
International Journal of Electronics Engineering Research.

ISSN 0975-6450 Volume 10, Number 1 (2018) pp. 9-18

© Research India Publications

http://www.ripublication.com

Fast Parallel Integer Adder in Binary Representation

Duggirala Meher Krishna

Student, Department of Electronics and Communication Engineering,
Gayatri Vidya Parishad College of Engineering (Autonomous), Madhurawada,

Visakhapatnam, Andhra Pradesh, India.

Duggirala Ravi

Professor, Department of Computer Science and Engineering,
Gayatri Vidya Parishad College of Engineering (Autonomous), Madhurawada,

Visakhapatnam, Andhra Pradesh, India.

Abstract

An integer adder for integers in the binary representation is one of the basic

operations of any digital processor. For adding two integers of N bits each, the

serial adder takes as many clock ticks. For achieving higher speeds, parallel

circuits are discussed in the literature, and these circuits usually operate in two

levels. At the lower level, integers represented by blocks of smaller number of

bits are added, and in a cascade of stages in the next level, the carries

produced in previous addition operations are summed to the augends. These

circuits perform addition of integers of N bits in about log2 𝑁 number of clock

ticks and 𝑂(𝑁 ∗ log2 𝑁) space. In this paper, we describe a fast method and

an improvement of it. The first attempt resembles the operation method of the

merge sort algorithm, from which some important properties of carries

produced in each stage are analysed and assimilated, resulting in a parallel

adder that runs in about log2 𝑁 number of clock ticks and 𝑂(𝑁 ∗ log2 𝑁)

space. Then the crucial insights are brought to fruition in an improved design,

which takes 2 clock ticks to perform the addition operation requiring only

𝑂(𝑁2) space. The number of bits N is chosen usually to be a positive integer

power of 2. The speedup is achieved by special purpose circuits for increment

operations by 2𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 1, each operation taking only a single

clock tick to complete.

Keywords: digital circuits, integer addition, parallelization methods.

10 Duggirala Meher Krishna, Duggirala Ravi

INTRODUCTION

Addition operation of integers represented in binary is a basic operation on most, if

not all, modern digital processors. The sequential or serial circuit for performing

addition of two N bit integers takes N clock ticks. For parallelization of the addition

operation, the main issue is to find an efficient method to deal with the carry produced

by addition operation of smaller number of bits. Ripple carry adder or Carry

propagate adder, Carry look-ahead adder, Carry skip adder, Manchester chain adder,

Carry select adders, Prefix adders, Multi-operand adder, Carry save adder, Pipelined

parallel adder (see [2—6]). These circuits perform addition of integers of N bits in

about log2 𝑁 number of clock ticks and 𝑂(𝑁 ∗ log2 𝑁) space (see [1--3]).

In the next section, we present a k-stage cascade circuit, where 𝑁 = 2𝑘 ,

performing addition operation in only k clock ticks, requiring 𝑘 ∗ 2𝑘−1 − 1 space for

the special purpose circuits for carry addition. Some important insights are gained in

the design of this circuit, which are exploited for realizing an improved circuit that

adds in constant time, i. e., in 2 time delays, but requiring only at most
𝑁∗(𝑁+1)

2
 space.

PARALLEL BINARY ADDER

The steps involved in a parallel adder, resembling the merge sort algorithm, are

described in the following algorithm:

First Attempt Parallel Adder Circuit
1. Let the number of bits in the integers be 𝑁 = 2𝑘, for some positive integer k.

2. Let the input integers in the binary form be 𝑎𝑁−1 𝑎𝑁−2 … 𝑎0 and

𝑏𝑁−1 𝑏𝑁−2 … 𝑏0.

