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Abstract 

An integer adder for integers in the binary representation is one of the basic 

operations of any digital processor. For adding two integers of N  bits each, the 

serial adder takes as many clock ticks. For achieving higher speeds, parallel 

circuits are discussed in the literature, and these circuits usually operate in two 

levels. At the lower level, integers represented by blocks of smaller number of 

bits are added, and in a cascade of stages in the next level, the carries 

produced in previous addition operations are summed to the augends. These 

circuits perform addition of integers of N bits in about log2 𝑁 number of clock 

ticks and 𝑂(𝑁 ∗ log2 𝑁) space. In this paper, we describe a fast method and 

an improvement of it. The first attempt resembles the operation method of the 

merge sort algorithm, from which some important properties of carries 

produced in each stage are analysed and assimilated, resulting in a parallel 

adder that runs in about log2 𝑁  number of clock ticks and 𝑂(𝑁 ∗  log2 𝑁) 

space. Then the crucial insights are brought to fruition in an improved design, 

which takes 2 clock ticks to perform the addition operation requiring only 

𝑂(𝑁2) space. The number of bits N  is chosen usually to be a positive integer 

power of 2. The speedup is achieved by special purpose circuits for increment 

operations by 2𝑖  , for 0 ≤ 𝑖 ≤ 𝑁 − 1, each operation taking only a single 

clock tick to complete. 

Keywords: digital circuits, integer addition, parallelization methods. 
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INTRODUCTION 

Addition operation of integers represented in binary is a basic operation on most, if 

not all, modern digital processors. The sequential or serial circuit for performing 

addition of two N bit integers takes N clock ticks. For parallelization of the addition 

operation, the main issue is to find an efficient method to deal with the carry produced 

by addition operation of smaller number of bits. Ripple carry adder or Carry 

propagate adder, Carry look-ahead adder,  Carry skip adder,  Manchester chain adder,  

Carry select adders,  Prefix adders,  Multi-operand adder,  Carry save adder, Pipelined 

parallel adder (see [2—6]). These circuits perform addition of integers of N bits in 

about log2 𝑁 number of clock ticks and 𝑂(𝑁 ∗  log2 𝑁) space (see [1--3]). 

In the next section, we present a k-stage cascade circuit, where 𝑁 =  2𝑘 , 

performing addition operation in only k clock ticks, requiring 𝑘 ∗ 2𝑘−1 − 1 space for 

the special purpose circuits for carry addition. Some important insights are gained in 

the design of this circuit, which are exploited for realizing an improved circuit that 

adds in constant time, i. e., in 2 time delays, but requiring only at most 
𝑁∗(𝑁+1)

2
 space. 

 

PARALLEL BINARY ADDER 

The steps involved in a parallel adder, resembling the merge sort algorithm, are 

described in the following algorithm: 

First Attempt Parallel Adder Circuit 
1. Let the number of bits in the integers be 𝑁 =  2𝑘, for some positive integer k. 

2. Let the input integers in the binary form be 𝑎𝑁−1 𝑎𝑁−2  … 𝑎0  and 

𝑏𝑁−1 𝑏𝑁−2  … 𝑏0. 

3. Initially, compute 2𝑘−1  sums of two bits each, 𝑠1,   2∗𝑖+1 𝑠1,   2∗𝑖  , and the 

corresponding carries 𝑐1,   𝑖 , such that, the binary bit sequences 𝑠1,   2∗𝑖+1 𝑠1,   2∗𝑖 

are the two lesser significant bits obtained by adding 𝑎2∗𝑖+1 𝑎 2∗𝑖  and 

𝑏 2∗𝑖+1 𝑏12∗𝑖 , with a carry bit  𝑐1,   𝑖 , for 0 ≤ 𝑖 ≤ 2𝑘−1 − 1. This operation is 

performed separately by 2𝑘−1 many programmable logic arrays or sequential 

adders, which compute in parallel for each index 𝑖, where  0 ≤ 𝑖 ≤ 2𝑘−1 − 1. 

