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The initial-boundary value problem of space-fractional PDEs on a bounded domain

dyu — d+(x,t)aGDgu - d_(.f,t)fD?U =f, z¢€ (CL, b), te (O,TL (]_)
u(a,t) = u(b,t) =0, t €[0,7], u(z,0)=wuo(z), z € [a,b].
@ dy and d_ are the left and right variable diffusivity coefficients
(so analytical techniques do not apply, in general).

@ The left- and right-sided Griinwald-Letnikov fractional derivatives of
order 1 < a < 2 are defined by

[(z—a)/e]
G o i L (@)
o Dyu(z,t) = 61~I>I(I)1+ o ,;:0 gy u(r — ke, t), )
. 1 L(b—=)/e] (o
2 Dpu(z,t) ;= lim — * ke, t
b (e, 1) Jim, 1?:0 g u(T + ke, t)

° g,(ca) i= (—1)F(%) with (}) being the fractional binomial coefficients.
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A finite difference method (Lynch et al 2003, del-Castillo-Negrete et al 2004,

Liu et al 2004, Meerschaert & Tadjeran 2004)

@ FPDEs have significantly different features from integer-order PDEs.

@ Let x; :=a+ ith and t,,, := mAt. The fully implicit finite difference
scheme obtained by truncating (2) is unconditionally unstable!

@ An unconditionally stable scheme is (Meerschaert & Tadjeran 2004) is

ulm—uznfl d+m ‘ *’”N g
At ng U gy Z gk uz+k 1= fi 3)
@ The stiffness matrix A™ = [a?fj]f\fj:l
—(d™ 4 d7 ™) gt > 0, i=1,

) —(df gl +dy (M) <0, j=i—1,
O = |~ (AT HdrTesY) <0, j=it (4)

—d"™g (Q)H <0, j<i—1,

—d; g\ <0, j>i+ 1.
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@ In the matrix form of the finite difference scheme (3)

(I+ AtA™)u™ = ™1 4 ALF™, (5)
o A™ is full and has to be assembled in any traditional scheme.

@ We utilize the following properties of ¢\* := (~1)*(¢) to conclude

g§°‘> —a<0, 1=g*>gl > gl . 50,

ZQ(Q) =0, Zgl(ga) <0 (m2>1), (6)
k=0
) F(k - a) o 1 1
92 ) TT(—a)(k+1)  T(—a)kot? (1 +O(E))

o a;;1r/a;; decay at a rate of 1/k**! as k — oo.

N
ali = > lalyl
o (@) (@) _ (@)
—,m (¢ +,m @ — o
== Z 9 Z 9 (7)
k=0, k#£1 k=0, k#£1

ST ) Y gl =
k=0,k#1
e A™ is a strictly diagonally dominant M-matrix, the scheme is monotone
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Exploring the structure of the stiffness matrix A™ = [a;;]; ;=1 (W. et al 2010)

B -+, N N . —, N a,N\T et
A™ = (dlag(di ™)im T + diag(d; ™ )iz (T) )/h ) (8)
[ g§o¢) gl()a> 0 0 0 1
g$) ISR CORS 0
0
NOR EPRR CORN
Lo o2 a8 e ]
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A fast evaluation of Av

A™v can be evaluated in O(N log N) operations for any vector v.

The matrix TV is embedded into a 2N x 2N circulant matrix C*2N
R (OB CSI

93
0 0 gg\?) . géa)
o, N a,N
co2N T S g N 0 0 0
. Sa,N Ta,N ? .
0 ... 0 w0 ¢
L g™ 0 .0 0 o |

@ Let c®2V be the first column of C2N . Then C*2N can be decomposed as

co2N F2N diag(Fanc®?N) Fay ©)
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@ A fast matrix-vector multiplication A™v is formulated as follows
o For any v € RV, define vy by

o i)

e Fynwon can be carried out in O(N log N) operations via FFT, so
C*2Nyyn can be evaluated in O(N log N) operations.

The first N entries of C*2N vy yields TN v.

Similarly, (T*")Tv can be evaluated in O(N log N) operations.
A™v can be evaluated in O(N log N) operations.

TNy

SNy

o, N a,N
Ca,?N T S
Soz,N Ta,N

s VoN =

] o)
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Summary of the fast numerical method

@ The fast algorithm

e is not lossy, since no compression used in evaluating A™v;

e retains the conservation, stability, and convergence of the
underlying scheme;

e is nonintrusive, only the matrix-vector multiplication module
needs to be modified.