3. Initially, compute 2𝑘−1 sums of two bits each, 𝑠1, 2∗𝑖+1 𝑠1, 2∗𝑖 , and the

corresponding carries 𝑐1, 𝑖 , such that, the binary bit sequences 𝑠1, 2∗𝑖+1 𝑠1, 2∗𝑖

are the two lesser significant bits obtained by adding 𝑎2∗𝑖+1 𝑎 2∗𝑖 and

𝑏 2∗𝑖+1 𝑏12∗𝑖 , with a carry bit 𝑐1, 𝑖 , for 0 ≤ 𝑖 ≤ 2𝑘−1 − 1. This operation is

performed separately by 2𝑘−1 many programmable logic arrays or sequential

adders, which compute in parallel for each index 𝑖, where 0 ≤ 𝑖 ≤ 2𝑘−1 − 1.

4. For 𝑙 = 1, 2, … , 𝑘 − 1 , in steps of 1, in the ascending order, after 2𝑘−𝑙 the

sums of 2𝑙 bits each, 𝑠𝑙, 𝑖∗2𝑙+2𝑙−1 𝑠𝑙, 𝑖∗2𝑙+2𝑙−2 … 𝑠𝑙, 𝑖∗2𝑙 , together with the

carries 𝑐𝑙, 𝑖 , for 0 ≤ 𝑖 ≤ 2𝑘−𝑙 − 1 , the following increment operation is

performed : 𝑠𝑙, (2∗𝑖+1)∗2𝑙+2𝑙−1 𝑠𝑙, (2∗𝑖+1)∗2𝑙+2𝑙−2 … 𝑠𝑙, (2∗𝑖+1)∗2𝑙 is

Fast Parallel Integer Adder in Binary Representation 11

incremented by 𝑐𝑙, 2∗𝑖 , to get an auxiliary carry 𝑑𝑙+1, 𝑖 and a sum

𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙+1−1 𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙+1−2 … 𝑠𝑙+1, 𝑖∗2𝑙+1. where

 𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙+1−1 𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙+1−2 … 𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙

= 𝑠𝑙, (2∗𝑖+1)∗2𝑙+2𝑙−1 𝑠𝑙, (2∗𝑖+1)∗2𝑙+2𝑙−2 … 𝑠𝑙, (2∗𝑖+1)∗2𝑙

as obtained after addition of the carry 𝑐𝑙, 2∗𝑖 , and

𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙+1+2𝑙−1 𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙+1+2𝑙−2 … 𝑠𝑙+1, 𝑖∗2𝑙+1

= 𝑠𝑙, (2∗𝑖)∗2𝑙+2𝑙−1 𝑠𝑙, (2∗𝑖)∗2𝑙+2𝑙−2 … 𝑠𝑙, (2∗𝑖)∗2𝑙 ;

the carry 𝑐𝑙+1, 𝑖 is 𝑐𝑙, 2∗𝑖+1 ∨ 𝑑𝑙+1, 𝑖 , for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1; the number of

bits in the sum in the (𝑙 + 1)-th cascade stage is 2𝑙+1 and there are 2𝑘−𝑙−1

such sums and carries. Although there appears to be the need for an auxiliary

carry as just described, the combined operation of increment and carry update

can be performed as a single step by incrementing (2𝑙 + 1)-bit integer in the

binary form represented by

 𝑐𝑙, 2∗𝑖+1 𝑠𝑙, (2∗𝑖+1)∗2𝑙+2𝑙−1 𝑠𝑙, (2∗𝑖+1)∗2𝑙+2𝑙−2 … 𝑠𝑙, (2∗𝑖+1)∗2𝑙

to get the binary sequence

 𝑐𝑙+1, 𝑖 𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙+1−1 𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙+1−2 … 𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙

for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1; this increment operation can be performed in a single

clock tick by a special purpose circuit, which indentifies the least index j ,

where 0 ≤ 𝑗 ≤ 2𝑙 , such that all the least significant bits up to (but not

including) index j are 1 and the bit with index j is 0, by means of (2𝑙 + 1)