4. For 𝑙 = 1, 2, … , 𝑘 − 1 , in steps of 1, in the ascending order, after 2𝑘−𝑙  the 

sums of  2𝑙  bits each,  𝑠𝑙,   𝑖∗2𝑙+2𝑙−1 𝑠𝑙,   𝑖∗2𝑙+2𝑙−2 … 𝑠𝑙,   𝑖∗2𝑙  , together with the 

carries  𝑐𝑙,   𝑖 , for  0 ≤ 𝑖 ≤ 2𝑘−𝑙 − 1 , the following increment operation is 

performed :   𝑠𝑙,   (2∗𝑖+1)∗2𝑙+2𝑙−1 𝑠𝑙,   (2∗𝑖+1)∗2𝑙+2𝑙−2 … 𝑠𝑙,   (2∗𝑖+1)∗2𝑙   is 
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incremented by  𝑐𝑙,   2∗𝑖 , to get an auxiliary carry 𝑑𝑙+1,   𝑖 and a sum  

𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙+1−1 𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙+1−2 … 𝑠𝑙+1,   𝑖∗2𝑙+1. where  

 𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙+1−1 𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙+1−2 … 𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙   

=    𝑠𝑙,   (2∗𝑖+1)∗2𝑙+2𝑙−1 𝑠𝑙,   (2∗𝑖+1)∗2𝑙+2𝑙−2 … 𝑠𝑙,   (2∗𝑖+1)∗2𝑙  

as obtained after addition of the carry 𝑐𝑙,   2∗𝑖 ,  and 

𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙+1+2𝑙−1 𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙+1+2𝑙−2 … 𝑠𝑙+1,   𝑖∗2𝑙+1  

=     𝑠𝑙,   (2∗𝑖)∗2𝑙+2𝑙−1 𝑠𝑙,   (2∗𝑖)∗2𝑙+2𝑙−2 … 𝑠𝑙,   (2∗𝑖)∗2𝑙   ; 

the carry 𝑐𝑙+1,   𝑖 is 𝑐𝑙,   2∗𝑖+1  ∨  𝑑𝑙+1,   𝑖 , for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1; the number of 

bits in the sum in the (𝑙 + 1)-th cascade stage is 2𝑙+1 and there are 2𝑘−𝑙−1 

such sums and carries. Although there appears to be the need for an auxiliary 

carry as just described, the combined operation of increment and carry update 

can be performed as a single step by incrementing  (2𝑙 + 1)-bit integer in the 

binary form represented by   

 𝑐𝑙,   2∗𝑖+1   𝑠𝑙,   (2∗𝑖+1)∗2𝑙+2𝑙−1 𝑠𝑙,   (2∗𝑖+1)∗2𝑙+2𝑙−2 … 𝑠𝑙,   (2∗𝑖+1)∗2𝑙  

to get the binary sequence  

 𝑐𝑙+1,   𝑖  𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙+1−1 𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙+1−2 … 𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙 

for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1; this increment operation can be performed in a single 

clock tick by a special purpose circuit, which indentifies the least index j , 

where  0 ≤ 𝑗 ≤ 2𝑙 , such that all the least significant bits up to (but not 

including) index j are 1 and the bit with index j is 0, by means of (2𝑙 + 1) 

AND-gates implemented by negated NOR-gates, and instantly complements 

the bits with index j upto the least significant bit; if 𝑐𝑙,   2∗𝑖+1 is 0, then there is 

one such index j, and if 𝑐𝑙,   2∗𝑖+1 is 1, then it must have been produced in the 

previous, i. e.,  𝑙-th ,  cascade stage, and therefore, the integer represented by 

the binary sequence  𝑠𝑙,   (2∗𝑖+1)∗2𝑙+2𝑙−1 𝑠𝑙,   (2∗𝑖+1)∗2𝑙+2𝑙−2 … 𝑠𝑙,   (2∗𝑖+1)∗2𝑙  can 

be at most 22𝑙
− 2 , ensuring that there is such an index j as just being 

discussed, and the increment operation cannot further produce a carry, 

5. The final sum is 𝑠𝑘,   2𝑘−1 𝑠𝑘,   2𝑘−2 … 𝑠𝑘,   0 with final carry 𝑐𝑘,   0. 
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Claim: The integer represented by 𝑠𝑚,   𝑖∗2𝑚+2𝑚−1 𝑠𝑚,   𝑖∗2𝑚+2𝑚−2 … 𝑠𝑚,   𝑖∗2𝑚  , 

together with the carries 𝑐𝑚,   𝑖 , is the result of addition of the integers represented by 

the binary sequences 𝑎 𝑖∗2𝑚+2𝑚−1 𝑎 𝑖∗2𝑚+2𝑚−2 … 𝑎 𝑖∗2𝑚   and 

𝑏 𝑖∗2𝑚+2𝑚−1 𝑏 𝑖∗2𝑚+2𝑚−2 … 𝑏 𝑖∗2𝑚 , as expressed in the following,  for  0 ≤ 𝑖 ≤

2𝑘−𝑚 − 1 and 1 ≤ 𝑚 ≤ 𝑘 : 