@ By (8)—(10), the fast algorithm is matrix-free.

e The evaluatation of A™v requires only formulating the vectors
{dF™}Y and >

e The storage of A™ requires only storing the (3N + 1) parameters
{d"}I and {g{) .

e In contrast, any traditional method requires the assembly of
the full stiffness matrix A™.
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A two-dimensional space-fractional PDE

dwu(z,y,t) — di(z,y,1)S Dou(z,y, t) — d_(z,y,1)5 Diu(z,y, t)
*6+($7yat)§D5U(3?,ya t) —€— (x7yat)1C/;Dgu(xay7 t) = f(xvyvt)a
(z,y) € Q:=(a,b) x (¢,d), t€(0,T], 1<a,f<2 (11)
u(l;" y7 t) = 07 (I7 y) e 6Q7 t E [07 T]7

U(iﬁ’,y,o) = uo(l’,y)y (x,y) (S Q.

@ The fractional spatial derivatives are only in the coordinate directions.
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A two-dimensional finite difference scheme

@ A two-dimensional shifted finite difference scheme is

—m Nj—i+1

(a)
gk uz+k 1,5
k=0
e; ,m Ng—i+1

+m J
) B i
lhijﬁ Zgj( )uzljfl+l - hB Z gl uz J+Hl—-1 — fz,g7
2

=0 k=0

d+7m i
J 0 Py .7 () m
- 9 Ui—k+1,5 —

1<i< Ny, 1<j<Ny, m=12,...,M.
Let N = N1 Ns. Introduce N-dimensional vectors u™ and f™ defined by
um = [urlr»ll’ e ’urﬁl,l’uﬁb e ’U%LQ’ e ’u?’lrsz’ e ’u”ﬁlaNQ] ’
T
fm: ]

[f{?]f" 7fﬁ1,1af{727"' 7f]7\7711,27"' 7f{fLN27"' 7f]7\7[11,N2
The finite difference scheme (12) can be expressed in the matrix form

(I+ AtA™)u™ = u™ =1 + Atf™.

(12)

(13)

11/ 50
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Structure of the stiffness matrix A™ = A™® + A™Y (W. & Basu 2012)

@ A™" accounts for the coupling of all the nodes in the x direction

o A™7* is block-diagonal with full diagonal blocks.
o Each diagonal block A" is identical to that for a 1D problem

m,r __ . +,m SN . —,m SNNT
AT = —diag(r;"")T™ — diag(r; ") (T™)". (15)

o A™7Ty can be evaluated in NoO(N; log N1) = O(N log N) operations.
o A™7 can be stored in NoO(N;) = O(N) memory.
o A™Y accounts for the coupling of all the nodes in the y direction.

o As the labelling runs z first, A™V is a full block matrix but with
sparse matrix blocks.
o We prove that A" is block-Toeplitz-circulant-block

A™Y = —diag(sj"m);\z1 (T*’j’N2 ® In,) — diag(sj_’m)j.vjl ((T’B’NZ’)T ® In,).  (16)
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A numerical simulation of a 3D space-fractional FPDE (W. & Du 2013c)

@ In the numerical experiments the data are given as follows
° a+(m, Y,z t) = CL,({E, Y, z, t) = b+({£7 Y, =, t) = b*(xa Y, 2, t) =
ci(z,y,2,t) = c_(z,y,2,t) = D = 0.005
o f=0,a==7=18 Q= (-1,1)310,7] = [0,1].
o The true solution is expressed via the inverse Fourier transform

1 *° - T [e1
ule,yzt) = & [Pl o
0

oo ) Wﬁ
x%/ 2Dl eos()I(t+0.5)n° cos(ny)dn (17)
0

xl/ ¢ 2P1 s 05 o) e
T Jo

o The initial condition u,(z,y, z) is chosen to be u(z,y, z,0).

@ The Meerschaert & Tadjeran FDM and the fast FDM implemented
in Fortran 90 on a workstation of 120 GB of memory.
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Table: The CPU of the FDM and fast FDM

h = At | # of nodes The FDM The fast FDM
2-3 4,096 1h 4m 26s 0.58s
24 32,768 2 months 25d 9h 12m 5.74s
275 262,144 N/A 1Im 6s
96 | 2,007,152 N/A 14m 22s
27 16,777,216 N/A 3h 49m 56s
2-8 134,217,728 N/A 3days 3h 18m 52s

@ It would take the regular FDM about 1,000 years of CPU times on state of the art
supercomputers (10 petaflops, Nov 2011) to finish the simulation, provided that
the computer has enough memory.

