys, widely used as primary keys for OLAP database tables.

6.2.1 Building Compressed Trees
We adopt the commonly used fixed-length delta based compres-

sion scheme. For each page, we find the minimum (Kmin) and
maximum key (Kmax), and compute δ (= #log2(Kmax-Kmin+1)$) –
the number of bits required to store the difference (termed as Kδi

)
between the key value and Kmin. For each compressed page, we
also store Kmin and δ (using 32-bits each). Since each page may
use different number of bits, we need an external Index Table, that
stores the offset address of each page using 4-bytes. We use SSE
to speed up computation of Kmin, δ and the Index Table. To com-
pute the minimum value, we use the instruction (_mm_min_epi32),
and compute a vector of minimum values after iterating over all the
keys. The actual minimum value is computed by computing the
minimum of the four final values in the SSE register. The over-
all minimum value computation takes around 2 ops for 4 elements.
Maximum value is computed similarly, and then delta for each key
is computed with a total of around 2 ops per key. Packing the δ
least significant bits from each key is performed using scalar code,
for a total of around 6 ops per key. The total tree construction time
is increased by around 30% over uncompressed tree building.

6.2.2 Traversing Compressed Trees
We read Kmin and δ at the start of the compressed page, and

compute (keyq-Kmin) for the query key, termed as keyqδ . We di-
rectly compare keyqδ with the compressed key values to compute
the child index (Step 2 of the tree traversal in Section 5.1.2). The
comparison is done using a SSE friendly implementation [30]. The
resultant computational time only increases by 2 ops per level. On
the other hand, our compression scheme increases the number of
levels in each cache line, and reduces the number of cache lines.
For example, for pages with 4X compression or more (δ ≤ 8), we
can now fit dK (≥ 6) levels, as opposed to 4 levels without com-

349

Figure 11: Throughput VS. Response time with various techniques.

pression. Since the performance for the uncompressed tree was
bandwidth bound for the last few levels, this reduces the number of
cache lines accessed by around 1.5X, which directly translates to
run-time reduction. As far as the compression ratio is concerned,
we achieve 2-4X compression on the randomly generated integer
datasets, and the run-time reduces by 15%-20% as compared to the
run-time without using our compression technique.

7. THROUGHPUT VS. RESPONSE TIME
In this section, we compare four different techniques for search-

ing queries based on the user/application response time. This varies
from stringent response time (≤1 ms) to more tolerant (≥ 50 ms).
(a) Unbuffered Scheme: FAST with uncompressed index trees.
(b) Unbuffered-Compressed Scheme: FAST with compressed
index trees.
(c) Buffered Scheme: We implemented a variant of the buffered
search algorithm [32]. We allocate a buffer for all the children
nodes of the leaves of the sub-tree in the first page – 2dP buffers
in total. Instead of searching a query through the complete tree,
we traverse only the first page of the tree, and temporarily store
the query in the appropriate buffer. As more queries are processed,
each of these buffers start filling up. We trigger search for all the
queries within a buffer simultaneously either when a pre-defined
threshold of batch of input queries have been stored at these in-
termediate buffers, or when any of the buffers is filled up. This
technique eliminates TLB misses that would have incurred with
the unbuffered scheme (from one per query to one per group), and
also exploit the caches better due to the coherence in the cache line
accesses amongst the queries. This reduces the latency/bandwidth
requirements, thereby speeding up the run-time.
(d) Sort-Based Scheme: Instead of traversing through the search
tree, we sort the input batch of queries, and perform a linear pass
of the input tuples and the sorted queries, comparing the individ-
ual queries and tuple keys and recording matches. The queries are
sorted using an efficient implementation of merge-sort [11]. Al-
though sort-based scheme performs a scan through all the input tu-
ples, it provides better throughput when the input batch of queries
is relatively large in number. For (c) and (d), the response time is
defined as the time taken to process all queries in the input batch.

In Figure 11, we plot the throughput w.r.t. obtained response
time. Both Unbuffered and Unbuffered-compressed scheme re-
quire only 64 simultaneous queries to achieve peak throughput,
which corresponds to ≤1 ms of response time. The throughput
for compressed index trees is around 20% greater than the traversal
in the uncompressed trees (Section 6.2). The buffered scheme pro-
vides a peak throughput of around 5% larger than the compressed
case, but requires a much larger batch (∼640K) of input queries,
that corresponds to response time of around 20-30 ms. Sort-based
scheme also has a larger throughput, but exceeds our implementa-
tion for a response time of 33ms or larger with ≥ 2M queries.