𝑐𝑚,   𝑖 ∗ 22𝑚
     +     ∑ 𝑠𝑚,   𝑖∗2𝑚+𝑗 ∗  2𝑗

2𝑚−1

𝑗 = 0

      =  

∑ 𝑎𝑖∗2𝑚+𝑗 ∗  2𝑗

2𝑚−1

𝑗 = 0

    +     ∑ 𝑏𝑖∗2𝑚+𝑗 ∗  2𝑗

2𝑚−1

𝑗 = 0

        (1) 

Proof: The claim is true for 𝑚 = 1, by the construction in Step 3. Now, it is assumed 

be true through all cascade stages up to and including m and 𝑙, where 1 ≤ 𝑚 ≤ 𝑙 ≤

𝑘 − 1. Entering the second for-loop indexed by 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1, in Step 4, it is 

required to show that the assertion in (1) holds true, for 𝑚 = 𝑙 + 1. Now, by inductive 

hypothesis, the following is assumed to hold true, for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1 : 

𝑐𝑙,   2∗𝑖 ∗ 22𝑙
  +   ∑ 𝑠𝑙,   (2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

         =   

    ∑ 𝑎(2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

  +    ∑ 𝑏(2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

   𝑎𝑛𝑑      (2) 

𝑐𝑙,   2∗𝑖+1 ∗ 22𝑙
  +   ∑ 𝑠𝑙,   (2∗𝑖+1)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

     =  

  ∑ 𝑎(2∗𝑖+1)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖+1)∗2𝑙+𝑗 ∗  2𝑗

  2𝑙−1

𝑗 = 0

       (3) 

Multiplying by 22𝑙
 the equation (3) throughout, the following is obtained, for 0 ≤ 𝑖 ≤

2𝑘−𝑙−1 − 1.: 

𝑐𝑙,   2∗𝑖+1 ∗ 22𝑙+1
+ ∑ 𝑠𝑙,   (2∗𝑖+1)∗2𝑙+𝑗 ∗  22𝑙+𝑗

2𝑙−1

𝑗 = 0

   = 
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 ∑ 𝑎(2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖+1)∗2𝑙+𝑗 ∗  22𝑙+𝑗

2𝑙−1

𝑗 = 0

     (4) 

and adding the corresponding sides of  the equations (4) and (2), the following is 

obtained : 

𝑐𝑙,   2∗𝑖+1 ∗ 22𝑙+1
+  ∑ 𝑠𝑙,   (2∗𝑖+1)∗2𝑙+𝑗 ∗  22𝑙+𝑗

2𝑙−1

𝑗 = 0

   + 

  𝑐𝑙,   2∗𝑖 ∗ 22𝑙
+ ∑ 𝑠𝑙,   (2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

          = 

      ∑ 𝑎(2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖+1)∗2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

 

+       ∑ 𝑎(2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

   

=     ∑ 𝑎(2∗𝑖)∗2𝑙+2𝑙+𝑗 ∗ 22𝑙+𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖)∗2𝑙+2𝑙+𝑗 ∗  22𝑙+𝑗

2𝑙−1

𝑗 = 0

  

+       ∑ 𝑎(2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

   

   =     ∑ 𝑎(2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙+1−1

𝑗 = 0

+ ∑ 𝑏(2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

2𝑙+1−1

𝑗 = 0

       

  =           ∑ 𝑎𝑖∗2𝑙+1+𝑗 ∗  2𝑗

2𝑙+1−1

𝑗 = 0

+ ∑ 𝑏𝑖∗2𝑙+1+𝑗 ∗  2𝑗

2𝑙+1−1

𝑗 = 0

   

where the last term is the result of addition of the integers represented by the binary 

sequences 𝑎 𝑖∗2𝑙+1+2𝑙+1−1 𝑎 𝑖∗2𝑙+1+2𝑙+1−2 … 𝑎 𝑖∗2𝑙+1  and 

𝑏 𝑖∗2𝑙+1+2𝑙+1−1 𝑏 𝑖∗2𝑙+1+2𝑙+1−2 … 𝑏 𝑖∗2𝑙+1 , for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1. Now, either of the 

summands on the right hand side of (3) is at most 22𝑙
− 1, and therefore, their sum is 
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at most 22𝑙+1 − 2, while the maximum integer that can be represented by the left hand 

side is (3) is 22𝑙+1 − 1, which means that the single bit 𝑐𝑙,   2∗𝑖  can be added to the left 

hand side of (3) without an overflow, for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1. Thus, by the result of 

the carry increment in Step 4, the following holds, for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1: 