@ Parallelization was used in measuring the peak performance of supercomputers.
The nonlocal nature of FPDEs makes the communications in the numerical
simulations global, which further increases the CPU times of the FDM simulations.
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Conservative FDEs (del-Castillo-Negrete et al. 2004; Ervin & Roop 2005;

Wheatcraft & Meerschaert 2008; Zhang et al. 2007)

~D(E@)(O 5Dy u— (1= 0) §rD ) = f@), € (0.1), 0
u(0) = u;,  u(l) =u,, 0<pB<l, 0<6<L1
@ derived from a local mass balance + a fractional Fick's law.
@ 0 is the weight of forward versus backward transition probability.

@ The left- and right-fractional integrals, Caputo and Riemann-Liouville
fractional derivatives are defined by

oIPu(z) = oD Pu(z) = /m @=9)"tuls) ;-

I'(B)
APu(z) = D Pu(x) = /xl (s=a)” uls) ?)([;Blu(s) ds, (19)
SIDY P = 012 Du, Crpl=Py = —, 17 Du,
RlDl M —DOIB ch1 By = —D I,f;r
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Analysis for (18) with constant K & u; = u, = 0 (Ervin & Roop 2005)

[]ie

e Galerkin formulation: given f € H—(1—§>(0, 1), seek u € Hé_ (0,1)

[S]hes

Blu,v) = (f,v), YwveH, 2(0,1). (20)

[Nl

_ _B
Here B : Hé (0,1) x Hé 2(0,1) — R is defined to be

B(u,v) := 0(K oD;”Du, Dv) + (1 - 0)(K ,D;”Du, Dv)

-B/2 -B/2
0(K oDz Du, D, Dv) £2(0,1)

+(1 = 0)(K »D;?*Du,oD; "> Dv)

L2(0,1)

[N

(-,-) is the duality pair between H_(l_g)((), 1) and HS_ (0,1).
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@ The coercivity of B(-,-) is derived as follows
B(u,u) = K(oD:"*Du, . D7 Du) 14

= —cos (1= B/2)m) Klul} 520,
= cos (ﬂﬂ'/Q)K‘uﬁ-[l*ﬁ/z(O,l)'

B
2

. . . 1-2 1-
B(-,-) is coercive and continuous on H, 2(0,1) x H,
the Galerkin weak formulation (20) has a unique solution. Moreover,

(0,1). Hence,

[

<
-t o <O

B o
H~172)(0,1)
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Galerkin finite element methods and their error estimates

_B
e Let S3(0,1) C H; 2(0,1) be the finite element space of piecewise

polynomials of degree m — 1. Find uy, € Sp,(0,1) such that

B(up,vp) = (fyvn),  Vun € Sp(0,1).

: 1-2
@ Assume that the true solution v € H™(0,1) N H, *(0,1).
Then the optimal-order error estimate in the energy norm holds

[[un — ull < ON" PP | gm0,

Hlfg(o,l)
@ Assume that the dual problem has the full regularity for each

g € L?. Then the optimal-order error estimate in the L? norm holds
1_8
forue H™(0,1)N H, *(0,1)
@ Extensions to spectral Galerkin methods and other methods were
proved under the same assumptions.
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A finite volume method (FVM) for conservative FDE (18) with u; = u, =0

Conservative and non-conservative FDEs are not equivalent.
Finite element/volume methods are suited for conservative FDEs.
Finite difference methods are suited for nonconservative FDEs.

In many applications, local mass conservation is crucial.

A finite-volume scheme naturally has second-order accuracy in space,
without a Richardson extrapolation as in finite difference methods.

Let u = Z;\] 1uj¢j’ u:= [u17u27---7uN}T fi= [fl,fQ,---7fN]T'
A= [A;;]N,—,. Integrating (18) over (x, %,xH%) yields

11—

i+1/2
Au=f, f; ::/ f(x)dz, 1<i,j<N.
Ti—1/2 i (21)
Agji= [K(x) (9 OC’ZD;—ﬁu —(1-10) ngi_gu)}

T=Ti41/2
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Structure of A (Cheng et al, 2015; W. et al, 2015)

A=r(B)(E- TPN + K, THY), Ki:=disg({K(z1)}i,)  (22)

where TLB N and Tg’N are full Toeplitz matrices. So A can be stored in O(N)
memory and Av can be evaluated in O(N log N) operations for any v € RV .

+ A fast Krylov subspace iterative method reduces the computational
complexity of each iteration from O(N?) to O(N log N).