AND-gates implemented by negated NOR-gates, and instantly complements

the bits with index j upto the least significant bit; if 𝑐𝑙, 2∗𝑖+1 is 0, then there is

one such index j, and if 𝑐𝑙, 2∗𝑖+1 is 1, then it must have been produced in the

previous, i. e., 𝑙-th , cascade stage, and therefore, the integer represented by

the binary sequence 𝑠𝑙, (2∗𝑖+1)∗2𝑙+2𝑙−1 𝑠𝑙, (2∗𝑖+1)∗2𝑙+2𝑙−2 … 𝑠𝑙, (2∗𝑖+1)∗2𝑙 can

be at most 22𝑙
− 2 , ensuring that there is such an index j as just being

discussed, and the increment operation cannot further produce a carry,

5. The final sum is 𝑠𝑘, 2𝑘−1 𝑠𝑘, 2𝑘−2 … 𝑠𝑘, 0 with final carry 𝑐𝑘, 0.

12 Duggirala Meher Krishna, Duggirala Ravi

Claim: The integer represented by 𝑠𝑚, 𝑖∗2𝑚+2𝑚−1 𝑠𝑚, 𝑖∗2𝑚+2𝑚−2 … 𝑠𝑚, 𝑖∗2𝑚 ,

together with the carries 𝑐𝑚, 𝑖 , is the result of addition of the integers represented by

the binary sequences 𝑎 𝑖∗2𝑚+2𝑚−1 𝑎 𝑖∗2𝑚+2𝑚−2 … 𝑎 𝑖∗2𝑚 and

𝑏 𝑖∗2𝑚+2𝑚−1 𝑏 𝑖∗2𝑚+2𝑚−2 … 𝑏 𝑖∗2𝑚 , as expressed in the following, for 0 ≤ 𝑖 ≤

2𝑘−𝑚 − 1 and 1 ≤ 𝑚 ≤ 𝑘 :

𝑐𝑚, 𝑖 ∗ 22𝑚
 + ∑ 𝑠𝑚, 𝑖∗2𝑚+𝑗 ∗ 2𝑗

2𝑚−1

𝑗 = 0

 =

∑ 𝑎𝑖∗2𝑚+𝑗 ∗ 2𝑗

2𝑚−1

𝑗 = 0

 + ∑ 𝑏𝑖∗2𝑚+𝑗 ∗ 2𝑗

2𝑚−1

𝑗 = 0

 (1)

Proof: The claim is true for 𝑚 = 1, by the construction in Step 3. Now, it is assumed

be true through all cascade stages up to and including m and 𝑙, where 1 ≤ 𝑚 ≤ 𝑙 ≤

𝑘 − 1. Entering the second for-loop indexed by 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1, in Step 4, it is

required to show that the assertion in (1) holds true, for 𝑚 = 𝑙 + 1. Now, by inductive

hypothesis, the following is assumed to hold true, for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1 :

𝑐𝑙, 2∗𝑖 ∗ 22𝑙
 + ∑ 𝑠𝑙, (2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

 =

 ∑ 𝑎(2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

 + ∑ 𝑏(2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

 𝑎𝑛𝑑 (2)

𝑐𝑙, 2∗𝑖+1 ∗ 22𝑙
 + ∑ 𝑠𝑙, (2∗𝑖+1)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

 =

 ∑ 𝑎(2∗𝑖+1)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖+1)∗2𝑙+𝑗 ∗ 2𝑗

 2𝑙−1

𝑗 = 0

 (3)

Multiplying by 22𝑙
 the equation (3) throughout, the following is obtained, for 0 ≤ 𝑖 ≤

2𝑘−𝑙−1 − 1.:

𝑐𝑙, 2∗𝑖+1 ∗ 22𝑙+1
+ ∑ 𝑠𝑙, (2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

 =

Fast Parallel Integer Adder in Binary Representation 13

 ∑ 𝑎(2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

 (4)

and adding the corresponding sides of the equations (4) and (2), the following is

obtained :