𝑐𝑙+1,   𝑖 ∗ 22𝑙
+ ∑ 𝑠𝑙+1,   𝑖∗2𝑙+1+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

     = 

    𝑐𝑙,   2∗𝑖+1 ∗ 22𝑙
+ ∑ 𝑠𝑙,   (2∗𝑖+1)∗2𝑙+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

+  𝑐𝑙,   2∗𝑖        (5) 

and 

 ∑ 𝑠𝑙+1,   𝑖∗2𝑙+1+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

   =    ∑ 𝑠𝑙,   (2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

 2𝑙−1

𝑗 = 0

   (6) 

Now multiplying both sides of (5) by 22𝑙
 and adding the corresponding sides in (6) to 

the result, the following is obtained, for 0 ≤ 𝑖 ≤ 2𝑘−𝑙−1 − 1: 

𝑐𝑙+1,   𝑖 ∗ 22𝑙+1
    +     ∑ 𝑠𝑙+1,   𝑖∗2𝑙+1+𝑗 ∗  2𝑗

2𝑙+1−1

𝑗 = 0

    =       

𝑐𝑙+1,   𝑖 ∗ 22𝑙+1
    +     ∑ 𝑠𝑙+1,   𝑖∗2𝑙+1+2𝑙+𝑗 ∗  22𝑙+𝑗

2𝑙−1

𝑗 = 0

  

+      ∑ 𝑠𝑙+1,   𝑖∗2𝑙+1+𝑗 ∗  2𝑗

2𝑙−1

𝑗 = 0

               = 

 𝑐𝑙,   2∗𝑖+1 ∗ 22𝑙+1
   +     ∑ 𝑠𝑙,   (2∗𝑖+1)∗2𝑙+𝑗 ∗  22𝑙+𝑗

2𝑙−1

𝑗 = 0

       + 

  
 𝑐𝑙,   2∗𝑖

∗ 22𝑙
     +       ∑ 𝑠𝑙,   (2∗𝑖)∗2𝑙+𝑗 ∗  2𝑗

 2𝑙−1

𝑗 = 0
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              =           ∑ 𝑎𝑖∗2𝑙+1+𝑗 ∗  2𝑗

2𝑙+1−1

𝑗 = 0

+ ∑ 𝑏𝑖∗2𝑙+1+𝑗 ∗  2𝑗

2𝑙+1−1

𝑗 = 0

 

which proves the claim, for 𝑚 = 𝑙 + 1. 

Circuit Complexity: We estimate the number of special purpose AND-gates required 

for performing the carry addition operation in Step 4.  For 1 ≤  𝑙 ≤  𝑘 − 1, there are 

2𝑘−𝑙 many sum sequences in the input at level 𝑙, and, of these, only 2𝑘−𝑙−1 many that 

constitute the higher precision subsequence at level (𝑙 + 1)  are required to be 

incremented. Each sequence to undergo increment operation needs (2𝑙 + 1) AND-

gates. Thus the total number of special purpose AND-gates of this implementation is 

found as follows: 

∑(2𝑙 + 1) ∗  2𝑘−𝑙−1

𝑘−1

𝑙 = 1

    =      ∑ 2𝑘−1 +  2𝑘−𝑙−1

𝑘−1

𝑙 = 1

=     (𝑘 − 1) ∗ 2𝑘−1 + (2𝑘−1 − 1)

=    𝑘 ∗ 2𝑘−1 − 1   =      
𝑁 ∗ log2 𝑁

2
− 1 

The Usefulness of Special Purpose Circuits for Addition or Subtraction by 𝟐𝒊  

A processor can be furnished with a special purpose circuit for incrementing an 

integer represented by N-bit sequence by 2𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 1. This operation is 

useful in the following contexts: taking 2’s complement operation, subtraction 

operation, increment of instruction pointer and as a special instruction, dedicated for 

this purpose, similar to shift operation. The special purpose circuit is expected to take 

only one clock tick to perform the specified increment operation. Further, for adding 

an integer represented by very sparsely occupied 1-bits, the addition operation can be 

implemented by a sequence of such instructions. The subtraction operation by  2𝑖, for 

0 ≤ 𝑖 ≤ 𝑁 − 1, can be realized complementarily.  