— For problem (18), the condition number x(A) = O(h~(2~5)),

— The number of Krylov iterations is O(h~(1=#/2)) = O(N'~#/2), leading to
an overall computational complexity of O(N?~#/2log N).

@ This calls for an effective and efficient preconditioner.
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A preconditioner for (18) with § = 1/2 (W. & Du 2013)

M = Tf Ny Tg’N is a full symmetric and positive-definite, Toeplitz matrix.

@ Outline of (a perburbation-based) proof: Let K := diag({K (z;)} ;).

Y(B) K TA
=Ky'K- TN + KoKy TN
= Ko '[Ko+ (K- = Ko)| TN + Kq ' [Ko + (Ko — Ko)J 70N (23)
=M+ Ky [(K, — Ko)TPN + (K, — Ko)Tng]
= M + O(h).

@ M is a good preconditioner for the finite volume scheme (21). (20)
24
(Ko 'K_ TP + Ko 'Ky T u=~(8) "' Ky Au=~(8) ' Ky ' f

@ M can be inverted via the superfast algorithm (Ammar & Gragg, 1988)
in O(N log® N) operations.
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An example run by a preconditioned fast FVM

@ The data in (18):4=0.2, § = 0.5, K(z) =T'(1.2)(1 + z), w; = u, = 0.
@ The true solution u(x) = 22(1 — x)?, f is computed accordingly

Gauss CGS
N J[u —ug| oo CPU(s) J[u —uc|poo CPU(s) Itr. #
25 2.018 x 10— % 0.000 2.018 x 10— 4 0.000 32
26 5.157 x 10~° 0.000 5.157 x 107° 0.000 65
27 1.294 x 10~° 0.000 1.294 x 105 0.016 128
28 3.214 x 1079 0.047 3.214 x 10~6 0.141 217
29 7.893 x 107 0.500 7.893 x 107 3.359 599
210 | 1.887 x 1077 7.797 1.886 x 107 2m2s 1,110
211 | 4.030 x 1078 2m38s 4.047 x 1078 21m13s 2,624
212 | 6227 x 1072 24m29s 7.468 x 10~8 4h19m 7,576
213 | 5783 x 1077 3h27m N/A > 2days > 20,000
FCGS PFCGS

Tu— wp| oo CPU(s) Ttr. # | Jlu — ugllroo CPU(s) Ttr. #
25 2.018 x 10— % 0.000 32 2.018 x 10~ 2 0.000 6
26 5.157 x 10~° 0.016 63 5.157 x 107° 0.000 5
27 1.294 x 1075 0.031 128 1.294 x 107° 0.000 5
28 3.214 x 1076 0.125 248 3.214 x 10~6 0.006 5
29 7.893 x 107 0.578 576 7.893 x 107 0.016 5
210 | 1.886 x 10~7 2.281 1,078 | 1.887 x 1077 0.047 5
211 | 4037 x 1078 9.953 1,997 | 4.038 x 1078 0.078 5
212 | 1.587 x 10~8 57.27 5130 | 6.194 x 109 0.188 5
213 | 2372 x 10~8 2m52s 7,410 | 4.345 x 10~° 0.391 5
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@ Use the numerical solutions by Gaussian elimination as a benchmark:

o The conjugate gradient squared (CGS) method diverges, due to
significant amount of round-off errors.
o The fast CGS (FCGS) reduced the CPU time significantly, as the
operations for each iteration is reduced from O(N?) to O(N log N).
o The number of iterations is still O(N*~#/2),
o It is less accurate than Gaussian at fine meshes due to round-off errors.
e The preconditioner M is optimal, so the preconditioned FCGS
(PFCGS) has an overall computational cost of O(N log® N).
o It significantly reduces round-off errors.
@ It generates more accurate solutions than Gaussian elimination.
o It further reduces CPU time.
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Regularity of the boundary-value problem of FDEs (Jin et al 2015; W. et al 2014, 2016;

W. & Zhang 2015)

@ Error estimates were proved for numerical methods for FDEs, under the
assumption that the true solution is smooth.