𝑐𝑙, 2∗𝑖+1 ∗ 22𝑙+1
+ ∑ 𝑠𝑙, (2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

 +

 𝑐𝑙, 2∗𝑖 ∗ 22𝑙
+ ∑ 𝑠𝑙, (2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

 =

 ∑ 𝑎(2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑎(2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

= ∑ 𝑎(2∗𝑖)∗2𝑙+2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖)∗2𝑙+2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑎(2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

 = ∑ 𝑎(2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙+1−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙+1−1

𝑗 = 0

 = ∑ 𝑎𝑖∗2𝑙+1+𝑗 ∗ 2𝑗

2𝑙+1−1

𝑗 = 0

+ ∑ 𝑏𝑖∗2𝑙+1+𝑗 ∗ 2𝑗

2𝑙+1−1

𝑗 = 0

where the last term is the result of addition of the integers represented by the binary

sequences 𝑎 𝑖∗2𝑙+1+2𝑙+1−1 𝑎 𝑖∗2𝑙+1+2𝑙+1−2 … 𝑎 𝑖∗2𝑙+1 and

𝑏 𝑖∗2𝑙+1+2𝑙+1−1 𝑏 𝑖∗2𝑙+1+2𝑙+1−2 … 𝑏 𝑖∗2𝑙+1 , for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1. Now, either of the

summands on the right hand side of (3) is at most 22𝑙
− 1, and therefore, their sum is

14 Duggirala Meher Krishna, Duggirala Ravi

at most 22𝑙+1 − 2, while the maximum integer that can be represented by the left hand

side is (3) is 22𝑙+1 − 1, which means that the single bit 𝑐𝑙, 2∗𝑖 can be added to the left

hand side of (3) without an overflow, for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1. Thus, by the result of

the carry increment in Step 4, the following holds, for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1:

𝑐𝑙+1, 𝑖 ∗ 22𝑙
+ ∑ 𝑠𝑙+1, 𝑖∗2𝑙+1+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

 =

 𝑐𝑙, 2∗𝑖+1 ∗ 22𝑙
+ ∑ 𝑠𝑙, (2∗𝑖+1)∗2𝑙+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

+ 𝑐𝑙, 2∗𝑖 (5)

and

 ∑ 𝑠𝑙+1, 𝑖∗2𝑙+1+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

 = ∑ 𝑠𝑙, (2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

 2𝑙−1

𝑗 = 0

 (6)

Now multiplying both sides of (5) by 22𝑙
 and adding the corresponding sides in (6) to

the result, the following is obtained, for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1:

𝑐𝑙+1, 𝑖 ∗ 22𝑙+1
 + ∑ 𝑠𝑙+1, 𝑖∗2𝑙+1+𝑗 ∗ 2𝑗

2𝑙+1−1

𝑗 = 0

 =

𝑐𝑙+1, 𝑖 ∗ 22𝑙+1
 + ∑ 𝑠𝑙+1, 𝑖∗2𝑙+1+2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑠𝑙+1, 𝑖∗2𝑙+1+𝑗 ∗ 2𝑗

2𝑙−1

𝑗 = 0

 =

 𝑐𝑙, 2∗𝑖+1 ∗ 22𝑙+1
 + ∑ 𝑠𝑙, (2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

 +

 𝑐𝑙, 2∗𝑖

∗ 22𝑙
 + ∑ 𝑠𝑙, (2∗𝑖)∗2𝑙+𝑗 ∗ 2𝑗

 2𝑙−1

𝑗 = 0

Fast Parallel Integer Adder in Binary Representation 15

 = ∑ 𝑎𝑖∗2𝑙+1+𝑗 ∗ 2𝑗

2𝑙+1−1

𝑗 = 0

+ ∑ 𝑏𝑖∗2𝑙+1+𝑗 ∗ 2𝑗

2𝑙+1−1

𝑗 = 0

which proves the claim, for 𝑚 = 𝑙 + 1.