Improved Parallel Adder Circuit 
1. Let the input integers in the binary form be 𝑎𝑁−1 𝑎𝑁−2  … 𝑎0  and 

𝑏𝑁−1 𝑏𝑁−2  … 𝑏0. 

2. In the first step, compute 𝑁  sums of two bits each, 𝑠 𝑖 =  𝑎 𝑖 𝑋𝑂𝑅  𝑏 𝑖   and  

𝑐 𝑖 =  𝑎𝑖 𝐴𝑁𝐷  𝑏 𝑖, for 0 ≤ 𝑖 ≤ 𝑁 − 1. Set 𝑠𝑁 =  𝑐 𝑁−1. All the operations are 

performed taking only 1 time delay.  

3. In the second step, the carries 𝑐 𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 2,  are added in parallel, in 

a single time delay, using about  
𝑁∗(𝑁+1)

2
  special purpose AND-gates, for 0 ≤

𝑖 < 𝑗 ≤ 𝑁, as follows: 

a. Let  SC_AND(i, j)     =    
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  {

 
𝑠 𝑖+1̅̅ ̅̅ ̅̅   𝐴𝑁𝐷 𝑐𝑖,    𝑖𝑓   𝑗 = 𝑖 + 1  , 𝑎𝑛𝑑

 𝑠 𝑗̅̅̅  𝐴𝑁𝐷 𝑠 𝑗−1 𝐴𝑁𝐷 …  𝐴𝑁𝐷 𝑠 𝑖+1 𝐴𝑁𝐷 𝑐𝑖 ,   

   𝑖𝑓  𝑗 > 𝑖 + 1 

  

b. It is shown that for each index i, if 𝑐𝑖 = 1, then there exists exactly one 

index j, where 𝑖 + 1 ≤ 𝑗 ≤ 𝑁, such  that   SC_AND(𝑖, 𝑗)   = 1, for 0 ≤

𝑖 ≤ 𝑁 − 2 : if 𝑠 𝑁 = 1, then 𝑠 𝑁−1 = 0, and so, in any case,  there is an 

index j, where 𝑖 + 1 ≤ 𝑗 ≤ 𝑁, such that 𝑠𝑗 = 0 ; the uniqueness of the 

index can be easily inferred; and 𝑐 𝑙 = 0, for 𝑖 + 1 ≤ 𝑙 ≤ 𝑗 − 1, which 

means that there are no more carries to be added in between the 

indexes 𝑖 + 1 and 𝑗 − 1, when 𝑖 + 2 ≤ 𝑗 ≤ 𝑁. 

c. Let j be the unique index as in (b), such that SC_AND(𝑖, 𝑗)   = 1 and 

𝑖 + 1 ≤ 𝑗 ≤ 𝑁; Then,   SC_AND instantly complements the bit string 

𝑠𝑗  𝑠 𝑗−1  … 𝑠𝑖+1, for 0 ≤ 𝑖 ≤ 𝑁 − 2. 

d. The sum together with the carry is  𝑠𝑁 𝑠𝑁−1 𝑠𝑁−2  … 𝑠0. 

Proof of Correctness of the Algorithm: Assume that there are r carries of 1s to be 

added,  where 1 ≤ 𝑟 ≤ 𝑁. Let 0 ≤ 𝑖1 ≤ ⋯  ≤ 𝑖𝑟 ≤ 𝑁 − 1  be the indexes such that 

𝑐𝑖𝑙
= 1 , for  1 ≤ 𝑙 ≤ 𝑟, for some r, where 1 ≤ 𝑟 ≤ 𝑁. If 𝑟 = 1, then 𝑐𝑖1

 is the only 

carry to be added, and this case is easily handled by the algorithm. Let   2 ≤ 𝑟 ≤ 𝑁. 