@ For integer-order elliptic or parabolic PDEs, smooth data (and domain for
multi-D problem) = smooth solution.

o u(x) = (x> % — 2P /T(3 - B) ¢ WH1/8(0,1) is the solution of

D(oD,’Du) =1, z€(0,1), w0)=u(l)=0 (25)
o In particular, u ¢ H'(0,1) for 1/2 < B < 1.
@ For FDEs smooth data does not ensure smooth solutions

e No conditions in the literature to ensure smooth solutions to FDEs.

o The Nitsche-lifting based proof of optimal-order L? error estimates in
the literature does not hold even for constant K > 0.

o What conditions ensures that high-order methods = high-order
convergence rates?

e Solutions may have boundary layers and other singularity, which need
to be resolved numerically.
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An FVM on a gridded mesh (Jia et al., 2014; Tian et al, 2013)

@ Solutions to FDEs with smooth data and domain may have boundary
layers, a uniform mesh is not effective.
e Finite-difference methods out of the question, as Griinwald-Letnikov
derivatives are inherently defined on uniform meshes.
e Riemann-Liouville and Caputo derivatives offer such flexibilities.
@ Bebause of the nonlocal nature of FDEs, a numerical scheme
discretized on an arbitrarily adaptively refined mesh
o offers great flexbility and effective approximation property
o offers possible advantage on its theoretical analysis
o destroys the structure of its stiffness matrix and so efficiency.

@ Motivation: balancing flexibility and efficiency.
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The structure of the stiffness matrix

@ We assume a geometrically refined mesh towards the left endpoint.

The matrix A can be decomposed as

A = ﬁ [diag(Ki)(’YQl +(1=7Qr)

~diag(K ™) (YPi + (1 = 7)Pr) |diag({h "} ).

e P, P., Q; and Q, are Toeplitz.
o A has an additional diagonal matrix (reflecting the impact of
the mesh sizes) multiplier to that on the uniform mesh.
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Numerical experiments of a one-sided FDE on a gridded mesh

o Consider (18) with K =1, f=0,=098,0=1, u; =0, u, =1, i.e.,

D(oD;’Du) = 0, z€(0,1),
w(0)=0, wu(l) =

Its solution u(z) = z'=# for x € (0, 1).

N CPU #tof iterations

Gauss 256  0.640s

512 5.567s

1024 59s
CGS 256  2.978s 256

512 29s 512

1024 403s 1024
FCGS 256 0.073s 256

512  0.139s 512

1024 0.391s 1024
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Figure: First row: numerical solutions on a uniform mesh of n = 256,512,1024;
Second row: numerical solutions on a geometrically refined mesh n = 48,64, 96.

02 numerical solution 02 ‘numerical solution 02 numerical solution
exact solution exact solution exact solution
o 02 04 [ 08 1 o 02 04 06 08 o 02 04 [ 08 1
1 1 1
18| 1] 18|
14 4] 14
12 12| 12
1 R — F S —— 1 S —
o) 08| 0|
05| 0 05|
04 04 04
02 numerical solution 02 ‘umerical solution 02 numerical solution
exact solution exact solution exact solution
02 04 [ [ 1 o 02 04 06 08 02 04 [ [ 1

University of South Carolina

Fractional PDEs: Numerics and analysis

October 17-21, 2016

28 / 5



An FVM on a locally refined composite mesh (Jia & W. 2016)

@ Solutions to FDEs with smooth data and domain may have boundary
layers. Numerical solution of FDEs

e with a uniform mesh is not effective.

e with a gridded mesh may resolve the boundary layers, but does not
necessarily provide an accurate global approximation.

@ We propose to use a composite mesh that consists of
@ a uniform mesh in most of the domain,
o a gridded mesh in the cells near the (left) boundary.

@ The key issue is the structure of the stiffness matrix:

A [ A Ay ] (26)
Ar,l Ar,r )
o A, ., corresponding to the uniform mesh, has a Toeplitz-like structure.

o A;;, corresponding to the gridded mesh, has a Toeplitz-like structure
with an extra right diagonal multiplier.
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The structure of the off-diagonal submatrices in the stiffness matrix

@ The off-diagonal submatrices A4; , and A, ;

o are full due to the nonlocal nature of FDEs,
e are not Toeplitz-like.

_ B—1
A, = % (diag(K; )E — diag(K;")D),

A = ﬁ(diag(K;)H — diag(K,)G)diag({h{ " }1).

@ The typical entries of D and E are of the form
dig=20j+1-3:27"71)7 = (=327 (j 42327,

T S
+%[2m_j+l(i+ g) —4]5.
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@ Use a fractional binomial expansion, we have

(B cr1 1 1
Dm2<2 1,1,...,1] [22_5’32_5"”’(71—1)2_[3]
B ] 1 1 1
2(4 1,1,...,1] [2475,347[3,...,(”_1)4%}
ﬂ -m og—m+1 —11T 1 1 1
+18<3 2™, 2797 [2375,33%,...,(”_1)375]

B\ io—2m o—2m+2 _or[ 1 1 1
_108<4 [272m 2 .27 [2475,3476,...,(n_l)%g}.

e The matrices can be approximated by a finite sum of low-rank matrices.
e The matrix-vector multiplication can be performed in O(NN) operations.
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A block-diagonal preconditioner

@ A preconditioner based on T. Chan's circulant preconditioner C,,,
which minimizes ||A — C,,|| ¢ over all circulant matrices.