Circuit Complexity: We estimate the number of special purpose AND-gates required

for performing the carry addition operation in Step 4. For 1 ≤ 𝑙 ≤ 𝑘 − 1, there are

2𝑘−𝑙 many sum sequences in the input at level 𝑙, and, of these, only 2𝑘−𝑙−1 many that

constitute the higher precision subsequence at level (𝑙 + 1) are required to be

incremented. Each sequence to undergo increment operation needs (2𝑙 + 1) AND-

gates. Thus the total number of special purpose AND-gates of this implementation is

found as follows:

∑(2𝑙 + 1) ∗ 2𝑘−𝑙−1

𝑘−1

𝑙 = 1

 = ∑ 2𝑘−1 + 2𝑘−𝑙−1

𝑘−1

𝑙 = 1

= (𝑘 − 1) ∗ 2𝑘−1 + (2𝑘−1 − 1)

= 𝑘 ∗ 2𝑘−1 − 1 =
𝑁 ∗ log2 𝑁

2
− 1

The Usefulness of Special Purpose Circuits for Addition or Subtraction by 𝟐𝒊

A processor can be furnished with a special purpose circuit for incrementing an

integer represented by N-bit sequence by 2𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 1. This operation is

useful in the following contexts: taking 2’s complement operation, subtraction

operation, increment of instruction pointer and as a special instruction, dedicated for

this purpose, similar to shift operation. The special purpose circuit is expected to take

only one clock tick to perform the specified increment operation. Further, for adding

an integer represented by very sparsely occupied 1-bits, the addition operation can be

implemented by a sequence of such instructions. The subtraction operation by 2𝑖, for

0 ≤ 𝑖 ≤ 𝑁 − 1, can be realized complementarily.

Improved Parallel Adder Circuit
1. Let the input integers in the binary form be 𝑎𝑁−1 𝑎𝑁−2 … 𝑎0 and

𝑏𝑁−1 𝑏𝑁−2 … 𝑏0.

2. In the first step, compute 𝑁 sums of two bits each, 𝑠 𝑖 = 𝑎 𝑖 𝑋𝑂𝑅 𝑏 𝑖 and

𝑐 𝑖 = 𝑎𝑖 𝐴𝑁𝐷 𝑏 𝑖, for 0 ≤ 𝑖 ≤ 𝑁 − 1. Set 𝑠𝑁 = 𝑐 𝑁−1. All the operations are

performed taking only 1 time delay.

3. In the second step, the carries 𝑐 𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 2, are added in parallel, in

a single time delay, using about
𝑁∗(𝑁+1)

2
 special purpose AND-gates, for 0 ≤

𝑖 < 𝑗 ≤ 𝑁, as follows:

a. Let SC_AND(i, j) =

16 Duggirala Meher Krishna, Duggirala Ravi

 {

𝑠 𝑖+1̅̅ ̅̅ ̅̅ 𝐴𝑁𝐷 𝑐𝑖, 𝑖𝑓 𝑗 = 𝑖 + 1 , 𝑎𝑛𝑑

 𝑠 𝑗̅̅̅ 𝐴𝑁𝐷 𝑠 𝑗−1 𝐴𝑁𝐷 … 𝐴𝑁𝐷 𝑠 𝑖+1 𝐴𝑁𝐷 𝑐𝑖 ,

 𝑖𝑓 𝑗 > 𝑖 + 1

b. It is shown that for each index i, if 𝑐𝑖 = 1, then there exists exactly one

index j, where 𝑖 + 1 ≤ 𝑗 ≤ 𝑁, such that SC_AND(𝑖, 𝑗) = 1, for 0 ≤

𝑖 ≤ 𝑁 − 2 : if 𝑠 𝑁 = 1, then 𝑠 𝑁−1 = 0, and so, in any case, there is an

index j, where 𝑖 + 1 ≤ 𝑗 ≤ 𝑁, such that 𝑠𝑗 = 0 ; the uniqueness of the

index can be easily inferred; and 𝑐 𝑙 = 0, for 𝑖 + 1 ≤ 𝑙 ≤ 𝑗 − 1, which

means that there are no more carries to be added in between the

indexes 𝑖 + 1 and 𝑗 − 1, when 𝑖 + 2 ≤ 𝑗 ≤ 𝑁.