The main point in the proof is that the addition operation of a carry 𝑐𝑖𝑙
 does not affect 

the addition operation of the carry 𝑐𝑖𝑙+1
, for 1 ≤ 𝑙 ≤ 𝑟 − 1 , as observed in the 

following.  The bit 𝑠𝑖𝑙+1
must be 0, because 𝑐𝑖𝑙+1

= 1 and 𝑐𝑖𝑙+1
𝑠𝑖𝑙+1

,  being the result of 

adding only two bits, 𝑎𝑖𝑙+1
 and 𝑏𝑖𝑙+1

,  cannot be the bit string 11,  for  1 ≤ 𝑙 ≤ 𝑟 − 1. 

Thus, there exists an index 𝑗𝑙, such that 𝑖𝑙 + 1 ≤ 𝑗𝑙 ≤ 𝑖𝑙+1 and  SC_AND(𝑖𝑙, 𝑗𝑙)   = 1, 

for 1 ≤ 𝑙 ≤ 𝑟 − 1. Now, since there are no carries of 1s in between the indexes 𝑖𝑙 + 1 

and 𝑖𝑙+1 − 1, the complementation  of the string 𝑠𝑗𝑙
 𝑠 𝑗𝑙−1  … 𝑠𝑖𝑙+1  is equivalent to 

adding 1 to the corresponding integer represented by it, without affecting the carry 

addition of  𝑐𝑖𝑙+1
, for 1 ≤ 𝑙 ≤ 𝑟 − 1. The last carry 𝑐𝑖𝑟

 is added, as if  it were lone 

carry to be added. 

It may be observed that addition of two (2N)-bit integers takes only 3 time delays by 

means of two N-bit adders as just described. Two lower and higher significant N-bit 

integers are added, and if a carry is produced by the addition operation of the two 

lower significant N-bit integers, then it is added to the sum of the two higher 

significant N-bit integers, in just one time delay. The time delay of multiplication of 

two N-bit integers is determined by the time delay of addition of (2N)-bit integers, 

requiring about log2 𝑁  of adders. For each index i, a Cauchy sum of product is 

formed, which corresponds to the coefficient of 2𝑖, for 0 ≤ 𝑖 ≤ 2𝑁 − 1. Since there 
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are at most N products of two bits in each sum, they are added in log2 𝑁 stages, to get 

2N coefficients represented by at most log2 𝑁 bits each. Then, the bit-planes of the 

coefficients are rearranged into log2 𝑁 integers of at most 2N bits, which are added by 

the  log2 𝑁 integer adders in parallel, in at most log2 log2 𝑁 stages. 

In the first attempt algorithm described in the previous section, we started at leaf node 

with sums of two bits of a’s and b’s each, at a time. If we assume a similar 

initialization to compute the sum s and carry c bits, we could reduce the space 

required by a factor of 2 for the special purpose AND-gates, in the algorithm just 

described in this section.  Another possibility for reduction of the number of special 

purpose AND-gates, for the sake of economy, is to consider a two-level cascaded 

implementation. In the first cascade stage, about √𝑁 blocks are taken for addition in 

parallel, each block consisting of again about √𝑁 sum and carry bits. In this circuit 

design, the number of special purpose AND-gates in the first cascade stage would be 

about  √𝑁 × [
√𝑁(√𝑁+1)

2
] ≈

𝑁(√𝑁+1)

2
 . In the second cascade stage, there are about √𝑁 

carry bits to be added, which would require about 
√𝑁(𝑁+1)

2
 special purpose AND-

gates. Thus, the total number of special purpose AND-gates could be about  𝑁√𝑁 =

 𝑁
3

2. Combining with the previous observation, i. e., starting with two bits of a’s and 

b’s to get the  s  and  c bits in the initialization step, it is possible to realize a 2N-bit 

integer adder performing the addition operation  in three clock ticks, requiring only 

𝑁√𝑁 =  𝑁
3

2 special purpose AND-gates. For typical numbers, if N = 64, then 𝑁√𝑁 =

 512, as compared to 
𝑁(𝑁+1)

2
= 1056, both circuits  taking only three clock ticks to 

add two 128-bit integers. On a 64-bit processor, 128-bit integer adder is needed for 

multiplication operation. The first attempt design circuit of the previous section would 

need 
128∗7

2
− 1 = 447 special purpose AND-gates, performing the addition of two 

128-bit integers in about 7 clock ticks, while a two-stage cascade circuit would need 

about  512 special purpose AND-gates, to repeat, performing the addition of two 128-

bit integers in 3 clock ticks. In slide 83 of [8], it is stated that the Pentium processor 

performs the 32-bit integer addition in 11 gate delays.  
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