@ We define a block-diagonal-circulant-block preconditioner M for A

(27)

v ]

0 M

e M; is a preconditioner for A;;
e My is a preconditioner for A, .
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Numerical experiments of a one-sided FDE on a composite mesh

@ Consider (18) with K =1, f=0,0=1,8=0.9, v; =0, u,. =1, i.e,,

D(oD;°Du) = 0, z€(0,1),
u(0) =0, wu(l) =
Its solution u(z) = x'=# for 2 € (0,1).
n l[un — ull llwn,m — ull l[tn,m — ul|

128 | 4.3546 x 10°T | 2.6805 x 10° Y, m=7 | 2.0315x 10" %, m =11

256 | 4.0630 x 107! | 2.3336 x 107!, m =8 | 1.3403 x 10~!, m = 16

512 | 3.7909 x 107! | 2.0315x 107!, m =9 | 8.2504 x 1072, m = 22
1024 | 3.5370 x 107! | 1.7685 x 107, m =10 | 3.8488 x 1072, m = 32
8192 | 2.8730 x 10~ % | 1.6668 x 107!, m = 13 N/A
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Figure: First row: numerical solutions on a uniform mesh of n=256, 8192;
Second row: numer. solns. on a composite mesh with n = 256 and m = 8, 16.
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Numerical experiments of a two-sided FDE on a locally refined composite mesh

@ Consider (18) with K =1,0=0.5, 3=0.95, w; =0, u, =1,
(1-7@1-p)

flz) = Tl )P’ u(z) =27, ze(0,1).
m n Error Iterations
25 28 1.4379x 1077
Gauss 2% 2°  1.0491 x 107!
2° 210 58194 x 1072
25 2% 14379 x 1072 48
CGS 2* 2° 1.0491 x 107! 77
25 210 58194 x 1072 142
25 28 1.4379x 1077 48
FCGS 2% 2° 1.0491 x 1071 78
25 210 58194 x 1072 150
25 2% 14379 x 1071 9
PFCGS 2% 29 1.0491 x 107! 13
2° 210 58194 x 1072 16
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Table: Numerical results on a uniform mesh

n Error Iterations CPUs
2 1.8827 x 101 0.01s
Gauss 29 1.8206 x 10~1 0.01s
210 1.7596 x 1071 0.05s
211 1.7002 x 1071 0.25s
212 16425 x 1071 1.25s
213 15867 x 1071 9.76s
214 15327 x 10~1 97s
P 1.8827 x 10~ 1 46 0.01s
CGS 29 1.8206 x 101 66 0.01s
210 1.7596 x 1071 9% 0.18s
211 17002 x 1071 133 0.86s
212 16425 x 1071 188 4.94s
213 15867 x 1071 266 30.78s
214 15327 x 1071 379 187s
28 1.8827 x 10~ 1 46 0.05s
FCGS 29 1.8206 x 1071 66 0.16s
210 1.7596 x 107! 94 0.29s
21 1.7002 x 1071 133 1.16s
212 16425 x 1071 188 2.00s
213 15867 x 107! 266 12s
24 15327 x 10! 379 27s
28 1.8827 x 101 8 0.02s
PFCGS  2° 1.8206 x 10~ 1 8 0.02s
210 1.7596 x 10~ 9 0.05s
211 1.7002 x 1071 10 0.09s
212 16425 x 1071 10 0.14s
213 15867 x 1071 10 0.66s
214 15327 x 10~! 11 1.00s
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Inhomogeneous boundary conditions (W., Yang & Zhu 2014)

o FPDEs have significantly different mathematical and numerical
properties from their integer-order analogues. For instance,

e For u; = u, =0, (18) and its Riemann-Liouville analogue coincide.
They are well posed if K is a positive constant.

@ When u;, u, do not vanish, then (18) is well posed for a postive
constant K. But its Riemann-Liouville analogue does not admit
a solution.
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Extensions to variable-coefficient problems: A counterexample (W. & Yang 2013)

ol

B(w,w) < 0 for some K (x) of two positive constants and w € HS_ (0,1)
_8
Let K(z) and w € H}(0,1) C H& 2(0,1) be defined by
K, € (0,1/2), 2, € (0,1/2],
Ky [ Ko w01 [ e (0,1/2)
1, z e (1/2,1). 21—z), xe[1/2,1).