c. Let j be the unique index as in (b), such that SC_AND(𝑖, 𝑗) = 1 and

𝑖 + 1 ≤ 𝑗 ≤ 𝑁; Then, SC_AND instantly complements the bit string

𝑠𝑗 𝑠 𝑗−1 … 𝑠𝑖+1, for 0 ≤ 𝑖 ≤ 𝑁 − 2.

d. The sum together with the carry is 𝑠𝑁 𝑠𝑁−1 𝑠𝑁−2 … 𝑠0.

Proof of Correctness of the Algorithm: Assume that there are r carries of 1s to be

added, where 1 ≤ 𝑟 ≤ 𝑁. Let 0 ≤ 𝑖1 ≤ ⋯ ≤ 𝑖𝑟 ≤ 𝑁 − 1 be the indexes such that

𝑐𝑖𝑙
= 1 , for 1 ≤ 𝑙 ≤ 𝑟, for some r, where 1 ≤ 𝑟 ≤ 𝑁. If 𝑟 = 1, then 𝑐𝑖1

 is the only

carry to be added, and this case is easily handled by the algorithm. Let 2 ≤ 𝑟 ≤ 𝑁.

The main point in the proof is that the addition operation of a carry 𝑐𝑖𝑙
 does not affect

the addition operation of the carry 𝑐𝑖𝑙+1
, for 1 ≤ 𝑙 ≤ 𝑟 − 1 , as observed in the

following. The bit 𝑠𝑖𝑙+1
must be 0, because 𝑐𝑖𝑙+1

= 1 and 𝑐𝑖𝑙+1
𝑠𝑖𝑙+1

, being the result of

adding only two bits, 𝑎𝑖𝑙+1
 and 𝑏𝑖𝑙+1

, cannot be the bit string 11, for 1 ≤ 𝑙 ≤ 𝑟 − 1.

Thus, there exists an index 𝑗𝑙, such that 𝑖𝑙 + 1 ≤ 𝑗𝑙 ≤ 𝑖𝑙+1 and SC_AND(𝑖𝑙, 𝑗𝑙) = 1,

for 1 ≤ 𝑙 ≤ 𝑟 − 1. Now, since there are no carries of 1s in between the indexes 𝑖𝑙 + 1

and 𝑖𝑙+1 − 1, the complementation of the string 𝑠𝑗𝑙
 𝑠 𝑗𝑙−1 … 𝑠𝑖𝑙+1 is equivalent to

adding 1 to the corresponding integer represented by it, without affecting the carry

addition of 𝑐𝑖𝑙+1
, for 1 ≤ 𝑙 ≤ 𝑟 − 1. The last carry 𝑐𝑖𝑟

 is added, as if it were lone

carry to be added.

It may be observed that addition of two (2N)-bit integers takes only 3 time delays by

means of two N-bit adders as just described. Two lower and higher significant N-bit

integers are added, and if a carry is produced by the addition operation of the two

lower significant N-bit integers, then it is added to the sum of the two higher

significant N-bit integers, in just one time delay. The time delay of multiplication of

two N-bit integers is determined by the time delay of addition of (2N)-bit integers,

requiring about log2 𝑁 of adders. For each index i, a Cauchy sum of product is

formed, which corresponds to the coefficient of 2𝑖, for 0 ≤ 𝑖 ≤ 2𝑁 − 1. Since there

Fast Parallel Integer Adder in Binary Representation 17

are at most N products of two bits in each sum, they are added in log2 𝑁 stages, to get

2N coefficients represented by at most log2 𝑁 bits each. Then, the bit-planes of the

coefficients are rearranged into log2 𝑁 integers of at most 2N bits, which are added by

the log2 𝑁 integer adders in parallel, in at most log2 log2 𝑁 stages.