8. CONCLUSIONS
We present FAST, an architecture sensitive layout of the index

tree. We report fastest search performance on both CPUs and GPUs,
with 5X and 1.7X faster than best reported numbers on the same
platform. We also support efficient bulk updates by rebuilding in-
dex trees in less than 0.1 seconds for datasets as large as 64M keys.
With future trend of limited memory bandwidth, FAST naturally
integrates compression techniques with support for variable length
keys and allows fast SIMD tree search on compressed index keys.

9. REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and execution

in column-oriented database systems. In SIGMOD, pages 671–682, 2006.
[2] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, et al. Real-time parallel

hashing on the GPU. ACM Transactions on Graphics, 28(5), Dec. 2009.
[3] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining. ACM

Comput. Surv., 27(3):367–432, 1995.
[4] L. Arge. The buffer tree: A technique for designing batched external data

structures. Algorithmica, 37(1):1–24, 2003.
[5] R. Bayer and K. Unterauer. Prefix b-trees. ACM Trans. Database Syst.,

2(1):11–26, 1977.
[6] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Theory and practise of

monotone minimal perfect hashing. In ALENEX, pages 132–144, 2009.
[7] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based order-preserving

string compression for column stores. In SIGMOD, pages 283–296, 2009.
[8] P. Bohannon, P. Mcllroy, and R. Rastogi. Main-memory index structures with

fixed-size partial keys. In SIGMOD, pages 163–174, 2001.
[9] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index performance

through prefetching. SIGMOD Record, 30(2):235–246, 2001.
[10] S. Chen, P. B. Gibbons, T. C. Mowry, et al. Fractal prefetching b+-trees:

optimizing both cache and disk performance. In SIGMOD, pages 157–168, ’02.
[11] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, et al. Efficient implementation

of sorting on multi-core SIMD CPU architecture. PVLDB, 1(2), 2008.
[12] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip multiprocessors. In

VLDB, pages 339–350, 2007.
[13] D. Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, 1979.
[14] E. A. Fox, Q. F. Chen, A. M. Daoud, and L. S. Heath. Order-preserving

minimal perfect hash functions. ACM Trans. Inf. Syst., 9(3):281–308, 1991.
[15] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and

indexes. In ICDE, pages 370–379, 1998.
[16] G. Graefe and P.-A. Larson. B-tree indexes and cpu caches. In ICDE, pages

349–358, 2001.
[17] G. Graefe and L. Shapiro. Data compression and database performance. In

Applied Computing, pages 22–27, Apr 1991.
[18] R. A. Hankins and J. M. Patel. Effect of node size on the performance of

cache-conscious b+-trees. In SIGMETRICS, pages 283–294, 2003.
[19] A. L. Holloway, V. Raman, G. Swart, and D. J. DeWitt. How to barter bits for

chronons: tradeoffs for database scans. In SIGMOD, pages 389–400, 2007.
[20] B. R. Iyer and D. Wilhite. Data compression support in databases. In VLDB,

pages 695–704, 1994.
[21] T. Kaldewey, J. Hagen, A. D. Blas, and E. Sedlar. Parallel search on video

cards. In USENIX Workshop on Hot Topics in Parallelism, 2009.
[22] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, et al. Sort vs. hash revisited: Fast

join implementation on multi-core CPUs. PVLDB, 2(2):1378–1389, 2009.
[23] T. J. Lehman and M. J. Carey. A study of index structures for main memory

database management systems. In VLDB, pages 294–303, 1986.
[24] NVIDIA. NVIDIA CUDA Programming Guide 2.3. 2009.
[25] J. Rao and K. A. Ross. Cache conscious indexing for decision support in main

memory. In VLDB, pages 78–89, 1999.
[26] J. Rao and K. A. Ross. Making b+- trees cache conscious in main memory. In

SIGMOD, pages 475–486, 2000.
[27] M. Reilly. When multicore isn’t enough: Trends and the future for

multi-multicore systems. In HPEC, 2008.
[28] B. Schlegel, R. Gemulla, and W. Lehner. k-ary search on modern processors. In

DaMoN, pages 52–60, 2009.
[29] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, et al. Larrabee: A Many-Core

x86 Architecture for Visual Computing. SIGGRAPH, 27(3), 2008.
[30] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, et al. Simd-scan: Ultra fast

in-memory scan using vector processing units. PVLDB, 2(1):385–394, 2009.
[31] J. Zhou and K. A. Ross. Implementing database operations using simd

instructions. In SIGMOD Conference, pages 145–156, 2002.
[32] J. Zhou and K. A. Ross. Buffering accesses to memory resident index

structures. In VLDB, pages 405–416, 2003.
[33] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar ram-cpu cache

compression. In ICDE, page 59, 2006.

350