Clpl=Buy(z) = 227/T(8 +1), z € (0,1/2),
0T 2(zf —2(x —1/2)8)/T(B+1), e (1/2,1).

B(w,w) =278 (K, — (2771 = 3))/T(B +2).

As 0 < log,3 —1 < 1, choose logy 3 — 1 < 3 < 1 so that 2°+! — 3 > 0. Select
K; > 0 such that K; — (25+1 - 3) < 0. For such K and w, B(w,w) < 0.
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@ Consider the one-sided problem ((18) with 6 = 1)

—D(K oD;”Du) = f(z), =€ (0,1), u(0)=u(l)=0. (28)
@ For a variable K
B(u,v) = 6(K (I8 Du, Dv) + (1 - 0)(K I} Du, Dv)
# (K Du, ,I{ Dv) + (1 — 0){ K Du, oI¢ Dv)

2 2
# (K ol*Du, o 172 D) g

@ Even the best possible (last) form cannot guarantee the coercivity of B

8/2 B/2
(K olz'"Du, I D“)L2(0,1)
2 Kpin (015/2Du7 wllﬁ/2Du)L2(O,1)
= cos (BW/Q)Kmm‘U|§{175/2(071)-

° OIE/QDu and xllﬁ/zDu do not always have the same sign on (0,1).
e One can choose a smooth K such that the left-hand side negative.
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A Petrov-Galerkin formulation (W. & Yang 2013)

@ For a variable K, the Galerkin formulation is not coercive on any product
_8 _8
space H x H so Hé 2(0,1) x Hé 2(0,1) is not a feasible choice.

@ That the FDE is a local mass balance incorporated with a fractional Fick's
law motivates a Petrov-Galerkin formulation: Seek u € Hy?(0,1) such that

Au,v) := /K D;?Du)Dvdx = (f,v), Yv€ Hy(0,1)  (29)

Assume 0 < 8 < 1/2 and 0 < Kpin < K < Kpjae < 00. Then

A
1nf sup (w, v) > v(B) > 0,
weHy P (0,1) veHE(0,1) [wll -5 0,10l a1 0,1) (30)
sup A(w,v) >0 Ywve Hj (0,1) \ {0}.
wEHé_B(Ovl)

Hence, (29) has a unique solution u € Hé_ﬁ(O, 1) with the estimate

llullzri-s50,1) < (Bmaa /NNl z-10,1)- (31)

Hong Wang, University of South Carolina  Fractional PDEs: Numerics and analysis October 17-21, 2016



A spectral Galerkin method

Ppn[—1,1]: the space of polynomials of degree < N on [—1,1]

L, (x): the nth degree Legendre polynomial on [—1,1]

2 1
Lo@) =1, Li(e) =@, Lnsa(a) = 2ttoLn(e) -

1
2 n

¢n(x) := Ly (x) — Lyy2(x) are linearly independent with ¢(£1) = 0.

Sn[—1,1] := {v € Py[~1,1] : v(~1) = v(1) = 0} = span{¢,, }) 2.

A spectral-Galerkin method: Seek uy € Sy[—1,1] such that

B(uN,vN) = <f, ’UN>, Yoy € SN[fl, 1].
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Theorem

(Huang et al. 2013; Zeng et al. 2014) Ifu € H" N HY /% and 1 — B/2 < s <,
then

lun — ullzrs < CN"C9|juf|lgr, 1-p/2<s<T (32)

Assume full regularity of the dual problem for each right-hand side, then the
estimate holds for 0 < s < r.

Theorem
(W. & Zhang 2015) The solution u to problem (18) with 0 < 8 < 1/2, constant K

3_
and f and w; = u, = 0 is not in H3~# but in B% " (L?).
The best provable convergence rate in (32) isT = 3 — .

| A

@ In particular, the convergence rate in || - || g1-s/2 is O(N—(1=5)/2),
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An indirect spectral Galerkin (ISPG) method (W. & Zhang 2015)

For 0 < 8 < 1/2 the true solution u to a one-dimensional, one-sided FDE can be
decomposed as

w=u + (up —w — ngfwf) (ngfwb)_lngfwb + ngfwf. (33)
—D(K(z)Dwys) = f, z€(-1,1); wy(-1)=ws(l)= (34)
—D(K(z)Dwp) =0, =€ (-1,1);  ws(—1) =0, wp(1) =1.