In the first attempt algorithm described in the previous section, we started at leaf node

with sums of two bits of a’s and b’s each, at a time. If we assume a similar

initialization to compute the sum s and carry c bits, we could reduce the space

required by a factor of 2 for the special purpose AND-gates, in the algorithm just

described in this section. Another possibility for reduction of the number of special

purpose AND-gates, for the sake of economy, is to consider a two-level cascaded

implementation. In the first cascade stage, about √𝑁 blocks are taken for addition in

parallel, each block consisting of again about √𝑁 sum and carry bits. In this circuit

design, the number of special purpose AND-gates in the first cascade stage would be

about √𝑁 × [
√𝑁(√𝑁+1)

2
] ≈

𝑁(√𝑁+1)

2
 . In the second cascade stage, there are about √𝑁

carry bits to be added, which would require about
√𝑁(𝑁+1)

2
 special purpose AND-

gates. Thus, the total number of special purpose AND-gates could be about 𝑁√𝑁 =

 𝑁
3

2. Combining with the previous observation, i. e., starting with two bits of a’s and

b’s to get the s and c bits in the initialization step, it is possible to realize a 2N-bit

integer adder performing the addition operation in three clock ticks, requiring only

𝑁√𝑁 = 𝑁
3

2 special purpose AND-gates. For typical numbers, if N = 64, then 𝑁√𝑁 =

 512, as compared to
𝑁(𝑁+1)

2
= 1056, both circuits taking only three clock ticks to

add two 128-bit integers. On a 64-bit processor, 128-bit integer adder is needed for

multiplication operation. The first attempt design circuit of the previous section would

need
128∗7

2
− 1 = 447 special purpose AND-gates, performing the addition of two

128-bit integers in about 7 clock ticks, while a two-stage cascade circuit would need

about 512 special purpose AND-gates, to repeat, performing the addition of two 128-

bit integers in 3 clock ticks. In slide 83 of [8], it is stated that the Pentium processor

performs the 32-bit integer addition in 11 gate delays.

REFERENCES

[1] Avinash Shrivastava, and Chandrahas Sahu, “Performance analysis of parallel

prefix adder based on FPGA”, International Journal of Engineering Trends and

Technology (IJETT), vol. 21, no. 6, March 2015, pp. 281 – 286.

[2] Jasbir Kaur, and Lalit Sood, “Comparison between various types of adder

topologies”, IJCST, vol. 6, issue 1, Jan-March 2015

18 Duggirala Meher Krishna, Duggirala Ravi

[3] Richard P. Brent, and H. T. Kung, “A regular layout for parallel adders”, IEEE

Transactions on Computers, vol. 31, no. 03, March 1982, pp. 260—264.

[4] Vitit Kantabutra, “Designing optimum one-level carry-skip adders”, IEEE

Transactions on Computers, vol.42, no.6, June 1993.

[5] Luigi Dadda and Vincenzo Piuri, “Pipelined adders”, IEEE Transactions on

Computers, vol.45, no.3, March 1996.

[6] Jien-Chung Lo, “A fast binary adder with conditional carry generation” IEEE

Transactions on Computers, vol.46, no.2, February 1997.

[7] A. Guyot, B. Hochet and J.M. Muller, “A way to build efficient carry-skip

adders”, IEEE Transactions on Computers, pp.1144-1152, October 1987.

[8] Steven Rudich, “Great theoretical ideas in computer science”, CMU Lecture 17,

CS 15-251, Carnegie Mellon University, March 2004