@ Use SPG to solve the second-order DE (34) (Canuto et al 2006, Shen et al
2011): Find wy € Sn[—1,1] such that

(K(ac)DwN, DUN)LZ(—I,l) = (f, UN)LZ(—l,l)’ Yoy € SN[—l, ].]

@ Use (33) to postprocess wy to obtain uy
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Numerical issues

e Properties of (¢, D} wb) and nggwb
o 9 DPw, can be evaluated as follows

€. D%w, = D’“’B)ow

1
_ p-a-8)
Ks 1 (z)

(s) K
1 *1 1 x 1
- / Ko®) ta-p / K@ s

o (¢,Dfwy) ™" is well defined and €, DBy, is bounded in L*°(—1,1).

1

@ Spetral method offers additional computational benefit
o Evaluating ¢, D%wy requires numerical integration of a weakly
singular integral of Dwy.
e Spectral method can carry out the calculation analytically
in a systematic manner.
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Using Jacobi polynomials to handle singularity

e J"Y(x) — the nth order Jacobi polynomials that are orthogonal with
respect to the Jacobi weight function w"” := (1 — z)*(1 + z)¥

v , 1 1
00 =1 =gt v+ 2e+ S(n—v),

Jﬁfl = (aﬁyyfv - bﬁyl’)«]y‘:’u — IR
_ n+p+1 i n\Tn+k+p+v+1) (a:—l)’c
n!F(n—l-,u—l—Z/—&—l)k:O k N'k+p+1) 2 ’
n>1

where ai”’, by, and ¢} are constants having explicit expressions.
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(Huang et al 2011; Shen et al 2011) For u > 0,

mDIL@) = [l () ), we L,
RpiL(z) = %(1-@%};%(@, zel-1,1].

@ The SPG solution wy € Sy[—1,1] can be expressed as

Z dnpn(

2

-2

dn(Ln(z) — Ln2(2)).

n

N—
- F'n+1 -
©Dfun = "iDluy = Y du(1 ) (s )

I'(n+3)
“Tra-g @)
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Error estimates requiring only the smoothness of the data

(W. & Zhang 2015) Let 0 < B < 1/2, K € C™[—1,1], and
f e H™Y(—~1,1) for any m > 1. Then,

lun —ullg2(—1,) SCN™.

where C = C(8,m, | K |lcmi—1,1, | fllm-1(=1,1))-
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Numerical comparison between the SPG and the ISPG

e K=1 u4=0, u, =2, and

r(7)
@) =336 1 p) (

T + 1)44’[3
5 .

1\ 1-8 116
@ This gives the true solution u(z) = (x;_ ) + (m—2|— ) .

@ For SPG, |

UN — UHL?(—Ll) < C.NF.

< C.e "N,

@ For our improvements, |[un — u||r2(—1,1)
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Table: The comparison of the SPG and ISPG methods (W. & Zhang 2015)

luspa,n — ullz2(0,1) lurspa,n — ullL2(0,1)

N || =01 ] B=05 | B=09]| B=01 ] B=05 | B=09
4 2.139e-03 | 5.104e-02 1.677 9.377e-03 | 2.319e-02 | 7.737e-02
5 1.334e-03 | 4.195e-02 0.472 8.451e-04 | 2.823e-03 | 1.283e-02
6 9.014e-04 | 3.431e-02 1.331 6.482e-06 | 1.087e-04 | 9.541e-04
7 6.738e-04 | 2.676e-02 0.439 4.185e-07 | 3.892e-06 | 7.135e-06
8 5.204e-04 | 2.308e-02 1.119 5.348e-08 | 3.943e-07 | 5.563e-07
9 4.126e-04 | 1.913e-02 0.415 9.807e-09 | 6.239e-08 | 7.625e-08
10 3.342e-04 | 1.691e-02 0.986 2.280e-09 | 1.307e-08 | 1.468e-08
11 2.755e-04 | 1.454e-02 0.395 6.296e-10 | 3.324e-09 | 3.481e-09
12 2.306e-04 | 1.309e-02 0.893 1.984e-10 | 9.811e-10 | 9.807e-10
13 1.955e-04 | 1.154e-02 0.380 6.952e-11 | 3.248e-10 | 3.105e-10
14 1.676e-04 | 1.052e-02 0.824 2.656e-11 | 1.183e-10 | 1.097e-10
15 1.450e-04 | 9.439e-03 0.366 1.091e-11 | 4.659e-11 | 4.182e-11
Cr 0.034 0.342 2.479 0.675 4.343 35.521
K 2.016 1.315 0.600 1.800 1.817 1.985
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Thank You

for Your Attention!
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